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Abstract: Knowledge of the uncertainty in an identified model is of great importance, in
particular for robust controller design. This paper presents a method for estimating the
uncertainty in a state-space helicopter dynamical model identified from the subspace-based
method using bootstrap techniques. Computer simulations are carried out to illustrate the
operation and performance of the method using concatenated data sets generated from an
unmanned rotorcraft model. The results obtained are in good agreement with those from
conventional Monte Carlo simulations demonstrating the effectiveness of the method.
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1. INTRODUCTION

The problem of helicopter dynamic modelling via system
identification has been studied for many years and a large
number of papers have been published over the last two
decades (see e.g. Tischler and Remple (2006), Li et al
(2007a) and references therein). Of great importance, in
particular for robust controller design, is knowledge of the
uncertainty in the identified model.

Traditionally, the parameter estimation-based “grey-box”
modelling approach is adopted for building helicopter dy-
namic models, where the model structure and parametriza-
tion are assumed to be known and the problem of dynamic
modelling is transformed into a problem of parameter esti-
mation. With such an approach, the amount of uncertainty
in the identified model is measured by the variance or
standard deviation of the parameter estimates which can
be estimated from measurement data (see e.g. Chapter 9
of Ljung (1999)) on the basis of asymptotic results for
these parameter estimates.

There are a number of difficulties (see Li et al (2007b))
associated with the application of the above parameter
estimation-based method in the identification of a fully
coupled MIMO state-space helicopter dynamic model,
such as the identifiability of the model parameters for the
given measurements, sensitivity of the parameter estimates
to the initial values etc. To overcome these difficulties,
the subspace-based “black-box” modelling approach has
recently been applied to helicopter dynamic modelling
(see e.g. Li et al (2007b)). However, the problem of
evaluating the uncertainty in such an identified model is
not discussed. This is mainly because of the complexity
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of the statistical theory underlying the subspace identi-
fication method. Therefore, this paper will focus on the
development of practical methods (rather than the deriva-
tion of closed-form asymptotic expressions) for estimating
uncertainty in a helicopter dynamic model identified using
the subspace-based method. A “bootstrap-based” simula-
tion method will be presented. The rest of the paper is
organized as follows. Section 2 briefly describes the PO-
MOESP subspace identification method for state-space
helicopter dynamic modelling, followed in Section 3 by
an introduction to the bootstrap method for determining
uncertainty of a statistic. A bootstrap-based method for
estimating the model uncertainty in PO-MOESP frame-
work is derived in Section 4. The results from a simulation
study are presented in Section 5 with concluding remarks
in Section 6.

2. SUBSPACE SYSTEM IDENTIFICATION FOR
HELICOPTER DYNAMIC MODELLING

2.1 Preliminaries

The linearized helicopter dynamic model about a trim
condition is of the following state-space form:

ẋ = Ax + Bu (1)

y = Cx + Du + v (2)

where A and B are known as the stability and control
matrices that are derived from the partial derivatives of
the nonlinear model function (see Padfield (1996)); x and
u are respectively the perturbed state and input about
a known trim point. The term v represents measurement
noise. For most practical applications, the measurements
are usually sampled-data (i.e. discrete), and so the system
identification algorithm will then be implemented in the
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discrete-time domain. Suppose that the input is constant
over the sampling interval T , the sampling/discrete version
of the model (1)∼(2) is then given by (see e.g. Ljung
(1999)):

xk+1 = Φxk + Guk + wk (3)

yk = Cxk + Duk + vk (4)

where xk ∈ ℜn, uk ∈ ℜm, yk ∈ ℜl, Φ = eAT and G =
∫ T

0
eAτBdτ ; wk and vk are zero-mean white Gaussian

sequences of appropriate strength and are independent of
the input uk. The additional term wk is added in the state
equation (3) as process noise to represent possible atmo-
spheric and other disturbances or the modelling errors due
to approximations. Helicopter dynamic model identifica-
tion then amounts to the determination of matrices Φ, G
(thus A, B), C and D using the measurement sequences
DN = {uk,yk}N

k=1.

2.2 PO-MOESP type subspace-based state-space model
identification

The starting point for subspace system identification is the
following structured input-output equation that is derived
by repeated substitution of (3) and (4):

Yk,s,j = ΓsXk,j + HsUk,s,j + EsWk,s,j + Vk,s,j (5)

where

Yk,s,j =







yk yk+1 · · ·yk+j−1

yk+1 yk+2 · · ·yk+j

...
...

. . .
...

yk+s−1 yk+s · · ·yk+s+j−2







sl×j

(6)

Hs =









D 0 0 · · ·0
CG D 0 · · ·0
CΦG CG D · · ·0
...

...
...

. . .
...

CΦs−2GCΦs−3GCΦs−4G · · ·D









sl×sm

(7)

Uk,s,j , Wk,s,j and Vk,s,j are constructed in a manner
similar to Yk,s,j and Es similar to Hs (see e.g. Verhaegen
(1994) for details). Γs is the extended observability matrix
for the system to be identified and Xk,j is formed by
consecutive state vectors:

Γs =
[

CT (CΦ)T · · · (CΦs−1)T
]T

(8)

Xk,j = [ xk xk+1 · · · xk+j−1 ]
n×j

(9)

The indices (k, s, j) of the data Hankel matrices Yk,s,j

and Uk,s,j determine their size and what part of the I/O
sequences is stored in them.

The PO-MOESP identification scheme described here was
originally proposed in Verhaegen (1994) and addresses
the problem of identification of the deterministic part of a
MIMO state-space model given by (3) and (4). With this
identification scheme, the I/O equation (5) is split into two
parts, a “past” one denoted by subscript p and a “future”
one denoted by subscript f :

Yp = ΓsXp + HsUp + EsWp + Vp (10)

Yf = ΓsXf + HsUf + EsWf + Vf (11)

where the “past” data Hankel matrices are Yp = Y1,s,j

and Up = U1,s,j as defined in (6) with k = 1; the
“future” data Hankel matrices are Yf = Ys+1,s,j and
Uf = Us+1,s,j as defined in (6) with k = s + 1; Wp,
Wf and Vp, Vf are noise Hankel matrices formed from
the noise sequences wk and vk in a manner similar to
Yp, Yf , and Xp, Xf are defined as in (9) with k = 1
and k = s + 1 respectively. The identification scheme
is based on the use of both the past input and past
output as instrumental variables to remove the effect
of noise. The overall algorithm contains two steps: (1)
identification of the extended observability matrix Γs, and
(2) calculation of state-space model matrices Φ,G,C and
D (see Verhaegen (1994) for details). As a first step in the
algorithm, the following RQ decomposition is performed:






Uf

Up

Yp

Yf




=






R11 0 0 0
R21 R22 0 0
R31 R32 R33 0
R41 R42 R43 R44













Q
(ms,j)
1

Q
(ms,j)
2

Q
(ls,j)
3

Q
(ls,j)
4








(12)

A consistent estimate of the column space of Γs can be
retrieved from the following SVD:

[R42 R43]= (

n ls−n

ls Un U⊥
n )

(
n ls−n ms

Sn 0 0
0 S2 0

)

︸ ︷︷ ︸

S

VT (13)

where n is the actual order of the model to be identified.
When the input is sufficiently persistently exciting, the
column space of the matrix Un is a consistent estimate of
that of Γs and the estimates of the matrices Φ,G,C and D
can subsequently be calculated (see e.g. Verhaegen (1994),
Li et al (2007b)). The above identification scheme can
be straightforwardly adapted to processing concatenated
data sets from multiple tests and this is very helpful for
helicopter dynamic modelling (see Li et al (2007b) for
details).

3. THE BOOTSTRAP IDEA

Bootstrap is a computational statistical method. It was
originally introduced (see e.g. Efron and Tibshiran (1993))
to assess the accuracy of a statistic, where no standard
methods could be applied. With advances in the tech-
nology of affordable and high-speed computers, the use
of the bootstrap has been extended to more and more
complicated situations. Introductions to the bootstrap can
be found in Efron and Tibshiran (1993), Politis (1998).
A survey of bootstrap applications in signal processing is
given in Zoubir and Boashash (1998). In recent years,
the bootstrap techniques have been introduced into system
identification (see Bittanti and Lovera (2000), Tjarnstrom
and Ljung (2002), Lopes et al (2006)) for solving the
problem of evaluating the uncertainty of the identified
model.

To illustrate the basic idea behind bootstrap, let us con-
sider the following problem: given an independent, identi-
cally distributed (i.i.d.) sample x = (x1, · · · , xN ) of size N
observations from a stochastic variable X with distribution
function F , one calculates an estimate θ̂ of some parameter

θ associated with F with a statistic T (x), i.e. θ̂ = T (x)

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

8853



based on the available data and one would like to evaluate
the uncertainty of the obtained estimate in terms of its
standard deviation or its variance V arF (T ).

If F was known, V arF (T ) could be calculated exactly
by analytical methods or approximately by Monte Carlo
simulations in the case where the analytical computation
is difficult. In the latter case, the calculation is done as
follows: since F is known, one can generate any number
of i.i.d. samples from it. Suppose that B new “samples”
x1, · · · ,xB are generated from F with each containing N
i.i.d. observations. Putting these into the estimator T , then

one obtains B observations θ̂1 = T (x1), · · · , θ̂B = T (xB)
of the statistic T (x). If B is large enough, one can then
approximate V arF (T ) with the sample variance of the
above obtained observations, that is:

V arF (T ) ≈ 1

B − 1

B∑

b=1

(T (xb) − T̄ )2 (14)

where

T̄ =
1

B

B∑

b=1

T (xb) (15)

Following the above idea, if the distribution function F is
unknown, a simple and natural idea is to replace it with
its estimate F̂ . Such direct non-parametric estimate is the
empirical discrete distribution derived from the available
observed sample x = (x1, · · · , xN ):

F̂ (x) =
#{xi ≤ x}

N
(16)

where #{xi ≤ x} means the number of the xis among
x1, · · · , xN that are observed to be less than or equal to
x. To sum up, the above empirical discrete distribution
F̂ can be obtained by associating a probability mass of
1/N to each of the observations in sample x. In this
fashion, the aforementioned Monte Carlo procedure can
be used to estimate V arF (T ), but in this case, the B new
“samples” x∗

1, · · · ,x∗

B (each of size N) are generated from

F̂ defined by (16) instead of F . These new “samples” are
called bootstrap resamples and the bootstrap estimate of
variance is then given by:

V̂ ar∗(T ) =
1

B − 1

B∑

b=1

(T (x∗

b) − T̄ )2 (17)

where

T̄ =
1

B

B∑

b=1

T (x∗

b) (18)

As can be seen, the bootstrap principle is based on the idea
of replacing the (unknown) distribution F of the data with

an estimate F̂ of it, where F̂ is estimated from the available
data sample x = (x1, · · · , xN ). It needs to be pointed out

that the estimate F̂ of F can be either parametric or non-
parametric depending on the prior information one has on
F . When F is completely unknown, it is approximated by
the empirical distribution defined by (16) and this results
in the non-parametric bootstrap setup as described above.
In such a case, the bootstrap resample x∗ = (x∗

1, · · · , x∗

N ) is

an unordered collection of N observations drawn randomly
from x = (x1, · · · , xN ) with replacement, so that each x∗

j

in x∗ has probability 1/N of being equal to any one of the
xi’s in x. Whenever prior information on F is available,
it can be incorporated with a parametric approach for
the estimation of F . In general, the parametric bootstrap
setup assumes that the distribution F is known up to
some parameter θ; that is, F = Fθ belongs to a known
class of functions parameterized by θ. To determine F
one just needs to determine the corresponding θ-value.

Therefore, the estimate F̂ of F is simply F
θ̂
, where θ̂ is

the estimated (from the available sample of observations
x = (x1, · · · , xN )) value of the parameter θ.

The bootstrap procedure discussed above relies on the
assumption that the original data x = (x1, · · · , xN ) is an
i.i.d. sample from an (unknown) distribution F underlying
the problem considered. This assumption can break down,
either because the data are not independent or because
they are not identically distributed, or both. For example,
the response data to a control input generated from a
dynamic system are not i.i.d. data, because the data are
correlated in time and also depend on the system’s input
(thus not identically distributed). To obtain the correct
results from the bootstrap procedure described previously,
some measure has to be taken to circumvent this difficulty.

The residual bootstrap (see e.g. Bittanti and Lovera
(2000), Tjarnstrom and Ljung (2002) and the references
therein) is a method proposed to extend the use of the
aforementioned bootstrap procedure for more complicated
data structures such as the data generated from a dy-
namic system. The key idea of the residual bootstrap is
to reduce the non-i.i.d. situation to an i.i.d. situation by
looking at the residuals. This can briefly be illustrated with
the regression example as follows. Suppose that the data
y = (y1, · · · , yN ) are generated from a regression model
yk = f(xk, θ)+εk(k = 1, · · · , N), where f is the regression
function (which can be either linear or nonlinear), xks
are known and nonrandom, θ is the vector of unknown
parameters to be estimated and the εks are i.i.d. with
distribution F of zero mean. Note that, although the
yks are independent they are not identically distributed
as they depend on nonrandom variables xks, thus here
yk(k = 1, · · · , N) is not i.i.d but the error εk(k = 1, · · · , N)
is. Although εk(k = 1, · · · , N) is not directly observable,

it may be approximated. If a parameter estimator θ̂ of θ
can be constructed from the data such that the residuals
ε̂k = yk − f(xk, θ̂)(k = 1, · · · , N) are zero mean i.i.d, these
residuals can be considered as good approximations to
the unobservable i.i.d errors εk(k = 1, · · · , N) from which
one can draw B i.i.d. residual resamples ε

∗
1, · · · , ε∗

B (each

of size N), where ε
∗

b = (ε̂
∗(b)
1 , · · · , ε̂∗(b)N )(b = 1, · · · , B).

These bootstrap residual resamples are then fed into the
estimated regression model to generate B replications of
pseudo-data y∗

1, · · · ,y∗

B (each of size N) where y∗

b =

(y
∗(b)
1 , · · · , y∗(b)

N )(b = 1, · · · , B) and y
∗(b)
k = f(xk, θ̂) +

ε̂
∗(b)
k (k = 1, · · · , N). B replications of bootstrap parameter

estimates can be obtained by repeating the estimation
calculation for each of the B replications of the above

pseudo-data. The bootstrap estimate of variance V̂ ar∗(θ̂)

of the parameter estimate θ̂ = T (y) can then be calcu-
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lated by (17). The above residual bootstrap technique for
the regression model can readily be extended to the case
of estimating uncertainty in the identified input/output
dynamic models.

4. BOOTSTRAP-BASED METHOD FOR
ESTIMATING MODEL UNCERTAINTY IN

PO-MOESP

The variance, or standard deviation, of the model param-
eter estimates mentioned in Section 1 is not applicable
for quantifying the uncertainty of the model identified by
the subspace-based method because of the absence of a
specified parametrization of the model and the arbitrary
choice of the state-space basis for the obtained models
in the subspace identification framework. This directs the
uncertainty analysis towards confidence intervals for in-
put/output characteristics of the model such as its fre-
quency response or towards realization independent fea-
tures such as the locations of its poles and zeros. In such a
case, one is actually looking for an estimate of the standard
deviation of a prescribed statistic that is a function of the
identified model.

Based on the idea of bootstrapping residuals described in
the last section, the bootstrap-based procedure for evalu-
ating the standard deviation of the frequency response of
the state-space model (1) and (2) identified by a subspace-
based identification method can be summarized as follows:

(1) Identify the model by estimating [Â, B̂, Ĉ, D̂] from
the available original I/O data DN = {uk,yk}N

k=1
using a subspace identification method and compute
the estimate of its frequency response Ĝ(ejωi)(i =
1, · · · , n) for the frequency points of interest.

(2) Compute the prediction error for the identified state-
space model: êk = yk − ŷk(k = 1, · · · , N) where
ŷk is the predicted output based on the estimate
[Â, B̂, Ĉ, D̂].

(3) Draw B i.i.d. resamples E∗
1, · · · ,E∗

B (each of size
N) from the empirical distribution derived from the
computed prediction error in the last step, where

E∗

b = (ê
∗(b)
1 , · · · , ê∗(b)N )(b = 1, · · · , B) and generate

B bootstrap replications D∗(1)
N , · · · ,D∗(B)

N (each of

size N) of the original data set DN , where D∗(b)
N =

{u∗(b)
k ,y

∗(b)
k }N

k=1(b = 1, · · · , B) with u
∗(b)
k = uk

and y
∗(b)
k obtained by feeding the identified state-

space model [Â, B̂, Ĉ, D̂] with the deterministic input

u
∗(b)
k = uk and the bootstrap residual resample

ê
∗(b)
k (k = 1, · · · , N).

(4) Identify B replications [Â∗(b), B̂∗(b), Ĉ∗(b), D̂∗(b)] of
the model using respectively the B set of boot-

strap data D∗(b)
N (b = 1, · · · , B) obtained in the last

step and compute the corresponding B replications
Ĝ∗(b)(ejωi)(b = 1, · · · , B; i = 1, · · · , n) of the fre-
quency response for the frequency points of interest.

(5) The estimate of the standard deviation for the fre-
quency response of the identified state-space model is
given by

σ̂∗(Ĝ(ejωi)) =
1√

B − 1
(

B∑

b=1

(Ĝ∗(b)(ejωi)

−Ḡ∗(ejωi))2)
1

2 (19)

where

Ḡ∗(ejωi) =
1

B

B∑

b=1

Ĝ∗(b)(ejωi) (20)

In a similar way, the estimates of the standard deviation
for the poles and zeros or the singular values of the
frequency response (for MIMO system) of the identified
state-space model can be obtained.

As can be seen, the bootstrap is a computer-intensive
method. Replicating the identification process B times
can be extremely time-consuming. Therefore, reducing
the computational cost is a major issue for the practical
application of the above bootstrap standard deviation
estimation method.

With subspace-based system identification methods, it
turns out that the replication of the identification process
can be speeded up significantly by taking advantage of the
structure of the algorithms. In Bittanti and Lovera (2000),
a computationally efficient algorithm for implementing the
above bootstrap standard deviation estimation method for
the model identified by the ordinary MOESP subspace
identification method proposed in Verhaegen and Dewilde
(1992) was developed. The algorithm exploits the following
fact (see Bittanti and Lovera (2000)): when working with

the bootstrap replications D∗(b)
N (b = 1, · · · , B) of the orig-

inal data, the noise (residual) processes acting on the sys-
tem are known a priori. This fact implies that the genera-
tion of a bootstrap replica [Â∗(b), B̂∗(b), Ĉ∗(b), D̂∗(b)] of the
identified model in step 4 of the above bootstrap procedure
can be achieved with two steps: (1) obtain a bootstrap-
noise free replica of the identified model, or in other
words, identify a model [Â, B̂, Ĉ, D̂] with the original
data set DN ; (2) perturb the obtained bootstrap-noise free

replica with the bootstrap noise E∗

b = (ê
∗(b)
1 , · · · , ê∗(b)N )(b =

1, · · · , B) so as to take into account the effect of noise in
the identification process. In this two-step procedure, the
bootstrap-noise free replica only has to be computed once,
while the effect of noise in the identification process can be
taken into account by computing the perturbations to the
bootstrap-noise free replica. Within the subspace-based
system identification, such computations can be performed
in a much cheaper way.

Following the idea presented in Bittanti and Lovera
(2000), an algorithm for implementing the above two-step
procedure for the model identified by the PO-MOESP
will be outlined next. To simplify the presentation, it is
assumed that the steps 1 to 3 in the above bootstrap
procedure have been performed. That is, an estimate
[Â, B̂, Ĉ, D̂] of the model has been obtained with the
original data set DN and the corresponding sequence of
the prediction error êk = yk − ŷk(k = 1, · · · , N) has been

computed. Now, a bootstrap replica E∗

b = (ê
∗(b)
1 , · · · , ê∗(b)N )

of the prediction error sequence is drawn as described in
step 3 and the bootstrap replica [Â∗(b), B̂∗(b), Ĉ∗(b), D̂∗(b)]
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of the identified model has to be computed from the

bootstrap data set D∗(b)
N as stated in step 4.

The bootstrap replica of output data y
∗(b)
k is obtained

by feeding the identified state-space model [Â, B̂, Ĉ, D̂]

with the deterministic input u
∗(b)
k = uk and the bootstrap

residual resample ê
∗(b)
k (k = 1, · · · , N). Therefore, the

bootstrap version of the structured input-output data
equation (5) can be written as

Y
∗(b)
k,s,j = Γ̂sXk,j + ĤsUk,s,j + N∗(b) = Y

nf
k,s,j + N∗(b) (21)

where matrices Γ̂s and Ĥs are formed from [Â, B̂, Ĉ, D̂]

of the identified model, Y
∗(b)
k,s,j denotes the Hankel matrix

constructed with bootstrap output data y
∗(b)
k , N∗(b) is

formed by the bootstrap residual ê
∗(b)
k and Y

nf
k,s,j (where

superscript nf stands for bootstrap-noise free) denotes the
Hankel matrix formed by the output data obtained by
simulating the identified state-space model [Â, B̂, Ĉ, D̂]

with the input u
∗(b)
k = uk and neglecting the effect of all

noises. With the bootstrap output data, the first and also
the most computationally expensive step in PO-MOESP,
i.e. the RQ decomposition (12), can be expressed as:







Uf

Up

Y∗(b)
p

Y
∗(b)
f






=






R∗

11 0 0 0
R∗

21 R∗

22 0 0
R∗

31 R∗

32 R∗

33 0
R∗

41 R∗

42 R∗

43 R∗

44











Q∗

1
Q∗

2
Q∗

3
Q∗

4




 (22)

Based on (21), the factorization (22) can be rewritten in

terms of the bootstrap-noise free data matrix Y
nf
t,s,j as

follows:







Uf

Up

Y∗(b)
p

Y
∗(b)
f






=







Uf

Up

Ynf
p

Y
nf
f







+







0
0

N∗(b)
p

N
∗(b)
f







=






R11 0 0 0
R21 R22 0 0
R31 R32 R33 0
R41 R42 R43 R44











Q1

Q2

Q3

Q4






+






Rn∗
11 0 0 0

Rn∗
21 Rn∗

22 0 0
Rn∗

31 Rn∗
32 Rn∗

33 0
Rn∗

41 Rn∗
42 Rn∗

43 Rn∗
44











Q1

Q2

Q3

Q4




 (23)

The first term in (23) is obtained by RQ-factorizing
the bootstrap-noise free (that is, purely simulating) data
Hankel matrices. The bootstrap-noise dependent term is
then expressed in terms of the Q-matrix as in the second
term in (23),where we have:

Rn∗
11 = Rn∗

21 = Rn∗
22 = 0

Rn∗
42 = N

∗(b)
f QT

2 and Rn∗
43 = N

∗(b)
f QT

3

Therefore:

[R∗

42 R∗

43] =
[

R42+N
∗(b)
f QT

2 R43+N
∗(b)
f QT

3

]

(24)

Equation (24) shows that it is possible to determine the
bootstrap-noise perturbed terms R∗

42 and R∗
43 in the

factorization (22) by adding the required perturbations
or corrections to the corresponding bootstrap-noise free
terms R42 and R43. The required corrections can be
determined by projecting the known “future” bootstrap

noise matrix N
∗(b)
f onto the row space of Q2 and Q3

respectively. The corrected matrix [R∗
42 R∗

43] will then
be used to estimate the extended observability matrix Γs

and subsequently to estimate the [A,B,C,D] matrices of
the model.

As can be seen from the above discussion, once the RQ
factorization for noise free data (i.e. the first term in (23))
is obtained (this RQ factorization needs to be performed
only once), the subsequent RQ factorizations (which would
be performed B times) for bootstrap-noise perturbed data
can be replaced by two matrix products. From a practical
point of view, this leads to a significant reduction in the
number of computations. This is particularly so when the
number B of bootstrap resamples is large. See Bittanti and
Lovera (2000) for a detailed analysis of a similar case.

5. APPLICABILITY STUDIES VIA SIMULATIONS

To study the applicability and to illustrate the operation
of the bootstrap method discussed in the last section for
the helicopter dynamic modelling application, simulation
studies are performed and the results are presented in this
section. Our attention has concentrated on the application
of the method to the estimation of the uncertainty in
the frequency response of the identified models, but the
method presented in this paper applies equally well to the
estimation of the uncertainty in other statistics.

The problem of estimating the standard deviation of the
frequency response for an identified extended helicopter
dynamic model, involving coupling both between longitu-
dinal and lateral motions and between rotor and fuselage,
is considered. The data is generated from a 13th order
unmanned rotorcraft (Yamaha R-50) model taken from
Mettler et al (2002). The model describes the dynamics
of the perturbed motion about the hover condition of the
vehicle and is extended to include the additional dynamics
from the rotor and control augmentation such as the active
yaw damping system and the stabilizer bar. The model is
of the state-space form as specified in (1) and (2) where
the 13-dimensional state vector is defined as (see Mettler
et al (2002) for details):

x = [u v p q φ θ a b w r rfb c d ]
T

(25)

where u, v, w are the translational velocities along the
three orthogonal directions of the fuselage fixed axes (x, y
and z) and p, q, r are the roll, pitch and yaw rates about
the x−, y− and z−axes; φ and θ are the roll and pitch angle
of the fuselage; a and b denote the longitudinal and lateral
rotor flapping angles; c and d denote the longitudinal and
lateral stabilizer bar flapping angles and rfb is a state
variable for the active yaw damping dynamics. There are,
in general, four stick inputs which can be used by a pilot
to cope with six degrees of freedom, i.e. lateral cyclic δlat,
longitudinal cyclic δlon, tail rotor collective δped and main
rotor collective δcol and they are represented in the control
input vector u = [δlat δlon δped δcol]

T .
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Fig. 1. Comparison of the Monte Carlo (dashed line) and bootstrap (dotted line) 3−σ confidence intervals for the
estimated frequency responses
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The measured outputs available for identification are the
rigid-body fuselage states including the translational ve-
locities u, v, w and rotational rates p, q, r; roll and pitch
angles φ, θ and the accelerations u̇, v̇, ẇ. Therefore the
measurement vector is defined as:

y = [u v p q φ θ w r u̇ v̇ ẇ ]
T

(26)

In the present simulation studies, a doublet signal is
applied to each one of the four control channels in turn,
and four sets of data are obtained with each containing the
response generated with one control input. Then, four sets
of input-output data Hankel matrices, as defined by (6),
are constructed using these four sets of data respectively.
To identify a fully coupled MIMO state-space helicopter
model, these Hankel matrices are compounded for the RQ
decomposition defined by (12) as follows:








Ulat
f Ulon

f U
ped
f Ucol

f

Ulat
p Ulon

p Uped
p Ucol

p

Ylat
p Ylon

p Yped
p Ycol

p

Ylat
f Ylon

f Y
ped
f Ycol

f








(27)

The PO-MOESP scheme outlined in Section 2 is then used
for model identification and a 13th order state-space model
is identified (see Li et al (2007b) for details).

Once the identified model is obtained, the bootstrap-based
procedure developed in this paper is used for estimation of
the standard deviations of the frequency response derived
from the identified model. The bootstrap estimates of the
standard deviations are compared with those obtained by
Monte Carlo simulations and the results are shown in Fig-
ures 1 and 2, where Figure 1 shows the comparisons of the
Monte Carlo (dashed-line) and bootstrap (dotted-line) 3−σ
confidence intervals for the magnitudes of the estimated
frequency responses and Figure 2 gives the values of the
ratios σMC/σbs between the standard deviation computed
by Monte Carlo method and that by bootstrap for the 50
considered frequency points. These results are obtained on
the basis of 500 replications of the identification process.
Specifically, for the Monte Carlo method, 500 data sets
are generated by simulating the true model as described
previously 500 times, and the Monte Carlo results are
then obtained by repeating the identification procedure
500 times with these 500 data sets respectively. For the
bootstrap method, the results are obtained using non-
parametric bootstrap as described in Section 3. That is,
we assume that the distribution F of the prediction error
êk(k = 1, · · · , N) is completely unknown and it is approx-
imated by the empirical distribution defined by (16). The
bootstrap resamples ê∗k(k = 1, · · · , N) of the prediction er-
ror are obtained using the following systematic resampling
algorithm (see e.g. Li et al (2004)):

• Generate a uniformly distributed random point u1 ∈
[0, N−1] and let i = 1, αk(0) = 0.

• For j = 1 : N
(1) Let uj = u1 + N−1(j − 1).

(2) If
∑i−1

l=0 αk(l) < uj ≤ ∑i

l=0 αk(l), set ê∗j = êi.
(3) Otherwise, i = i + 1 then goto step (2)

• End For

It can be seen from these figures that the estimated (by
bootstrap) 3− σ confidence intervals for the frequency
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Fig. 2. Ratio between the “true” (Monte Carlo) and the
estimated (bootstrap) standard deviations for the
estimated frequency responses

responses of the identified model agree quite well with
the “true” (Monte Carlo) ones. The 3 − σ confidence
intervals at the high frequency parts of the off-axis angular
responses (p to δlon and q to δlat) are relatively large which
indicates that these identified high frequency responses are
relatively unreliable. This is in agreement with the results
obtained in Li et al (2007b).

6. CONCLUDING REMARKS

We have studied the problem of evaluating model uncer-
tainty in the framework of PO-MOESP subspace identi-
fication for helicopter modelling and a bootstrap-based
method has been presented. The operation and perfor-
mance of the method was illustrated by a realistic example
taken from the literature and the results show that the
developed method is very promising. Future work will
apply the method to real flight test data for the purposes
of robust controller design.
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