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Abstract: This paper presents a frequency domain based method to design iterative learning controllers 
(ILC) for monotonic convergence. This is an extension of a repetitive controller (RC) design that aims to 
achieve monotonic convergence of all frequency components of the tracking error from period to period. 
The monotonic convergence condition in the RC design requires a steady-state assumption that the ILC 
problem does not satisfy due to the transient at the beginning of every repetition. Additional fine-tuning of 
the ILC gains to ensure monotonic convergence is needed and two such techniques (iterative and non-
iterative) are developed. Numerical examples are presented to illustrate the design method. 

 

1.  INTRODUCTION 

Iterative learning control (ILC) is a body of control theory 
devoted to repeating processes. As an enabling technology 
ILC is capable of bringing tracking accuracy up to the same 
extremely high repeatability level of modern hardware.  That 
is possible because ILC automatically compensates for all 
unknown deterministic sources of repeating errors. ILC is 
designed for a system that returns to the same initial 
condition before each new execution of the task, as in the 
case of a robot performing on each item that arrives one by 
one on an assembly line.  A relative of ILC is repetitive 
control (RC) where the goal is to track a periodic trajectory 
without resetting between periods.  Thus both ILC and RC 
are particularly suitable for ultra-precision repetitive 
manufacturing processes.  Recent research in ILC and RC 
focuses on monotonic convergence and robustness as treated 
in the texts by Ahn, Moore, and Chen (2007), and Rogers, 
Galkowski, and Owens (2007). Earlier texts include Bien and 
Xu (1998), Moore (1993), and Rogers and Owens (1992). 
 
Practical issues in ILC and RC designs are discussed in 
Longman (2000). Recent developments  (Panomruttanarug 
and Longman, 2004; Longman, Xu, and Phan, 2007) produce 
repetitive controllers that try to achieve monotonic 
convergence of all frequency components of the tracking 
error from period to period.  However, the frequency-domain 
monotonic condition on which the RC design is based 
requires steady-state assumption that is often violated in ILC 
because transient response is almost always present at the 
beginning of every repetition. Nevertheless, satisfying the 
same condition in ILC is still important because it implies 
monotonic convergence of all frequency components of the 
steady-state portions of the tracking error histories. This 

paper continues our previous line of work to addresses the 
necessary extension of the RC design to the ILC problem.  
The primary objective is to ensure that the resultant ILC 
design also guarantees monotonic convergence of the 
Euclidean norm of the entire tracking error histories from 
repetition to repetition in addition to monotonic convergence 
of all frequency components of the steady-state portions of 
those error histories.  This paper focuses on the single-input 
single-output case as the multiple-input multiple-output case 
requires a different mathematical treatment. Robustification 
based on the probabilistic multiple-model design principle 
(Takanishi, Phan, and Longman, 2005) is recently treated in 
Lee, Phan, and Longman (2006) and Brown et al. (2007). 
Robustification of the ILC controllers developed in this paper 
will be treated in a later publication.  
 
The paper begins with a brief description of the repetition-
domain formulation of ILC (Phan and Longman, 1988) 
which establishes the necessary and sufficient condition for 
the stability of the learning process. A more restrictive 
condition for monotonic convergence of the Euclidean norm 
of the tracking error histories is then described, followed by 
an even more intuitive condition that describes how each 
frequency component of the steady-state tracking error 
history varies from repetition to repetition.  This steady-state 
condition will then be used to produce a base-line ILC design 
that needs to be modified further to guarantee monotonic 
convergence of the entire tracking error history from 
repetition to repetition.  Two such refinement methods 
(iterative and non-iterative) are developed.  In the iterative 
method the base-line ILC gains are adjusted to satisfy the 
monotonic convergence condition.  In the non-iterative 
method, the goal is to make the ILC dynamics that governs 
how the tracking error varies from repetition to repetition 

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 12454 10.3182/20080706-5-KR-1001.0867



 
 

     

 

match the well-behaved RC dynamics that governs how the 
tracking error varies from period to period. Numerical results 
are used to illustrate the proposed ILC design methods.  

2.  REPETITION-DOMAIN FORMULATION 

Consider an n-th order discrete-time system of the form 

� 

x(k +1) = Ax(k) + Bu(k) + v1(k)

y(k) = Cx(k) + v2 (k)
                 (1) 

The vectors x(k), y(k) denote the system state and output, 
respectively.  In ILC it is assumed that the initial state x(0), 
the process and output disturbances v1(k) and v2(k) are 
unknown but they are the same from one repetition (or pass) 
to the next. Let 

� 

y * (k) , 

� 

k = 1,2,3,..., p , denote the desired 
output to be tracked. For any repetition j, the relationship 
between the input and output time histories is  

� 

y
j

= Pu j + w                                (2) 
where  

  

� 

y
j

=

y j (1)

y j (2)

!

y j (p)

! 

" 

# 

# 

# 

# 

$ 

% 

& 

& 

& 

& 

,  u j =

u j (0)

u j (1)

!

u j (p'1)

! 

" 

# 

# 

# 

# 

$ 

% 

& 

& 

& 

& 

,  w j =

w j (1)

w j (2)

!

w j (p)

! 

" 

# 

# 

# 

# 

$ 

% 

& 

& 

& 

& 

 

 

  

� 

P =

CB 0 ! 0 0

CAB CB " # #

CA
2
B CAB " 0 #

# " " CB 0

CA
p!1
B ! CA

2
B CAB CB

" 

# 

$ 

$ 

$ 

$ 

$ 

$ 

% 

& 

' 

' 

' 

' 

' 

' 

            (3) 

The entries in the 

� 

p! p  matrix P are the system Markov 
parameters.  The Markov parameters can be identified from 
input-output data in the presence of repeating or periodic 
disturbances (Phan and Frueh, 1998; Phan et al., 2003).  The 
vector 

� 

w  incorporates the effect of the unknown initial state 
and disturbances. Applying a backward difference operator 

� 

! j z(k) = z j (k) " z j"1(k)  to (2) yields an equation that 
describes how a change in the control input history affects the 
output history, 

� 

! j y = P! j u                                   (4) 

Define the tracking error as 

� 

e(k) = y * (k) ! y(k) , we have a 
similar equation that describes how a change in the control 
input history affects the output tracking error, 

� 

! j e = "P! j u                                   (5) 

Notice that any unknown repeating terms are automatically 
eliminated by applying the backwards difference operator. 
Equation (4) or (5) forms the basis for the development of 
several ILC laws using modern space-space techniques (Phan 
and Longman, 1988; Phan, Longman, and Moore, 2000). For 
example, all linear ILC laws that rely on the tracking error of 
the previous repetition to modify the control to be used for 
the current repetition has the form 

� 

! j u = Le j"1                                    (6) 

Stability of the learning process can be analyzed using the 
repetition-domain formulation as shown in the next section. 

3.  STABILITY AND MONOTONIC CONVERGENCE 

Substituting (6) into (5) produces 

� 

e j = (I ! PL)e j!1                             (7) 

The tracking error approaches zero as the number of 
repetitions approaches infinity if and only if the magnitudes 
of all eigenvalues of 

� 

I ! PL  are less than one, 

� 

i = 1,2,..., p  

� 

!
i
(I " PL) < 1                                 (8) 

Although (8) is the true stability boundary, during learning 
the tracking error may badly diverge before converging zero, 
thus more practical conditions are derived (Panomruttanarug 
and Longman, 2006). The relationship between the Euclidean 
norm of the tracking error history from one repetition to the 
next can be shown to be 

� 

e j !"
max

e j#1                                (9)  

where 

� 

!
max

 denotes the maximum singular value of 

� 

I ! PL . 
Thus the condition for monotonic decay of the Euclidean 
norm of the tracking error from one repetition to the next is  

� 

!max (I " PL) < 1                             (10) 

A more revealing convergence condition is expressed in the 
frequency domain. Let 

� 

G (z)  denote the discrete-time transfer 
function of the input-output model, 

� 

Y (z) = G (z)U (z) , 

� 

G (z) = C (zI ! A)
!1
B . The z-transfer function of the ILC law 

can be written as 

� 

! jU (z) = L(z)E j"1(z)                            (11) 

 
L(z) = !

q
z
2"q

+!+ !
3
z
"1
+ !

2
+ !

1
z +#

2
z
2
+!+#

"
z
"   (12)         

where 

� 

q = (p+1) /2 , 
  

� 

! = q for an odd p, or 

� 

q = p / 2+1, 
  

� 

! = q!1 for an even p. The repetition-domain error dynamics 
is governed by 

� 

E j (z) = 1!G (z)L(z)[ ]E j!1(z)                  (13) 

In the RC problem using a quasi-steady state argument, the 
approximate monotonic convergence of all frequency 
components of the tracking error is 

� 

1!G (z)L(z) < 1,  z = e
j"#t , 

� 

0 ! "#t ! $            (14) 

The magnitude of 

� 

1!G (e
j"#t
)L(e

j"#t
)  can be plotted as 

� 

!"t  varies between 0 and 

� 

! .  In RC, to facilitate monotonic 
convergence we desire this plot to remain inside the unit half 
circle. In ILC, because transient response is present in each 
repetition, the condition (14) only applies to the steady-state 
portions of the trajectories.  Nevertheless it is an important 
condition because of the monotonic convergence of all 
frequency components of the steady-state portions during 
learning that it implies. Therefore satisfaction of (14) is still 
necessary for good learning behavior. 
 
Because the z-transform is based on steady-state response 
thinking, satisfying (14), although is important, does not 
guarantee stability of the learning process.  Another reason 
for this is that for ILC it is not possible to involve all the 
gains of L(z) at every time step in computing the control 
input.  The learning matrix L based on L(z) can be at most, 
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Notice that the gains are truncated at the beginning and end 
of portions of the each trajectory.  Thus for any designed 
learning controller gain matrix L, it is important to check that 
(10) is satisfied.  It should be noted that satisfaction of (10) 
automatically implies satisfaction of (8) because the largest 
magnitude of any eigenvalue of a matrix is always less than 
the largest singular value of that matrix. 

4.  THE ILL-CONDITIONED P MATRIX 

Another practical problem that deserves attention in any ILC 
design is the fact that the matrix P in (3) is ill-conditioned. 
Issues associated with the ill-conditioned P are studied in Li 
and Longman (2007).  Theoretically P is full rank as long as 

� 

CB ! 0 , but in practice it is badly ill-conditioned, hence the 
exact inverse solution to produce zero tracking error for the 
entire p-step trajectory becomes necessarily large. This is 
clearly not desirable, or necessary in practice because the 
situation can be avoided by not asking for zero tracking error 
at all p time steps (e.g., via the use of control input weighting 
or basis functions in Frueh and Phan, 2000), or by asking for 
zero error at fewer than p time steps in the desired trajectory.  
In the following we take the latter option.   
 
Consider the case where one specifies zero tracking error 
from 

� 

e(2)  to 

� 

e(p)  but leaving out 

� 

e(1) . Then, 

� 

! j eS = "PS! j u                              (16) 

where 

� 

e
S
 contains the tracking error from 

� 

e(2)  to 

� 

e(p) , and 

� 

P
S

 is P without its first row. The mathematics generalizes 
easily when the tracking error is not specified to be zero at 
more than one time step. The corresponding 

� 

pS !1  vector 

� 

e
S
 

does not contain the tracking errors at those time steps, and 
the 

� 

pS ! p  matrix

� 

P
S

 does not contain the rows associated 
with those errors.  The ILC law then has the form 

� 

! j u = LSeS j"1                              (17) 

Let 

� 

n
S

 be the number of nearly zero singular values of P.  In 
general, if the number of tracking errors not specified to be 
zero is at least 

� 

n
S

, 

� 

P
S

 will become well-conditioned. The 
corresponding condition for monotonic convergence of the 
Euclidean norm of 

� 

e
S
 is 

� 

!max (IS " PSLS ) < 1                         (18) 

The identity matrix 

� 

I
S
 has dimensions 

� 

(pS !1) " (pS !1) .  

5.  ILC DESIGN FOR MONOTONIC CONVERGENCE 

From the above discussion, our basis for designing 

� 

L
S

 in this 
paper is based on (14) and (18).  Let 

� 

L(z)  be written as 

� 

L(z) = M (z)!  where the ILC gains are collected in 

� 

!  and 

� 

M (z)  is a vector of the positive and negative powers of z, 

 

! = "
q
! "

2
"
1

#
2
! #

"
$% &'

T

M (z) = z
2(q
! z

(1
1 z ! z

"$% &'
       (19) 

As discussed in the previous section, the approximate 
monotonic condition for all frequency components of the 
tracking error in the steady state is that the plot of the 
magnitude of 

� 

1!G (z)L(z)  remains inside the unit half circle. 
We seek a learning controller that minimizes the shape of this 
plot by a cost function with 

� 

zi = e
j! i"t , 

� 

J = Wi 1!G (zi)M (zi)"[ ]
i= 0

N!1

# 1!G (zi)M (zi)"[ ] *+"
T
R"    (20) 

In (20), the * denotes the complex conjugate operation, 

� 

W
i
 a 

frequency-dependent scalar weighting factor, R the weighting 
factor for the control gain magnitude, and N the number of 
points that define this half unit circle plot. 
 
Taking the derivative of J with respect to the gain vector 

� 

!  
and setting the result to zero will yield the desired solution: 

  

� 

! = A
"1

B                                    (21) 
where 

� 

0 < !
i
"t < # , and 

  

� 

A = Wi
i= 0

N!1

" Re Q(zi)( ) + Re Q(zi)( )
T[ ] + 2R  

  

� 

B = Wi

i= 0

N!1

" Re S
H
(zi)( ) + Re S(zi)( )

T[ ] , 

� 

zi = e
j! i"t    (22) 

� 

Q(zi) = S
H
(zi)S(zi)  ,  

� 

S(zi) = G (zi)M (zi)  

In (22) Re(.) denotes the real part of the quantity in the 
parentheses, the T denotes the regular (real) transpose, and 
the H denotes the complex conjugate transpose.   
 
To use the gains derived in (21), we form the L matrix from 

� 

!  as in (15).  The ILC law is given in (17) where the 
candidate 

� 

L
S

 is L with the appropriate column(s) deleted.  
For example, if zero tracking error at first time step is not 
specified, then 

� 

L
S

 is formed by deleting the first column of 
L, and 

� 

P
S

 by deleting the first row of P.  We need to check if 
this candidate 

� 

L
S

 satisfies (18).  If it does not then 

� 

L
S

 needs 
to be further fine-tuned. This paper presents two methods for 
doing so: an iterative fine-tuning method (Section 6), and a 
non-iterative method (Section 7). 

6.  AN ITERATIVE FINE-TUNING METHOD 

The condition in (14) is derived under steady-state 
assumption whereas the true monotonic condition for the 
Euclidean norm of the tracking error histories in ILC is given 
in (18).  It is possible that the candidate 

� 

L
S

 based on (21) 
might violate (18) in that some of the singular values of 
I
S
! P

S
L
S

 are slightly larger than one.  This section we 
describe a procedure to fine-tune 

� 

L
S

 to satisfy (18).  Let 

� 

!
r
 

denote a singular value of I
S
! P

S
L
S

.  Then 

� 

!
r

="
r

2 , 

� 

r = 1,2,..., pS , is an eigenvalue of H = (I
S
! P

S
L
S
)
T
(I

S
! P

S
L
S
) . 
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The subscripts 

� 

k , 

� 

k +1, or the superscripts 

� 

(k) ,

� 

(k +1)  
denote the iteration (not repetition) numbers. Writing (23) for 
all r and grouping the resultant equations produces 

� 
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+ S
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L
S
                           (24) 

where 

 

!
k+1

=

!
1

!
2

!

! pS

"

#

$
$
$
$
$

%

&

'
'
'
'
'
k+1

, !
k
=

!
1

!
2

!

! pS

"

#

$
$
$
$
$

%

&

'
'
'
'
'
k

, 

  

� 

!k+1LS =

!11
(k+1) " !11

(k)

!12
(k+1) " !12

(k)

"

!
ppS

(k+1) " !
ppS

(k)

# 

$ 

% 

% 

% 

% 

% 

& 

' 

( 

( 

( 

( 

( 

  (25) 

  

� 

Sk =

!"
1

!!
11

# 

$ 

% % 

& 

' 

( ( 

k

!"
1

!!
12

# 

$ 

% % 

& 

' 

( ( 

k

"
!"

1

!! ppS

# 

$ 

% % 

& 

' 

( ( 

k

# # " #

!" p

!!
11

# 

$ 

% % 

& 

' 

( ( 

k

!" p

!!
12

# 

$ 

% % 

& 

' 

( ( 

k

"
!"p

!! ppS

# 

$ 

% % 

& 

' 

( ( 

k

) 

* 

+ 

+ 

+ 

+ 

+ 

+ 

, 

- 

. 

. 

. 

. 

. 

. 

           (26) 

An iterative scheme to reduce the singular values 

� 

!
r
 can be 

found by minimizing 

� 

Tk+1
=!

k+1

T
Q !

k+1
+"k+1

T
LSRL"k+1

LS             (27) 

Taking the derivative of (27) with respect to 

� 

!
k+1
L
S

 and 
setting it zero yields the following rule to refine the elements 
of 

� 

L
S

, 

� 

LS( )
k+1

= LS( )
k
! Sk

T
QSk + RL( )

!1
Sk
T
Q

" 

# $ 
% 

& ' ( k
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The elements of

� 

S
k
 in (26) can be shown to be 
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� 

!H
!! ij

" 
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$ $ 
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' ' 
k

= ( I ( P LS( )
k[ ]
T
PI (i, j) ( I ( j,i)PT I ( P LS( )

k[ ]    (30)                          

where 

� 

I (i, j)  is a 

� 

p! pS  matrix of 0’s everywhere except a 1 
at the 

� 

(i, j)  element.  

7.  A NON-ITERATIVE FINE-TUNING METHOD 

We now develop another method to design 

� 

L
S

 by making the 
ILC dynamics that governs how the tracking error varies 
from repetition to repetition match the RC dynamics that 
governs how the tracking error varies from period to period.  
To this end we need a mapping that relates how the tracking 
error varies from period to period for RC. The following is a 
generalization of a similar result in Panomruttanarug and 
Longman (2006). The RC counterpart of (13) is 

� 

z
p
E(z) = 1!G (z)F (z)[ ]E(z)                    (31) 

  

� 

G (z) = CBz
!1

+CABz
!2

+CA
2
Bz

!3
+!+CA

p!1
Bz

!p
+!(32) 

  

� 

F (z) =!
!
z
!

+"+!2z
2

+"1z +"2 +"3z
#1

+"+"qz
2#q     (33) 

It can be shown that 

  

� 

G z( )F z( ) =T
1!
z
!!1

+"+T
13
z

2
+T

12
z +T

11

                  +T
21
z
!1

+"+Tp1
z

2!q! p
+"

          (34) 

Converting (31) back into the time domain, and setting 

� 

e(k) = 0  for 

� 

k = 0  and all negative values of k produces  

  

� 

e(p+ 1)   e(p+ 2)  !  e(2p)[ ]
T

=T e(1)   e(2)  !  e(p)[ ]   (35) 

where T is a 

� 

p! p  Toeplitz matrix having its first row and 
first column as 

� 

R
T

 and 

� 

C
T

, respectively 

  

� 

RT = 1!T
11

!T
12

!T
13
! !T

1"
0 ! 0[ ]

CT = 1!T
11

!T
21

!T
31
! !Tp1[ ]

T     (36) 

Suppose that in ILC, we choose to specify zero tracking error 
from 

� 

e(2)  to 

� 

e(p) , then in RC the corresponding mapping is 

  

� 

e(p+ 2) ! e(2p)[ ]
T

=TS e(2) ! e(p)[ ]
T

+TRe(1)    (37) 

where 

� 

T
S

 is T without its first row and first column.  In 
general the 

� 

pS ! pS  matrix 

� 

T
S

 is T without the rows and 
columns associated with the tracking errors not specified to 
be zero.  To match the convergence dynamics of ILC to that 
of RC, we need 

� 

I
S
! P

S
L
S

=T
S
.  Such a solution for 

� 

L
S

 is 

� 

L
S

= P
S

+
I
S
!T

S( )                             (38) 

where the + denotes the pseudo-inverse.  Because T is formed 
from an RC design that facilitates monotonic convergence of 
all frequency components of the tracking error, one might 
expect that 

� 

!
i
(T
S
) < 1  when the steady-state condition holds. 

If this is not the case, adjustments to 

� 

T
S

 can be made as 
follows.  Let the singular value decomposition of 

� 

T
S

 be 

� 

T
S

=U
S
!
S
V
S

T .  Let 

� 

!
S

*  be a modified 

� 

!
S
 where any singular 

values that are larger than one can be set to be marginally less 
than one, and a new 

� 

T
S

*
=U

S
!
S

*
V
S

T  can be used in place of 

� 

T
S

 to compute 

� 

L
S

 from (38). 

8.  NUMERICAL EXAMPLES 

The examples are based on the experimental model of a link 
of a 7-degree-of-freedom robot (Elci et al., 2002).  For the 
illustration we use both a 3rd-order model 

� 

G1(s) = G
a
G
b

 and 
a 5th-order model 

� 

G2 (s) = G
a
G
b
G
c
, discretized via a zero-

order-hold with 

� 

dt = 0.02s , 

� 

G
a
(s) =

!

s+!

,

� 

G
b
(s) =

!1
2

s
2

+ 2"1!1s+!1
2

, 

� 

G
c
(s) =

!2
2

s
2

+ 2" 2!2s+!2
2

 

where 

� 

! = 8.8 , 

� 

!
1

= 37 rad s , 

� 

!
2

= 113rad s , 

� 

!
1

= !
2

=0.1 
which is less than the actual value of 0.5 to make the systems 
more challenging for ILC.  The 51-time step desired rise-
dwell trajectory (Fig. 1) is short relative to the dynamics of 
the unit pulse responses of the two models (Fig. 2). The first 
set of examples is for the 3rd-order model 

� 

G1(s) .  The ILC 
gains (Fig. 3) are designed from (21) with 

� 

W
i

= 1, and 

� 

R = I .  
The 

� 

51! 51 matrix P in (3) has one singular value at 

� 

2.30!10
"18 .  The matrix 

� 

P
S

 is formed by deleting the first 
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row of P, and 

� 

L
S

 by deleting the first column of L.  The 

� 

50! 50  matrix 

� 

I
S
! P

S
L
S
 has one singular value larger than 1 

at 1.32.  Applying the iterative fine-tuning method given in 
(28) with 

� 

Q  and 

� 

R
L

 as identity matrices of appropriate size 
reduces the largest singular value to be less than 1 after 7 
iterations shown in Fig. 4 for a number of singular values. 
The monotonic convergence of the tracking error is shown in 
Fig. 5. Figure 6 reveals that the iteration mainly modifies the 
upper left and lower right corners of the original 

� 

L
S

. To 
illustrate the non-iterative method, the 

� 

51! 51 Toeplitz 

� 

T  is 
formed from (36), and the 

� 

50! 50  

� 

T
S

 extracted.  Both T and 

� 

T
S

 are found to have all singular values less than 1. A new 
ILC gain 

� 

L
S

 is computed from (38), and used in the 
simulation.  With the gain derived by the non-iterative 
method, the monotonic convergence of the tracking error is 
also shown in Fig. 5 for comparison.  Figure 7 reveals how 
the non-iterative method modifies the original 

� 

L
S

.  The 
second set of examples is for the 5th-order model 

� 

G2 (s) .  
The 

� 

51! 51 matrix P now has 2 singular values at 

� 

2.25!10
"13  and 

� 

3.33!10
"19 . Then 

� 

P
S

 is formed by deleting 
the first two rows of P, and 

� 

L
S

 by deleting the first two 
columns of 

� 

L  built from (21). The 

� 

49! 49  matrix 

� 

I
S
! P

S
L
S
 

has one singular value larger than 1 at 1.05. The 

� 

51! 51 
Toeplitz T is formed from (36), then the 

� 

49! 49  

� 

T
S

 is 
extracted.  All the singular values of T and 

� 

T
S

 are less than 1, 
hence an ILC gain matrix 

� 

L
S

 can be designed directly from 
(38).  Monotonic convergence is indeed observed in Fig. 8.  
Figure 9 shows how the non-iterative method modifies the 
original ILC gain matrix 

� 

L
S

 for the 5th-order model. 
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Fig. 1:  Desired 51-step trajectory to be tracked. 
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Fig. 2: Unit pulse responses of the 3rd- and 

5th-order models. 
 
 

 
Fig. 3: Original ILC gains 
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Fig. 4: Convergence of singular values. 

 

 
Fig. 5: Monotonic convergence of tracking error. 

 
Fig. 6:  Difference between original and iterative  

ILC gain matrices for 3rd-order model. 
 

 
Fig. 7:  Difference between original and non-iterative 

ILC gain matrices for 3rd-order model. 
 

 
Fig. 8:  Monotonic convergence of tracking error. 

 

 
Fig. 9: Difference between original and non-iterative 

ILC gain matrices for 5th-order model. 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

12459


