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Abstract: In this paper an improved Clonal Selection Algorithm (CSA) is proposed as a method to 
implement optimality based Iterative Learning Control algorithms. The strength of the proposed method is 
that it not only can cope with non-minimum phase plants and nonlinear plants but also can deal with 
constraints on input conveniently by a specially designed mutation operator. In addiction, because more 
priori information was used to decrease the size of the search space, the probability of the clonal selection 
algorithm converging rapidly to a global optimum was increased considerably. Simulations show that the 
convergence speed is satisfactory regardless of the nature of the plant. 

1. INTRODUCTION 

Iterative learning control (ILC) is a relatively new addition to 
the variety of control paradigms which, for a particular class 
of control problems, can be used to overcome some of the 
design difficulties associated with more conventional 
feedback controller synthesis. In more precise terms, iterative 
learning control is a technique for improving the transient 
response and tracking performance of processes, machines, 
equipment, or systems that execute the same trajectory 
(Arimoto, Kawamura, & Miyazaki, 1984. Moore, 1993), 
motion, or operation repetitively. ILC is an approach 
motivated by the observation that if the system’s operating 
conditions are the same each times it executes then any errors 
in the tracking response will be repeated during each 
operation. These errors and the control input signal can be 
recorded during every repetition and this information can be 
used to compute a new input signal that will be applied to the 
system during the next repetition or the next trial (here trial is 
synonymous with repetition or iterative). The idea behind ILC 
is to calculate the new input signal so that the tracking 
accuracy would be increased as the number of repetitions 
increases, i.e. the ILC algorithm ultimately learns the correct 
input through repetition.  

      One very useful approach to ILC seems to be to combine 
ILC with optimisation based techniques. For example, Amann, 
Owens, and Rogers (1996) proposed a rare algorithm that 
results in monotonic and geometric convergence for an 
arbitrary linear time-invariant discrete-time plant combines 
ILC and optimality. The algorithm is based on posing a 
suitable optimisation problem during each repetition, and 
feeding the optimal input into the plant. In order to find 
optimality based algorithm that are simple to implement, do 
not require extensive calculation between trials but still result 
in good convergence properties, in Owens and Fang (2003) 
and Hätönen and Owens (2003) parameter-optimal ILC 
algorithm were introduced. These approaches are structurally 
simple but retain the property that the tracking error 
converges monotonically. However, most of the algorithms 

with guaranteed convergence properties work only for linear 
plants. This is a severe limitation because the dynamics of 
repetitive systems can be highly non-linear. For this reason it 
is necessary to derive a new class of ILC algorithms that are 
able to cope with nonlinearities. Furthermore, in practise 
process variables are subject to constraints that are set by 
safety considerations or physical constraints. Hence there is a 
real need for algorithms that can handle these hard constraints 
in a straightforward manner.  

Recently, Hatzikos and Owens (2002a, 2002b) proposed a 
genetic algorithm based optimisation method for iterative 
learning control systems (GA-ILC).The proposed framework 
has been shown to give good results for linear time-invariant 
plants. In their following work (Vasilis E Hatzikos, David H 
Owens and Jari Hätönen, 2003, V.Hatzikos, J.Hätönen and 
D.H.Owens, 2004), the method was extended to the case 
where the dynamical system is nonlinear. However, no a 
priori information was used to decrease the size of the search 
space in these methods. In addition, the used simple genetic 
algorithm is not efficient enough and has too many parameters 
need selected in some instance. As a result, the probability of 
the algorithm converging rapidly to a global optimum also 
need increased imminently. 

In the current paper, an improved clonal selection algorithm is 
proposed in an attempt to enhance optimal efficiency in 
iterative learning control. The rest of the paper is organized as 
follows: in the next section, we describe the ILC problem in 
mathematical terms. In section 3, the clonal selection 
algorithm based optimization method for iterative learning 
control is presented in detail. Section 4 illustrates the 
theoretical findings using simulations. Finally, in section 5, 
some general conclusions are given. 

2. ILC PROBLEM DEFINITION  

Consider the following possibly non-linear discrete-time 
dynamical system defined over finite time interval, 
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with a suitable initial condition 0)0( xx = and ff NTT = .In 
addition, a reference signal )(tyd  is specified and the control 
objective is to design a learning algorithm that will drive the 
output variable )(ty  to track this reference signal as closely as 
possible by manipulating the input variable )(tu . The special 
feature of the problem is that when the system (1) has reached 
the final time point fTt = , the state of the system is reset back 
to 0x , and after resetting, the system is supposed to follow the 
same reference signal )(tyd  again. This repetitive nature of 
the problem opens up possibilities for modifying iteratively 
the input function )(tu  so that as the number of repetitions or 
trials increases, the system learns the input function that gives 
perfect tracking. To be more precise, the idea is to find a 
control law  

),,,,,,( 111 skkkrkkkk eeeuuufu −+−−+ = LL                     (2) 
so that 
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and *u  is the input function that gives perfect tracking (i.e. 
we are assuming the reference signal belongs to the range of 
the plant). Note that if the original plant model is a linear 
time-invariant model 
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it can be represented equivalently with a matrix equation 
kek uGy = ,where  
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where sfl TTT /= . This equivalent representation can typically 
simplify considerably the convergence analysis of ILC 
algorithms.  

3. THE CLONAL SELECTION ALGORITHM BASED 
OPTIMIZATION METHOD FOR ITERATIVE LEARNING 

CONTROL 

3.1 The CSA-ILC optimization structure  

The ILC theory was introduced independently by several 
researchers in the beginning of the 1980s. Most important of 
all was Arimoto et al. who defined the principles that underlie 
‘learning control’. After that the number of published papers 
has increased significantly. However, algorithms based on 
optimality have been proved to be the most popular ones 
amongst the researchers.  

There exist nowadays several optimisation based algorithms 
that can solve the ILC problem introduced in the previous 

section when applied to linear systems. One particular 
approach is the so-called Norm-Optimal ILC method. The 
basic idea behind this method is to solve the following 
optimisation problem on-line during iteration: 

2
1

2
11 +++ +−= kkkk euuJ                               (9)  

with the constraint equation [ ] )()( 11 tuGty kek ++ = ,where eG  is the 
plant in question. The advantages of this approach are 
immediate from the simple interlacing result (10) which is a 
consequence of optimality (it is assumed that (9) has at least 
one optimal solution) and furthermore from the fact that the 
choice of kk uu =+1  would lead to the relation 2

1 )( kkk euJ =+  and 
hence 

2
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2
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in other words the algorithm results in monotonic 
convergence. If the plant eG  in the constraint 
equation [ ] )()( 11 tuGty kek ++ = is a linear time-invariant (LTI) 
system, it is straightforward to show that the optimizing 
solution is given by  
                           [ ] )()()( 1

*
1 teGtutu kekk ++ +=                              (11) 

where *
eG  is the adjoint operator of eG . This is non-causal 

implementation of algorithm but it can be shown that with 
LTI systems there exists an equivalent causal feedback-law 
(Aman 1996). Furthermore, in the case of discrete-time LTI 
system one can show that 
                                      kk ee

σ+
≤+ 1

1
1                                 (12) 

where 0>σ  is the smallest singular value of the plant eG . 
Therefore (12) shows that the convergence is in fact 
geometric for this particular class of plants. However, with 
nonlinear plants it is not always possible to use the adjoint of 
the plant to implement the algorithm (the adjoint does not 
exist or it is not clear how to find an equivalent causal 
implementation). 
Hence in this paper it is suggested that for nonlinear plants the 
optimization problem (9) is to be solved numerically between 
trials by using a CSA approach. It is important to understand 
that if the optimization problem (9) has at least one optimizing 
solution with the given nonlinear plant, and the chosen CSA 
method is able to find one of the optimizing solutions, then 
the interlacing result (10) still holds. Consequently by using 
the CSA method, it is still possible to achieve monotonic 
convergence with nonlinear plants. 

  
Fig. 1. Plot of the CSA-ILC structure 

A block diagram representing the CSA-ILC optimization 
structure can be seen in Figure 1.All the procedure is coded in 
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MATLAB’s workspace. It should be pointed out that, for each 
iterative the data of the last memory antibody pool in CSA 
should be collected, which will be used to initialize population 
of CSA in next iterative. In this structure, the operation of the 
system is directly influenced by the CSA. So a efficient CSA 
become very necessary. 

3.2 Improved Clonal selection algorithm in iterative learning 
control 

The Artificial Immune System (AIS) is a new kind of 
computational intelligence methodologies inspired by the 
natural immune system to solve real-world problems (D. 
Dasgupta, 1999). As an important partner of the AIS, the 
Clonal Selection Algorithm (CSA) methods have been 
successfully applied to handle challenging optimization 
problems with superior performances over classical 
approaches (L. N. de Castro and F. J. von Zuben, 2002. X. 
Wang, X. Z. Gao, and S. J. Ovaska, 2004). It is based on the 
Clonal Selection Principle (CSP), which explains how an 
immune response is mounted, when a non-self antigenic 
pattern is recognized by the B cells (G. L. Ada and G. J. V. 
Nossal, 1987). It is an evolutionary process in the natural 
immune systems, during which only the antibodies that can 
recognize intruding antigens are selected to proliferate by 
cloning (L. N. de Castro and J. Timmis, 2002). More precisely, 
the fundamental of the CSA is the theory that the cells 
(antibodies) capable of recognizing non-self cells (antigens) 
can proliferate. The main ideas of the proposed CSA 
borrowed from the CSP are (L. N. de Castro and F. J. von 
Zuben, 1999): 

• maintenance of memory cells functionally disconnected 
from the repertoire. 

• selection and cloning of most stimulated antibodies. 
• suppression of non-simulated cells. 
• affinity maturation and re-selection of clones with higher 

affinity. 
• mutation rate proportional to cell affinity. 

 
Fig. 2. Block diagram of the improved clonal selection 

algorithm in iterative learning control. 

In order to deal with the optimal problem in ILC, an improved 
clonal selection algorithm is proposed in the current paper. Its 
block diagram is shown in Fig. 2, in which the corresponding 
steps are explained in detail as follows: 

1) Initialize: Randomly generate popsize individuals 
composing initial antibody pool (Abi),and define an empty 
memory antibody pool (Abm).All the individuals in the CSA 
are real coded and their fitness are measured  according to 
equation (9). 

2) Select: select the numS best individuals from Abi 
according to their fitness composing the selected antibody 
pool (Abs). Update Abm at the same time and make sure it 
always keeps the best numM individuals got by the algorithm. 

3) Clone: clone the best individuals in Abs into a 
temporary pool (C).Each individual in Abs is cloned into 
same numC individuals in C. 

4) Gauss mutation: Generate a mutated antibody pool (M) 
from C. Different to other evaluation algorithms, every 
individual in C is chosen for mutation in the CSA in this paper. 
Select a bit from the real coded individual randomly and then 
replace it by a new bit got according to the following 
expression: 

)1,0()( minmax' Nuuxx iiii ⋅−⋅+= γ                      (13) 
where '

ix and ix is old and new gene bit respectively 
(Because all the individuals in the algorithm are real coded, 
they are real input value in fact.). γ  is mutation factor which 
is used to restrict the search range. )1,0(N  is a Gaussian 
random variable of zero mean and standard deviation 

1=σ . max
iu and min

iu is the largest value and least value of the 
gene bit . 

5) Stop: If the stop criterion is satisfied, then output the 
result, or else let 1+= kk  and AbmMAb ∪= , then return to 2).  

The Gauss mutation operation is the key to the success of this 
algorithm, which is the only way to generate new individuals. 
The search space is decreased considerably by setting of the 
border parameters max

iu  and min
iu . All the generated new 

individuals are must in the range. In addition, the real coded 
Gauss mutation makes the inputs produced by the CSA 
smoother. 

4. NUMERICAL EXAMPLES  

To demonstrate the effectiveness of the Clonal Selection 
Algorithm in Constrained Linear and Non-linear Iterative 
Learning Control, numerical simulation results are provided in 
this section. These examples show that CSA can be 
effectively used to solve linear and non-linear problems in 
ILC. 

4.1 Constrained non-minimum-phase linear system 

In this simulation example we will investigate the proposed 
algorithm's performance by using for a more demanding 
dynamical system. The equations describing the dynamical 
model are: 

                                 
)()1(
)()1(

)()(1.0)1(
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                       (14) 

Output is:  
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1xy =                                           (15) 
The ILC algorithm needs to find the input that tracks the 
following desired output. 

1    ,0)( == iiyd  
232    )),2(05.0sin()( ≤≤−= iiiyd π                           (16) 

Inequality constraint on input signal is:  
231,2,i            maxmin L=≤≤ iii uuu                            (17) 

For this specific problem the CSA-ILC algorithm needs to be 
able to minimise the following cost function: 

2
1

2
11 +++ +−= kkkk euuJ α                              (18) 

where the weight α  is equal to 0.01. Introducing a weight 
factor to the input difference part of the objective function we 
simply provide the CSA with the ability to concentrate in 
them in imitation of the error rather than executing the easier 
task of input difference reduction. The parameters of the CSA 
used during this particular example are shown in Table 1. 

Table 1.CSA settings 
CSA parameter Setting 

Initial population size 
(popsize) 100 

Total generations (Gmax) 100 

No. of Iterations (Kmax) 6 

Coding Real, one number per decision 
variable 

No. of Ab which be selected 
during per generation (numS) 20 

Clone factor (numC) 5 

Elitism Some best Abs are kept in 
memory Ab pool (Abm) 

No. of Ab in Abm (numM) 6 

Mutation Gauss mutation 

Mutation factor ( γ ) 0.1 
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Fig. 3. Tacking of the reference function 

Using the above settings, the obtained results were 
satisfactory. Figure 3 and figure 4 shows the tacking of the 
reference signal and the value of the error e in logarithmic 
form where the range of the search space is constrained in 

]5.1,5.1[− ( 231,2,i  , 5.15.1 L=≤≤− iu ) respectively. They indicate 

that the CSA-ILC structure is able to find the optimal solution 
of the optimization problem, and the tracking error converges 
monotonically to zero fast. Figure 5 and figure 6 shows the 
tacking of the reference signal and the best input obtained by 
CSA-ILC where the range of the search space is constrained 
in ]5.0,5.0[−  respectively. They indicate that the priori 
information can be easily coded into CSA to decrease the size 
of the search space.  
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Fig. 4. Convergence speed of the )(tek  in logarithmic form 
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Fig. 5. Tacking of the reference function 
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Fig. 6. The best input obtained by CSA-ILC 

4.2 Saturated nonlinear industrial control system example 

In this simulation example we will investigate the proposed 
algorithm's performance by using for a more demanding 
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saturated nonlinear industrial control system. Its structure is 
shown in figure 7. The transaction function of the linear part 
of the plant is )122/(1)( 2 ++= sssG , and the expression of the 
saturated nonlinear part is: 
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The ILC algorithm needs to find the input that tracks the 
following desired output. 

[0,25]    t          ))1/(11(2.1)( 3 ∈+−= ttyd                   (20) 
Inequality constraint on input signal is:  

251,2,i            maxmin L=≤≤ iii uuu                         (21) 
where   1.5,5.1 maxmin =−= ii uu here. 

 
Fig. 7. Structure of the saturated nonlinear control system 

The CSA settings shown in table 1 were also used in this 
example. Figure 8 and figure 9 shows the tacking of the 
reference signal and the value of the error e in logarithmic 
form. 
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Fig. 8. Tacking of the reference function 
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Fig. 9. Convergence speed of the )(tek  in logarithmic form 

5. CONCLUSIONS 

In this paper the possibility of using CSA in solving 
optimisation problems in ILC was investigated. It is a 
progress of the GA-ILC method. These projects were 
motivated by the fact in real world applications the plant to be 
controlled can be highly nonlinear and it typically constraints 
on its input signal. The more traditional optimality based ILC 
algorithms cannot cope with these kinds of plants whereas 
Evolutionary Algorithms such as GA and CSA on the other 
hand, have been proven to be able to produce at least a local 
optimal solution for a highly nonlinear optimisation problem. 

 The improved clonal selection algorithm instead of SGA is 
used in this paper because of its better search ability and the 
more important reason that more priori information was coded 
in it to decrease the size of the search space. As a result, not 
only the probability of the optimization algorithm converging 
rapidly to a global optimum was increased considerably but 
also the constraints on input signals are easily solved. 

Finally, this paper assumes that there is no uncertainty in the 
plant model, which is an unrealistic assumption in typical 
applications of ILC. Therefore future work could consider 
adding feedback from the real plant so that the clonal 
selection algorithm based optimization method modifies its 
behaviour based on the information received from the real 
plant. One way to achieve this could be to use the 
experimental data from each trial to update the plant model in 
inside the CSA process. The work has started, and the 
progress will be reported separately. 
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