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Abstract: In this paper, we propose a target tracking scheme for operation in distributed
UAV networks in which sensors may read the target position incorrectly. The proposed
scheme operates two algorithms concurrently: semi-decentralized dynamic data fusion and fault
detection. The semi-decentralized dynamic data fusion algorithm employs a median-consensus
algorithm using extended non-faulty neighbours (whose sensor readings for the target position
are within a prescribed tolerance level) and subsequently makes local estimates of the target
position converge to nearly the actual target position. Meanwhile, the fault detection algorithm
first asks each UAV to find the global median of the local target position through extended
neighbours, and then diffuses the determined global median to all the UAVs in the network. As
a result, the fault detection algorithm allows UAVs to detect and isolate faulty sensors quickly
and to carry on target tracking in the semi-decentralized dynamic data fusion mode. As opposed
to existing target tracking schemes, the proposed scheme is deterministic and guarantees the
complete detection and isolation of faulty sensors on UAVs and thus successful target tracking.
Numerical examples are provided to support the developed ideas.

Keywords: Fault-tolerant control; UAV; Multi-agent network; Median-consensus; Extended
neighbours

1. INTRODUCTION

In order to meet the increasing demands of autonomy,
survivability and cost-effectiveness for civil and military
UAV missions, multi-UAV systems have been identified as
a promising solution to pursue. For example, suppose that
one UAV tracks a moving target, i.e. senses and estimates
the position of the target. If the position measurement
sensor is just subject to nice Gaussian noise throughout
the mission, this tracking can be easily done with the
classical Kalman filter. However, it is clear that there is
little hope of finishing the mission successfully, if the single
sensor does not work as desired. Besides, Gaussian sensor
noise models may not be valid in general. In other words,
sensor data can be easily corrupted by many unforeseen
non-Gaussian factors, e.g. weather, physical obstacles. For
these reasons, it is definitely more promising to employ
several UAVs, instead of a single UAV, to perform the same
tracking task. In this framework, UAVs basically track the
same target, and share and update their information for
more successful and accurate tracking. Needless to say, the
sharing rule then must be judiciously designed such that
the sensor failure issues can be fully incorporated, and this
is the main focus of this paper.

Multi-UAV target tracking is the same as multi-sensor
target tracking in spirit which already has been a popular
topic in the literature, e.g. [9]. Among many target track-
ing schemes, we are particularly interested in decentral-
ized target tracking combined with fault detection schemes

due to their flexibility, cost-effectiveness and robustness.
Regarding decentralized target tracking schemes, one can
easily notice that the schemes employ so-called consensus-
type algorithms. These algorithms basically allow each
agent (sensor, UAV, etc) to gather information from its
immediate neighbours and to update its information, so
that every agent agrees on the common or very similar
information at the end. Depending on the final com-
mon information f , these algorithms are called average-
consensus, median-consensus, or f -consensus algorithms.
Several recent works propose such decentralized consensus
algorithms in Gaussian noisy environments, in which they
use Kalman-filter type estimation rules, e.g. [7], [11], or
low-pass or high-pass filters, e.g. [6], [10].

A large number of fault detection schemes have been
proposed in the literature. Most recent applications of
these schemes have been for wireless sensor networks,
e.g. [1], [2], [3], [5], [8], where maximum likelihood,
Bayesian, or voting approaches are taken to detect and
isolate faulty sensors. In particular, we note one of the
most recent works, [1], in this direction. In [1], the au-
thors claim that under a mild assumption the proposed
decentralized scheme is capable of almost detecting faulty
sensors, even if half of the neighbouring sensors are faulty.
The scheme in [1] uses two measures, dij(t) and ∆d∆t

ij ,

where dij(t) is the difference between the values of two
sensors i and j at time t and ∆d∆t

ij is the change of dij(t)
over a fixed time period ∆t. If more than half of the
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sensors j ∈ Ni are such that both measures are less than
predefined threshold values, then the sensor i is diagnosed
as good and is subsequently used for diagnosing other
sensors as good or faulty. Although this scheme is claimed
to be probabilistically attractive, we note that the two
measures are not sufficient for detecting a group of faulty
sensors all together in a faulty zone. For instance, one
can easily consider a situation in which a faulty sensor
i has its neighbouring sensors j all faulty, and therefore
dij(t) = ∆d∆t

ij = 0 for a certain period of time and
diagnosing the faulty sensor as good.

As a consequence, our current work aims to develop a
scheme which is decentralized but guarantees perfect fault
detection and isolation if there exist any faulty sensors, so
that the central objective of target tracking is successfully
achieved. In §2, we clearly state the problem under consid-
eration and in §3 we present two algorithms which combine
the ideas from previous decentralized target tracking and
fault detection schemes. Numerical examples and conclud-
ing remarks are given in §4 and §5, respectively.

2. PROBLEM STATEMENT

Consider a formation of n UAVs which track the position
p(t) of a moving target in an uncertain area X. We assume
that p(t) is smooth, i.e. differentiable, with respect to
time t. Each UAV’s sensor senses the target position p(t),
and its corresponding reading is denoted by pi(t) (i =
1, 2, . . . , n). When the position sensor is not faulty, its
reading follows a Gaussian distribution with a standard
deviation of σ with respect to the nominal value p(t).
We assume that sensor readings are uncorrelated with
each other over time. The ith UAV shares pi(t) with
other UAVs within the communication range (the sphere
of radius ρi centred at the ith UAV) in order to keep a
fixed formation F even in the presence of faults in its
sensor. The operational area X may contain a faulty (such
as bad-weather) zone where some UAVs (sensors) may
not correctly measure the target position. Assuming that
the communication network of UAVs is connected in a
standard graph theoretical sense and there are less than
q (< n/2) UAVs incorrectly sensing the target position
all the time, our objective is to design a fault-tolerant
target tracking scheme such that all the UAVs always
keep the initial formation F within a prescribed fixed
tolerance throughout the mission. 1 We assume that once
the processed (estimated) target location xi(t + ∆t) is
known to the ith UAV, the ith UAV is capable of changing
its current location yi(t) to yi(t+∆t) with little effort such
that yi(t+∆t) = xi(t+∆t)+yi(0)−xi(0), i.e. it keeps the
initial relative position with respect to the target location.

Fig. 1 illustrates an example scenario. In this scenario,
there are eight UAVs in a ring formation which surrounds
a moving target at p(t). The sensor reading for p(t) is
pi(t) for the ith UAV, Ui (i = 1, 2, . . . , 8). Since Ui can
communicate with the UAVs within the sphere of radius
ρi centred at Ui, each UAV communicates with only two
adjacent UAVs in this example. Note that U1 and U2 are in

1 The algorithms to be proposed can allow formation changes during
the mission as long as the formations are connected. However, for
the sake of simplicity, here we assume the initial formation (thus the
initial communication topology) is fixed throughout the mission.
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Fig. 1. A circular formation surrounding a moving object

a bad-weather zone, and thus their sensor measurements
are probably incorrect.

3. ALGORITHMS

Our fault-tolerant target tracking scheme entails two al-
gorithms: one for semi-decentralized dynamic data fusion
and the other for fault detection.

3.1 Semi-decentralized dynamic data fusion

Our semi-decentralized dynamic data fusion algorithm
adopts the following updating rule: for each i

xi(k) = aii(k − 1)xi(k − 1)

+
∑

j∈N
κ

i

bij(k − κ)pj(k − κ), (1)

where xi(k) is the ith UAV’s estimated target position
at the kth step (k = 1, 2, . . .), 2 pi (= p + p̃i) is the
ith UAV’s position sensor reading, p is the true target
position, p̃i (∈ [−σ, σ]) is a measurement error, N κ

i is the
set of the ith UAV itself and the ith UAV’s κ-neighbours
which can be reached from the ith UAV via κ links, κ is the
smallest integer such that N

κ

i has at least one non-faulty
neighbour of the ith UAV, and finally

aii(k) = 1− γ and

bij(k − κ) =
γe−α|p̄i(k−κ)−pj(k−κ)|

∑

j∈N
κ

i

e−α|p̄i(k−κ)−pj(k−κ)|
, (2)

where α > 0 and 0 < γ < 1 are constant parameters and p̄i

is the median of the positions of the ith UAV’s neighbours
and itself. When sensors are not yet diagnosed as faulty or
non-faulty, assume that all sensors are non-faulty and thus
set κ = 1. For the sake of simplicity, we also assume that
the communication delay between the ith UAV and the
jth UAV is exactly the sampling time associated with (1)
multiplied by the number of communication links between
2 The rule (1) is for tracking only one of the coordinates of the target
position, which is normally two-dimensional. For both coordinates,
we need two equations like (1).
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the ith UAV and the jth UAV. If the communication delay
is larger than the sampling time, each UAV estimates the
target location based on its own information (unless its
own sensor is faulty) before new information from other
UAVs arrives.

The rule (1) may be written as in the following compact
form:

x(k) = A(k − 1)x(k − 1)

+B(k − κ)(p(k − κ)1 + p̃(k − κ)), (3)

where x = [x1 x2 . . . xn]T , p̃ = [p̃1 p̃2 . . . p̃n]T , A =
[aij ] = (1 − γ)I, B = [bij ] as in (2) and 1 is an all-one
vector. Rule (3) is a similar version to those found in, for
example, [6] and [11], but with different A and B. The
estimation error e(k) = x(k)− p(k)1 is then

e(k) = A(k − 1)e(k − 1) + A(k − 1)p(k − 1)1

+B(k − κ)(p(k − κ)1 + p̃(k − κ))− p(k)1.

Taking expected values,

Ee(k) = A(k − 1)Ee(k − 1) + A(k − 1)p(k − 1)1

+B(k − κ)p(k − κ)1− p(k)1. (4)

Therefore, perfect tracking can be achieved if at each time
t all the eigenvalues of A(t) are strictly less than 1 in
magnitude and

(A(k − 1)p(k − 1) + B(k − κ)p(k − κ))1 = p(k)1. (5)

However, p(k) is often not known to UAVs at the (k−1)th
step. Therefore, instead of achieving perfect tracking, we
aim to have Ee(t) asymptotically bounded if |p(k)− p(k−
1)| is uniformly bounded for any k.

In the literature, there are several ways of choosing A
and B while satisfying conditions similar to (5). For
example, [6] chooses them so that (3) acts as a low-
pass filter, and [11] chooses such that the trace of the
corresponding error covariance matrix is minimized at each
time step. In this paper, we set A and B such that (3)
becomes fault-tolerant. However, before we discuss the
selection of γ and the fault-tolerant property of (3), we
first show that (3), with our choice of A and B, acts as
a low-pass filter, asymptotically converges to the target
position for the bounded target speed and guarantees
the bounded trace of the corresponding error covariance
matrix. The following analysis is motivated by the results
in [6] and [11].

Proposition 3.1. The rule (3) is a low-pass filter

Proof: Omitted for brevity.

Proposition 3.2. The expected value of xi in (1) asymp-
totically converges to the set

{xi | |xi − p| ≤ β̄/γ},

where |p(k)− p(k − 1)| ≤ β and β̄ = (1 − γ + γκ)β.

Proof: Omitted for brevity.

Proposition 3.3. The trace of the covariance matrix, trP(k),
associated with e(k) is uniformly bounded. Furthermore,

trP(k) ≤

(

γ

2− γ

)

nσ2

as k →∞.

Proof: Omitted for brevity.

The aforementioned three results clearly imply that the
constant parameter γ decides the bandwidth of the low-
pass filter, the error covariance and the effect of communi-
cation delays (a smaller γ reduces sensitivity to noise and
communication delays) as well as the speed and accuracy
of x → p1 (a larger γ yields faster and more accurate
convergence). Thus, one needs to make a judicious choice
of γ depending on the application at hand. In our numer-
ical example, for n = 10, κ = 1 and ∆t = 0.1 we set
β = 1 (≈ 10 m/s), γ = 0.32 and thus trP(k) ≤ 0.19σ2 as
k →∞.

Let us now discuss the fault-tolerant property of (3).
As noticed in matrix B, (3) calculates the median of
collected values and then linearly combines the values with
different weights inversely proportional to the distances
to the median. The parameter α refines the relationship
between the weight and the distance to the median. In
our numerical examples, we set α = 1. Clearly, this data
fusion scheme is fault-tolerant, provided that the number
of faulty neighbours (including itself) is less than |Ni|/2
for every i throughout the mission. However, as mentioned
before, there could be disturbances occurring in a specific
area and subsequently a group of sensors may not provide
correct information. In the next section, a fault detection
algorithm, which is concurrently run with the present
data fusion algorithm, is presented in order to cover these
regional-type faults.

3.2 Fault detection and isolation

While the data fusion algorithm operates over the UAV
network, we apply another algorithm for detecting any
faulty sensors. Our fault detection algorithm entails two
steps: (i) finding the global median of estimated target
positions pi (i = 1, 2, . . . , n) within a fixed tolerance; (ii)
propagating the determined global median to every UAV
for diagnosing faulty or non-faulty sensors.

The first step of the fault detection algorithm makes
use of κ-neighbours, as introduced before. Basically, each
UAV gathers enough information from (up to 2q) other
UAVs over a time period until it can determine an almost
global median of pi (i = 1, 2, . . . , n). 3 By almost, we
mean that the distance to the true global median is at
most σ. Since there are at most q faulty sensors, the
almost global median can be determined if the gathered
information contains at least q+1 similar sensor readings,
i.e. |pi − pj | ≤ 2σ. For example, consider the example
depicted in Fig. 1. Suppose the sensor readings of U1 and
U2 are corrupted. Then, U1 and U2 need to gather more
information not only from U8 and U3 but from U7 and
U4, because they need at least three values similar to each
other to identify an almost global median. Since there is no
direct communication link between U1 and U7, it therefore
requires two time units for U1 or U2 to finish the first step

3 We assume that each UAV knows n and estimates q before the
mission starts.
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Table 1. The formal description of the pro-
posed algorithms

Part I: Semi-decentralized dynamic data fusion

Input: ∆t, xi(0), yi(0) and n

Determine κ, N
κ

i
and bij(t − (κ− 1)∆t) for j ∈ N

κ

i

xi(t + ∆t)← (1 − γ)xi(t)
+

∑

j∈N
κ

i

bij(t − (κ− 1)∆t)pj(t − (κ− 1)∆t)

yi(t + ∆t)← xi(t + ∆t) + yi(0) − xi(0)

Part II: Fault detection

Input: t, σ, q, n, N 1

i
and pj(t) where j ∈ N 1

i

EN i ← i and Vi ← pi(t)
GloMedi = NotFound

while |ENi|s < q + 1 and GloMedj = NotFound ∀j ∈ EN i

EN i ← EN i ∪
∑

j∈N1

i

ENj

Vi ← {xj(t) | j ∈ EN i}
GloMedi ← GloMedj

if GloMedj 6= NotFound for some j ∈ EN i

if |EN i|s ≥ q + 1
GloMedi ←median(Vi)

if |GloMedi − pi(t)| > 2σ

the ith UAV’s sensor is faulty
else

the ith UAV’s sensor is non-faulty

of the fault detection algorithm. In contrast, U4, U5, U6 or
U7 needs only one time unit to determine an almost global
median, as the information from its immediate neighbours
provides three values similar to each other.

The second step of the fault detection algorithm is the
propagation of the determined almost global median to
every UAV for detecting and isolating faulty sensors.
Once a UAV notices that one of its immediate neighbours
knows an almost global median, it compares the almost
global median with its target estimation at the time when
the fault detection algorithm was initially applied. If the
difference is beyond 2σ, the UAV’s sensor is diagnosed as
faulty. Since the previously proposed data fusion algorithm
is now equipped with the fault detection algorithm, κ and
N

κ

i can be adjusted so that faulty readings cannot enter
the data fusion equation (3). Table 1 shows the formal
description of the two proposed algorithms which run on
the ith UAV. In the table, |S|s is used for denoting the
number of sensors (∈ S) having similar readings.

The idea of using κ-neighbours trivially guarantees that
all faulty sensors are found in finite steps as long as the
communication network of UAVs is connected. More inter-
estingly, depending on the structure of the communication
network of UAVs, the time to detect all faulty sensors may
vary. Suppose that the ith UAV takes κ̄ steps such that
|N κ̄

i |s ≥ q +1 and subsequently computes the correspond-
ing almost global median. Then, it is clear that it takes at
most another κ̄ steps to propagate the determined almost
global median to the sensors (UAVs) belonging to N κ̄

i .
Since this fact is true for every i ∈ {1, 2, . . . , n}, we have
the following result.

Proposition 3.4. If |N κ̄
i |s ≥ q+1 for every i ∈ {1, 2, . . . , n},

then all faulty sensors can be found in at most 2κ̄ steps.

Proposition 3.4 implies several facts on the proposed al-
gorithm: (i) the completion time of the proposed fault de-
tection algorithm purely depends on the graph-theoretical
property κ̄; (ii) every UAV can assume that if the fault de-
tection algorithm starts at time t, all faults are completely
detected at t+ t̄, where t̄ is equivalent to 2κ̄ steps, at which
time the data fusion algorithm starts using newly updated
N

κ

i and the fault detection algorithm restarts; (iii) the
fault detection algorithm can operate independently of
the data fusion algorithm during (t, t + t̄]); (iv) the fault
tolerant algorithm is valid under the assumption that for
any time period of t̄, UAVs with faulty sensors do not
deviate too much from other UAVs, so that they can return
to the formation after the sensors are correctly diagnosed.

In operations research, there are many problems which
involve variants of the property κ̄, e.g. [12]. The most
famous one is the (k, q, r)-centre problem in which for a
given graph consisting of vertices and edges, find k groups
of vertices in each of which there are at least q vertices and
all vertices can be reached from one centre vertex via at
most r edges. When q and k (or r) are fixed and r (or k) is
minimized over all feasible grouping solutions, the problem
becomes extremely hard. Fortunately, the problem we are
interested in has both k and r free, and thus finding a
minimum r (= κ̄) such that each group of vertices contains
at least q + 1 similar (non-faulty) vertices can be easily
done by the following algorithm: given the definitions
Iκ := {i | |N κ

i |s ≥ q+1} and J κ := {j | |N κ
j |s < q+1} and

κ = 1, (i) check if i ∈ Iκ for every i ∈ {1, 2, . . . , n}; (ii) if
so, terminate the algorithm and return κ; (iii) otherwise,
if for all j ∈ J κ j ∈ N κ

i for some i ∈ Iκ, then terminate
the algorithm and return κ; (iv) go to (i) with κ← κ + 1.

In the next section, it will be shown numerically that
κ̄ is reasonably small for randomly-generated connected
graphs. This implies that the proposed algorithm detects
all faulty sensors within only a few steps on average. We
also note that the N κ

i for i ∈ {1, 2, . . . , n} are generally
not disjoint, and thus one can expect the actual all-fault
detection steps to be less than 2κ. This point will also be
verified shortly.

4. NUMERICAL TESTS

4.1 κ̄ of random graphs

We first observe how κ̄ varies for various graphs, so that
one can have an idea of how large κ̄ can be on average.
We consider a 100-by-100 (meter) space X in which 10
UAV (n = 10) positions including 3 faulty sensors (q = 3)
are randomly generated. As defined before, a communica-
tion link is added if two UAVs are within a distance of ρ,
i.e. ρ = ρi (i = 1, 2, . . . , n). In order to generate different
kinds of graphs in terms of connectedness, we consider
1000 connected random networks for different ρ. A random
generation of UAV positions may not produce a connected
network. Thus, we repeat m random generations until
1000 connected random networks are obtained. For each
connected random network, we calculate κ̄ and the actual
steps θ needed to finish the fault detection algorithm.
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s

Fig. 2. A sensor network with n = 100 and q = 30:
faulty and non-faulty sensors are denoted by circles
and squares, respectively

Table 2. Numerical test results for n = 10 and
q = 3

ρ (m) η κ̄ θ

33 0.0998 1.95 3.17
36 0.2085 1.87 3.02
38 0.3054 1.82 2.93
40 0.3897 1.76 2.85
43 0.5376 1.65 2.70
45 0.6177 1.57 2.61
47 0.7097 1.50 2.51
49 0.7837 1.41 2.39
51 0.8382 1.36 2.32
55 0.8953 1.23 2.16

We also set η = 1000/m, so that η roughly represents
the probability that the generated random network whose
communication links are associated with ρ is connected.

Table 2 summarizes the numerical test results. As shown
in the table, κ̄ is less than 2 on average even for very
loosely connected networks with small η. As addressed in
the last section, θ is smaller than 2κ̄ and verifies that all
faulty sensors in a 10-UAV network can be detected in
less than about 3 steps on average. A similar observation
can be made for larger X and n. 4 Figure 2 shows one
of 1000 connected random networks with X = [0, 1] ×
[0, 1] (kilometer), n = 100, q = 30, ρ = 140 (meter) and
η = 0.1089, where circles represent faulty sensor locations.
Note that the faulty sensor s in the figure has 4 faulty
but only 3 non-faulty neighbours. The numerical tests
show that κ̄ and θ are still relatively small numbers, 5.78
and 8.85, respectively, on average even for such loosely
connected large networks. These tests clearly testify that
the proposed fault detection algorithm can be used for
large networks, e.g, wireless sensor networks.

4.2 Target tracking with circular formation keeping

We consider an example scenario in which 10 UAVs flying
in a circular formation track a target on the ground in
the middle of them, as shown in Fig. 3. The target is

4 Although our main UAV applications in this paper may involve
a relatively small number of UAVs, we also consider large sensor
networks to see how κ̄ varies as the connectedness of large networks
does.
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Fig. 3. A circular formation of UAVs (circles): the blue line
is the trajectory of the target (square)

moving at a velocity of β/∆t (meter/sec), where β = 1
and the sampling time ∆t = 0.1, with a direction of
[t, t2 cos px], where px is the x-coordinate of the target
position. For every i (∈ {1, 2, . . . , 10}), the ith UAV is
modelled with first-order dynamics and with the same
velocity as the target, and can communicate only with its
adjacent, mod10(i − 1)th and mod10(i + 1)th, UAVs using
a wireless device, where mod10(i) = i if 1 ≤ i ≤ 10, 1
if i = 0 or 11. We set q = 3, σ = 0.5 (meter), α = 1
and γ = 0.32. Based on the imposed communication
topology, one can easily figure out that 2κ̄ = 6 in this
example. This means that the fault detection algorithm
is initiated every 2κ̄∆t (= 0.6) seconds. We then assume
that the target tracking sensors of the 1st, 2nd and 10th
UAVs have incorrect readings during the time interval of
[10, 100] (sec). Since the 1st UAV can communicate only
with the 2nd and 10th UAVs, the rule (3) with κ = 2 is
used for the 1st UAV during this interval.

Figs. 4, 5 and 6 show the simulation results. Fig. 4 is the
sensor reading of the 1st UAV for the target location and
Fig. 5 is the 1st UAV’s estimation of the target location
using the proposed algorithms. As expected, the rule (3)
acts as a low-pass filter for high-frequency noise. The two
figures show that the 1st UAV manages to track the target
in 5 seconds after the fault is injected at t = 10 (sec).
This is also ascertained by Fig. 6 showing the 1st UAV’s
trajectory (green) versus the true target trajectory shifted
by the initial relative position with respect to the first
UAV (blue).

5. CONCLUDING REMARKS

We have proposed a fault-tolerant target tracking scheme
for operation in distributed UAV networks in which sen-
sors may read the target position incorrectly. The pro-
posed scheme employs two algorithms concurrently: semi-
decentralized dynamic data fusion and fault detection. As
both the theoretical and numerical studies have shown, the
proposed fault detection algorithm allows UAVs to detect
and isolate faulty sensors quickly and to carry on target
tracking in the semi-decentralized dynamic data fusion
mode. In particular, we note that the convergence of the
proposed scheme purely depends on the graph theoretical
property κ̄ and this κ̄ is relatively small (compared to the
graph diameter) even for large networks. For this reason,
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Fig. 4. Sensor readings from the first UAV for the target
location
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Fig. 5. Target location estimations by the first UAV
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Fig. 6. The first UAV’s trajectory (red) versus the true
target trajectory shifted by the initial relative position
with respect to the first UAV (blue)

we expect the proposed scheme to be useful in many
different contexts.
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