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Abstract: An alternative method to formulate the stable Model Predictive Control (MPC) optimization 
problem, which allows controlling unstable systems with a large domain of attraction, is presented in this 
work. Usually, stability is guaranteed by means of an appropriate selection of a terminal cost, a terminal 
constraint, and a local unconstrained controller for predictions beyond the control horizon. This is the case, 
for instance, of the infinite horizon MPC (IHMPC) with a null local controller, and the dual MPC with a 
local Linear Quadratic Regulator (LQR). In the last case, the MPC formulation also allows a local 
optimality. However, its domain of attraction is limited (small, in most of the cases) and depends on the 
size of the terminal set and the length of the control horizon. Here we propose the inclusion of an 
appropriate set of slacked terminal constraints into the optimization problem as a way to enlarge the 
domain of attraction of the MPC that uses the null local controller. In addition, this slack allows a simple 
offset-free operation in the proximities of the input saturation. Despite the proposed controller does not 
achieve local optimality, simulations show that its performance is similar to the one obtained with the dual 
MPC that uses a LQR local controller. 

 

1. INTRODUCTION 

MPC is a control strategy that computes the current control 
by solving, at each time step, a finite-horizon open-loop 
optimization problem and applying to the system the first 
element of the optimal sequence so obtained. The strategy 
incorporates constraints in both, the states and input of the 
system in a relatively simple way. In addition, a complete 
framework for analyzing stability, robustness, optimality, etc. 
has been developed in the last decade (see Mayne et al. 2000, 
for a survey). Usually, stability is assured by means of an 
appropriate selection of three components: a terminal cost 
which is an associated Lyapunov function, a terminal 
constraint that forces the terminal states to belong to a 
positively invariant set for the system, and a local 
unconstrained controller for predictions beyond the control 
horizon (the strategy that uses such a terminal controller is 
usually named dual control). For stable systems, a simple 
choice for the local controller is the null controller ( ) 0K x ≡  
(Rawlings and Muske, 1993), which produces a bounded 
terminal cost. In the regulator case, such a control strategy 
produces an unlimited terminal region. However, for unstable 
system the optimization problem needs to incorporate a 
terminal constraint that zeroes the unstable modes – since 
they cannot be steered to the origin by the proposed local null 
controller –, reducing in this way the original terminal set. 
Another choice for both, stable and unstable systems consists 
in using a Linear Quadratic Regulator (LQR) as a local 
controller (Scokaert and Mayne, 1998). In this case, the 
controller presents a local optimality, i.e., inside the terminal 
set the control action obtained by means of the MPC 
optimization is that of the LQR. However, since the local 

LQR control is unconstrained, the terminal set, and then, the 
domain of attraction, could be rather reduced. 
The domain of attraction of the MPC controller is the set of 
states that can be steered to the terminal region in a number 
of time steps equal or smaller than the control horizon. The 
size of the domain of attraction depends on the size of the 
terminal region and the length of the control horizon. The 
simplest procedure to enlarge the domain of attraction is to 
increase the control horizon. However, this implies a larger 
number of decision variables and, consequently, an increase 
in the computational effort. 

Several papers have described how to enlarge the domain of 
attraction: De Doná et al. (2002), Limon et al. (2005) and 
Magni et al. (2001). In the first two cases, the authors used a 
saturated local control law; in Magni et al. (2001), the 
enlargement of the domain of attraction (for non-linear 
systems) is obtained by considering a prediction horizon 
larger than the control horizon. On the other hand, Limon et 
al. (2005) proposed a contractive terminal set given by a 
sequence of reachable sets. This approach allows the 
enlargement of the domain of attraction while maintaining 
the local optimality of the standard MPC controller. 

In this work we present a method to formulate the stable 
MPC that allows controlling unstable systems with a large 
domain of attraction. The proposed controller preserves, in 
general, the performance properties of the standard dual 
controller (i.e. the dual MPC that uses a LQR as terminal 
controller). These results are consequence of the inclusion of 
an appropriate set of slacked terminal constraints into the 
optimization problem of the dual MPC with a null local 
controller. Since the local controller is not optimal, the 
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proposed controller does not achieve local optimality. 
However, simulations show that the input and output 
performances are quite similar to the one obtained with the 
standard dual MPC. 

2. MODEL DESCRIPTION 

Let us consider the (controllable and stabilizable) system 
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Model (1) is an Output Prediction Oriented Model (OPOM) 
(see González et al. 2007, for the details of the model 
formulation). States xnst are related to the non-stable modes of 
the system, containing both, the integrating poles induced by 
the incremental form of the model, and the original system 
unstable modes itself. In this way, it is possible to write 
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R  are 
the integrating states, unx X R∈ ⊆

nst i un
 are the original 

unstable modes of the system, and X X X= ×

nns nun ny= +

.  On the 
other hand, xst corresponds to the stable system modes. Fnst 
and Fst are diagonal matrices with components of the form 

 where rir Te

Ψ

i is a pole of the system, and T is the sampling 
period. The system has nns and ns non-stable and stables 
poles, respectively. In addition, , where nun is 
the number of unstable modes, and ny is the number of 
integrating modes, that is the number of system outputs. 
Matrix  accommodates the influence of the non-stable and 
stable states into the output. 

The input and input increment are constrained to be: 

min maxu u u≤ ≤ , 

max maxu u u−∆ ≤ ∆ ≤ ∆ . 

To simplify the notation, we define a set U for the input 
increments  as follows: u∆

( ){ }max max min max:U u u u u and u u k u u= ∆ −∆ ≤ ∆ ≤ ∆ ≤ − + ∆ ≤1

)

st

 

where  is the past value of the input u. In addition, 
we assume that the states are constrained to belong to a set X, 
given by 

( 1u k −

i unX X X X= × × . In the general case, we assume 
that Xun and Xst are unlimited (or large enough) and Xi is 
defined by the input constraints. 

 

3. PROPOSED MPC 

Based on González et al. (2007), we consider the following 
cost function: 
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( ) ( )/x k k x k= ( / )u k j k, ∆ +  is the control move computed 
at time k to be applied at time k+j, m is the control or input 
horizon, Q and R are positive weighting matrices of 
appropriate dimensions, and ysp is the output reference. This 
cost represents the dual MPC cost when a null control law is 
implemented as the local controller. However, since an 
infinite horizon is used and the model defined in (1) has 
integrating and unstable modes, terminal constraints must be 
added to prevent the cost from becoming unbounded. These 
constraints can be written as: 

( ) (( ) 0 ( / ) 0
mnst nst sp nst nst sp

kF x k x C u x k m k x )− + ∆ = + − =  (3) 

where 

( / ) ( 1/ )
TT T

ku u k k u k m k ∆ = ∆ ∆ + −  , 

1 2m mnst nst nst nst nst nstC F B F B B
− − =   , 

m nns≥ . (we must have, at least, one degree of freedom per 
non-stable state) 

In addition, we must add the input and input increments 
constraint 

( )/ , 1, ,u k j k U j m 1∆ + ∈ = − .          (4) 

At this point, it is possible to define the domain of attraction 
for the non-stable modes of the later formulation, using the 
m-steps stabilizable set to the origin: 

{ }( ) ( ){
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For a small control horizon m, the domain of attraction given 
by (5) is small. This implies that constraints (3) and (4) 
become infeasible for moderate disturbances in the non-stable 
states. One alternative to enlarge the small region where the 
controller is feasible is to include slack variables into the 
control problem. To do that, the cost defined in (2) can be 
rewritten as follows 
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, Snst is a positive matrix of appropriate 

dimensions, and δ ∈  is the slack variable that is used 
to enlarge the terminal set.  With the control cost defined in 
(6), the terminal constraints (3) become 

nns

( )( ) 0
mnst nst sp nst nst nst

k kF x k x C u F δ− + ∆ + = .        (7) 

The slack variable and the corresponding penalization can be 

written as  and , in order to 

differentiate the integrating states from the unstable ones. 
Consider now the set , given by 
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which can be shown to be a control invariant set for states 
xnst. Then, consider that the initial non-stable state ( )nstx k  

belongs to ( ),nst nst
jSt X Ω

) m j

 but it does not belong to 

, with , for an (large) integer N. 

Then, we define the theoretical optimization problem that 
produces the stable MPC as: 

(1 ,nst nst
jSt X− Ω N< ≤

Problem 1 

,
min

nst
k k

k
u

V
∆ δ

 

subject to: (4), (7) and 

( ) ( )1/ ,nst nst nst
indexx k k St X+ ∈ Ω ,       (9) (max 1,index j m= − )

where ( ),nst nst
iSt X Ω  is the i-step stabilizable set to Ω . 

Remarks: 

* It can be shown that for systems with stable and non-stable 
modes that remain controllable at the steady state 
corresponding to the desired output reference, Problem 1 is 
always feasible with a domain of attraction given by 

({ )}:at nst nst nst
NX x X x St X= ∈ ∈ Ω, , where N is a finite 

number, large enough, such that ( )1 ,nst nst
NSt X+ Ω  

. Also, it can be shown that if weight S( ),nst nst
NSt X≈ Ω i is 

sufficiently large, then the control sequence obtained from 
the solution to Problem 1 at successive time steps drives the 
output of the closed loop system asymptotically to the 
reference value. 

* Constraint (9) forces the non-stable state to go from one 
stabilizable set to the next one. Once the non-stable state 
reaches the m-step stabilizable set, the slack of the unstable 
states, un

kδ , can be zeroed. 

* Given that the effect of the (slacked) non-stable modes on 
the cost was zeroed at the end of the control horizon, the cost 

(6) can be reduced to a two finite terms, using the Lyapunov 
equation. 

* The proposed controller is offset free, since the velocity 
form of the model adds an integrating state to the observer. In 
addition, it can steer the system to an operating point where 
an input saturates, if at the resulting steady state the unstable 
states remain controllable. Furthermore, if the steady states 
input is not feasible, the controller will do the best possible 
(that is, steer the inputs to its bounds) preserving always the 
feasibility. This property, which is derived from the use of 
the slack variables, allows a safety operation in real systems. 

3.1 Implementation of the MPC algorithm 

To implement the proposed algorithm, two initial problems 
must be solved: it is necessary to compute the stabilizable 
sets off-line, and it is necessary to ask, at every time step, 
where the current non-stable state is (i.e. which stabilizable 
set it belongs to). In the case of having boxes constraints for 
the inputs, input increments and states (that is, upper and 
lower bounds), these sets can be computed in a rather simple 
way, using existing algorithm. Given that all these sets are 
polyhedron, one can ask if one state belongs or not to the set 
using a simple and quickly routine. Given a large enough 
integer N, 
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where “ ( )isinset ,x X ” is true if the vector x is an element of 
the polyhedron X. 

3.2 Case of having one unstable state per input (nu=nun) 

In this Sub-section we consider the case (that does occur in 
most of the real systems) in which each input affects only one 
unstable state xun. In this case, the behavior of each unstable 
state can be analyzed independently. It can be shown that the 
slack reduction performed by constraint (9) can be obtained 
by means of a norm optimization, which simplifies the whole 
formulation. The idea is that for the one-dimensional case the 
successive non-stable stabilizable sets can be associated with 
the norm of the slack variables of the unstable states. Then, to 
minimize the norm is equivalent to steer the non-stable states 
from one stabilizable set to the next one. To properly 
implement the MPC algorithm, let us consider the following 
two-stage optimization problem: 

Problem 2 a) 

,
,

,
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Tun un un
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u
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δ
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∆
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Remark: 

* It can be shown that for systems with stable and non-stable 
modes in which each input affects only one unstable state xun, 
the sequential solution of problems 2 a) and 2 b) is always 
feasible with a domain of attraction given by 

({ }:at nst nst nst
NX x X x St X= ∈ ∈ Ω,

),

. Also, if the weight Si is 

sufficiently large, then the control sequence obtained from 
the solution to Problems 2a and 2 b) at successive time steps 
drives the output of the closed loop system asymptotically to 
the reference value. 

4. DOMAIN OF ATTRACTION 

Let us assume that a large number N exists, such that 
. Then, the 

domain of attraction of the proposed controller is given by 
 for the non-stable states x

( ) ( ) (1, ,nst nst nst nst nst nst
N NSt X St X St X+ ∞Ω ≈ Ω Ω

( ),nst nstSt X∞ Ω nst - which is the 

largest possible set, and by stX  for the stable states xst 
(unlimited in the usual case of unconstrained states). 

On the other hand, the domain of attraction of the standard 
dual MPC is given by the m-stablizable set to the terminal 
set, ( , )K

mSt X O∞ , where KO  is the terminal set. This 

terminal set, in turn, is given by the maximal positive 
invariant set under the unconstrained control law 

∞

u Kx∆ = − , 
where K is obtained form the algebraic Riccati equation: 
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Note that this set is contained into the input admissible subset 
of X: 

( ) ( ){ }0 : 0KO x X Kx U∞ = ∈ ∈ .        (16) 

Then, it is clear that the terminal set KO  produces a limited 
domain of attraction for all the states x

∞
nst and xst (because the 

terminal controller is unconstrained, and then it must be 
assured that u Kx U∆ = − ∈  for all predictions beyond k+m). 

Since ( ),nst nstSt X∞ Ω  is by definition the maximal set of non-

stable states that can be steered to the origin, then 

( ) ( ), ,nst nst KSt X Onst nst
mX St∞ ∞Ω ⊇ , where ( ),nst nst K

mSt X O∞  is the 

orthogonal projection of ( ), K
mSt X O∞  into the non-stable 

states space. In other words, the m-stabilizable set to the 
terminal set KO∞ , projected onto the non-stable subspace is 
included into the maximal stabilizable set for the non-stable 
states to the origin (generally, the later set is quite larger than 
the first). This means that the proposed controller has a larger 
domain of attraction for the non-stable modes of the system 
(In fact, it has the largest domain of attraction for the non-
stable states that the system allows). In addition, the standard 
dual MPC presents a limited domain of attraction for the 
stable modes xst, even if Xst is unlimited. 

(13)

Recall that the proposed controller is not optimal, in the sense 
that it does not use an optimal control as terminal controller. 
Then, even for the unconstrained case, the predictions are not 
coincident with the actual behave, and it does not behave as 
LQR. However, as it will be shown in the next section, its 
performance is similar to the standard dual MPC case. 

5.  ILUSTRATIVE EXAMPLE 

In order to evaluate domain of attraction and the performance 
of the proposed controller, we consider in this section a 
jacketed continuous stirred tank reactor (CSTR), studied in 
Henson and Seborg, 1997. A discrete state space model of the 
CSTR was presented in Pannochia and Kerrigan, 2005, using 
a sampling time of T=0.1 min and considering deviation 
variables. The model is as follows: 

( )
( )
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( ) ( )1 1

2 2

1 0.7776 0.0045 0.0004
1 26.6185 1.8555 0.2907

x k x k
u k

x k x k
   + − −  

= +     +        





 

( ) [ ] ( )
( )

1

2
0 1

x k
y k

x k
 

=  
  

,    (17) 

where the states x1 and x2 represent the reactant concentration 
and the reactor temperature, respectively; and the input u 
represents the coolant liquid temperature. The output 
controlled variable y corresponds to the reactor temperature. 
The input constraints imposed to the system are as follows (in 
this example no state constraints are considered): 

 

min 15u = − , max 15u =     (18) 
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Using model (17) and trough an adequate transformation, the 
following velocity model is obtained: 

( ) ( ) (
1 0 0 1.2599

1 0 1.7297 0 0.7635
0 0 0.9034 -0.2937

)x k x k
  
  + = + ∆  
    

( ) [

u k





] ( )-0.6082 1 -0.9994y k x k=  

where can be seen an original unstable state, an integrating 
state induced by the velocity form of the model (these states 
are the non-stable state xnst), and a stable state (this state is 
xst). Notice that the input constraints of the original state 
space model (Eq. (18)) was adapted to the velocity model by 
means of an appropriate transformation. In addition, we 
consider an input increment constraint given by . max 2.5u∆ =

For the proposed MPC controller (that is derived from 
Problem 2a and 2b) the tuning nominal parameters are: 
Q=0.5, R=1, Si=50, Sun=5000, m=2. As it has been said, the 
domain of attraction of the standard dual MPC controller 
depends on the aggressiveness of the terminal LQR 
controller, and on the control horizon m. A set of parameters 
that represent a reasonable trade-off between the dimension 
of the domain of attraction and the performance of the 
controller is: Q=0.5, R=1, m=2. The LQR controller used as 
terminal controller, which was obtained from the Riccati 
equation, is: [ ]-0.2566 2.7127 0.0177K =

( ) (max max 1
nst nst nst
NSt X St +

. Fig. 1 shows 
the resulting domain of attraction for the non-stable states xnst 
of the two MPC controllers (in order to make a comparison, it 
is only shown here the non-stable state domain of attraction. 
However, it should be noted that the main advantage of the 
proposed method could be seen in the stable state domain of 
attraction, which is unlimited for the simulated case). For the 
proposed MPC controller, the domain of attraction is given 
by the maximal stabilizable set to the set Ω , which in this 
case is given by ), ,nst

N XΩ ≈ Ω , with 

Nmax=8. To test the performance of both controllers (adopting 
the nominal parameters), we simulate the closed loop system 
for different kinds of unmeasured disturbances. First, we 
simulate a state disturbance that corresponds to 

. In the same Fig. 1 is shown the 
non-stable state evolution for both controllers. In the left 
hand side of Fig. 1 can be seen that for the proposed starting 
state the standard dual MPC cannot steer the non-stable state 
to the origin without violating some of the constraints. In this 
case, the input constraint (the input is associated with the first 
state) should not be respected in the first two time steps. 

( )0 1x = −[ ]5.7 1.08 0 T

The time response of the input u, the input increment u∆  and 
the output y are shown in Fig. 2, for the proposed controller 
and for the dual MPC. In the same figure, it can be seen that 
for the dual MPC the input u surpasses the max bound at the 
beginning of the simulation. 

Next we simulate a non-stable state disturbance given by 
, which corresponds to a feasible state 

for the two controllers. The non-stable state evolution can be 
seen in Fig. 1, and the input u, the input increment 

( ) [0 15 2.38 0 Tx = ]

u∆  and 

the output y time response can be seen in Fig. 3. Notice that 
the proposed MPC and the standard dual MPC have a similar 
performance for a disturbances that correspond to feasible 
states. This fact represents a relevant point; since the main 
disadvantage of the proposed MPC controller is that its 
implicit control law is not optimal in the feasible region. 

 

( )8 ,nst nstSt X Ω

the input u
surpasses the
bound  (dual
MPC)

Fig. 1. Domain of attraction of the proposed MPC (solid 
line), and domain of attraction for the standard dual MPC 
(dashed line), considering only the non-stable state space. 
Non-stable states (xnst) evolution: proposed MPC (solid line 
and circles), standard dual MPC with nominal parameters 
(dashed line and squares). 

 
Fig. 2. Input and output evolutions for the initial state 

. Proposed MPC (solid line), 
standard dual MPC (dashed-dotted line). 

( ) [0 15.7 1.08 0 Tx = − ]

 

Finally, Fig. 4 shows the non-stable states evolution 
(proposed MPC controller) for the starting points 

( )0 15 2.38 0 Tx =    , and the stabilisable sets 

( ),nst nst K
mSt X O∞
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( ),nst nst
jSt X Ω

( ,nst nst
mSt X Ω

 for j=2,3,4. Notice that the control actions 

obtained from Problem 2a) and 2 b) steer the non-stable state 
from one stabilizable set to the next, until it reaches 

, as was established in the Sub-section 3.2. 

( ) [0 15x =

(4 ,nst nstSt X Ω

(2
nst nsSt X

)

 Henson M.A., Seborg, D.E. (1997). Nonlinear process 
control. Upper Saddle River, New Jersey: Prentice Hall 
PTR. 

Fig. 3. Input and output evolutions for the initial state 
. Proposed MPC (solid line), standard 

dual MPC (dashed-dotted line). 
2.38 0 T]

 

( )4 ,nst nstSt X Ω

( )3 ,nst nstSt X Ω

( )2 ,nst nstSt X Ω

Fig. 4. Non-stable states (xnst) evolution for the proposed 
MPC (solid line and circles) and Stabilisable sets: 

 (dashed line),  (dash-dotted 

line),  (dotted line). 

(3 ,nst nstSt X Ω

,t Ω

) )
)
6. CONCLUSIONS 

In this paper a different formulation of the stable MPC is 
presented, which includes an appropriate set of slack 
variables into the optimization problem. The formulation 
allows a larger domain of attraction in comparison with a 

standard dual MPC. In addition, it guarantees recursive 
feasibility when the system is guided to a point in which the 
input saturates, or even, surpasses the bounds (this is not 
showed in the simulations), and it guarantees an offset-free 
operation without the necessity of a target calculation stage. 
Despite the proposed controller has not a local optimality, it 
shows a relatively good performance, and similar in many 
cases to the standard dual MPC that uses a LQR as a local 
controller. 
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