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Abstract: The paper deals with the problem of sampled-data polynomial modal control
for a linear continuous-time periodic plant with delays at the input and the output of the
sampled controller. It is assumed that the plant and the digital controller have the same period.
The characteristic matrix of the closed-loop system is constructed. An algorithm is given for
constructing the set of causal discrete-time controllers which place the modes of the closed
system at given points of the complex plane.
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1. INTRODUCTION

Due to the progress in technology, the control of finite
dimensional linear continuous periodically time-varying
(FDLCP) processes becomes realizable and obtains in-
creasing interest in control theory and applications. Var-
ious aspects of theory and applications in this field are
presented at the special conferences (PSY 2001, PSY
2004, PSY 2007) and the references therein.

In spite of the fact that due to complexity, only digital
controllers are of practical relevance, these problems are
mostly handled only in an approximate way as purely con-
tinuous or purely discrete-time systems. However, we have
to consider a sampled-data system, and special methods
must be applied, see (Chen and Francis 1995, Rosenwasser
and Lampe 2006). Unfortunately, these problems are in-
adequately investigated and the associated literature is
relatively unknown.

For sampled-data systems with continuous LTI processes,
the influence of process delays have been considered earlier
in a number of papers, e.g. in (Kwakernaak and Sivan
1972, Ackermann 1988, Lennartson 1989, Middleton and
Freudenberg 1995, Middleton and Xie 1995, Åström and
Wittenmark 1997, Rosenwasser and Lampe 2000, Rosen-
wasser and Lampe 2006, Polyakov 2006).

The paper (Lampe and Rosenwasser 2001) deals with
the stabilization of FDLCP processes by digital LTI con-
trollers. The paper (Lampe and Rosenwasser 2007b) con-
siders the modal control problem for delayed FDLCP pro-
cesses by digital controllers, where the delay acts on the
output of the controller. The present contribution extends
these results to the case, where the delays act on the input
and the output of the digital controller. For this problem
the results of (Lampe and Rosenwasser 2007b) cannot be

1 The authors are grateful to the German Science Foundation (DFG)
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easily extended, because due to the non-stationary char-
acter of the FDLCP process, its associated linear periodic
operator is not commutative with the pure delay operator,
even in the scalar case.

2. SYSTEM DESCRIPTION

1. We consider the sampled-data control for a linear
continuous-time periodic plant described by the following
state equation

dx(t)
dt

= A(t)x(t) +B(t)u(t− τ1) (1)

and output equation
y(t) = C(t)x(t) . (2)

In Eqs. (1) and (2), x(t) is the state vector, y(t) is
the output vector and u(t) is the control vector, their
dimensions are p × 1, n × 1 and m × 1, respectively.
Moreover, A(t) = A(t + T ), B(t) = B(t + T ), and
C(t) = C(t+T ) are continuous T -periodic matrices of the
corresponding dimensions, and τ1 ≥ 0 is a real constant
denoting pure delay at the plant input.

2. It is assumed that the plant is controlled by a sampled-
data controller described by the equations, see for instance
(Rosenwasser and Lampe 2006):

ξk = y(kT − τ2) (3)

α0ψk + . . .+ αqψk−q = β0ξk + . . .+ βkξk−q, (4)

u(t) = h(t− kT )ψk, kT < t < (k + 1)T . (5)

It is important that the sampling period coincides with the
period of the periodic plant (1), (2). Since the control needs
a synchronization between process and controller, this
assumption is the easiest case, and it could be extended to
the case, where the sampling period is a multiple of T .

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 8660 10.3182/20080706-5-KR-1001.0704



In Eqs. (4) and (5), the ψk are ` × 1 vectors which
define the controlling sequence {ψk}, while αi and βi are
constant matrices of dimensions `×` and `×n, respectively.
Moreover, in (5) h(t) is an m× ` matrix defining the form
of the control pulses. This matrix is defined on the interval
0 < t < T , and there it is piecewise-continuous.

The real constant τ2 ≥ 0, appearing in (4) characterizes
the pure delay at the input of the digital controller. In this
paper all delays are considered to be given parameters.

3. Below, we will use the representations
τi = ρiT + θi, 0 ≤ θi < T, i = 1, 2, (6)

where ρi are non-negative integers. Moreover, we introduce
γi = T − θi, 0 < γi ≤ T . (7)

4. Equation (4) will be called the equation of the discrete
controller. Introducing the backward shift operator ζ =
e−sT , one can write discrete controller equation (4) in the
form

α(ζ)ψk = β(ζ)ξk ,

where α(ζ) and β(ζ) are polynomial matrices of the form

α(ζ) = α0 + α1ζ + . . .+ αqζ
q ,

β(ζ) = β0 + β1ζ + . . .+ βqζ
q .

Below for brevity, we refer to a matrix pair (α(ζ), β(ζ)) as
a controller. If

detα(0) = detα0 6= 0 , (8)

the controller (α(ζ), β(ζ)) will be called causal. It is
known, e.g. (Åström and Wittenmark 1997, Rosenwasser
and Lampe 2000), that only causal controllers can be
implemented in practice. Therefore, below we assume that
(8) holds.

5. Equations (1)-(5) taken in the aggregate define a
system of linear differential-difference equations, which
will be called the system Sτ . A solution of the system
Sτ is a set of continuous vector functions x(t), y(t) and a
numerical sequence {ψk} such that (1)-(5) hold for all t
and k.

3. STATEMENT OF THE SAMPLED-DATA
POLYNOMIAL MODAL CONTROL PROBLEM

1. Let H(t) be the fundamental matrix of Eq. (1)
satisfying

dH(t)
dt

= A(t)H(t), H(0) = Ip ,

where Ip is the p × p identity matrix. Under the assump-
tions on A(t), this matrix always exists. Let also

M = H(T )

be the corresponding monodromy matrix. As is known
(Yakubovich and Starzhinskii 1975),

H(t+ T ) = H(t)M

and, therefore,
H−1(t+ T ) = M−1H−1(t) .

2. Introduce the notations

xk(ε) = x(kT + ε) , 0 ≤ ε ≤ T
(9)

xk = x(kT ) = xk(ε)|ε=0 ,

where k is any integer.
Theorem 1. The system Sτ can be configured to the mod-
ified (dependent on ε) discrete model defined by the rela-
tions

xk(ε) =H(ε)xk + Γ1(ε)ψk−ρ1 + Γ2(ε)ψk−ρ1−1 ,

ξk =C(γ2)H(γ2)xk−ρ2−1 + C(γ2)Γ1(γ2)ψk−ρ1−ρ2−1

+C(γ2)Γ2(γ2)ψk−ρ1−ρ2−2 , (10)

α0ψk + . . .+ αqψk−q = β0ψk + . . .+ βqξk−q .

In (10) the following notations are used:

Γ1(ε) =


Opl, for 0 ≤ ε ≤ θ1

ε∫
θ1

H(ε)H−1(µ)B(µ)h(µ− θ1) dµ

for θ1 ≤ ε ≤ T ,

(11)

where Op` means the p× ` zero matrix. Moreover,

Γ2(ε) =



ε∫
0

H(ε)H−1(µ)B(µ)h(µ+ γ1) dµ

for 0 ≤ ε ≤ θ1
θ1∫
0

H(ε)H−1(µ)B(µ)h(µ+ γ1) dµ

for θ1 ≤ ε ≤ T .

(12)

The proof for Theorem 1 and the following statements are
given in the Appendix.
Corollary 2. Using the notation (6)-(7), the system Sτ ,
described by equations (1)-(5), can be represented by the
discrete backward model Sd

xk =Mxk−1 + Γ1ψk−ρ1−1 + Γ2ψk−ρ1−2 ,

ξk =C(γ2)H(γ2)xk−ρ2−1 + C(γ2)Γ1(γ2)ψk−ρ1−ρ2−1

+C(γ2)Γ2(γ2)ψk−ρ1−ρ2−2, (13)

α0ψk + . . .+ αqψk−q = β0ξk + . . .+ βqξk−q ,

where

Γ1 = Γ1(ε)|ε=T

=M

γ1∫
0

H−1(λ+ θ1)B(λ+ θ1)h(λ) dλ ,

Γ2 = Γ2(ε)|ε=T

=M2

T∫
γ1

H−1(λ+ θ1)B(λ+ θ1)h(λ) dλ .

At the sampling instants, the signals in the system Sτ

coincide with those of the discrete model Sd.

3. Introduce the polynomial matrices
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a(ζ) = Ip − ζM , b(ζ) = Γ1ζ
ρ1+1 + Γ2ζ

ρ1+2 ,

c(ζ) =C(γ2)H(γ2)ζρ2+1 ,

d(ζ) =C(γ2)[Γ1(γ2)ζρ1+ρ2+1 + Γ2(γ2)ζρ1+ρ2+2] ,

where Ip is the p× p identity matrix.

Then we can write the characteristic matrix Q(ζ, α, β) of
the system Sd as

Q(ζ, α, β) =

 a(ζ) Opn −b(ζ)
−c(ζ) In −d(ζ)
O`p −β(ζ) α(ζ)

 . (14)

4. The eigenvalues of the matrix Q(ζ, α, β) will be called
the modes of the system Sτ . In analogy with (Rosenwasser
and Lampe 2006), it can be shown that the modes of the
system Sτ define elementary continuous-time processes in
this system, like the roots of the characteristic equations
for ordinary LTI systems. In this connection, one of the
fundamental control problems for the system Sτ is the
sampled-data polynomial modal control problem, which
is formulated as follows:

Sampled-data Polynomial Modal Control
(SDPMC) Problem: Given a plant (1)-(2), and
furthermore relations (3), (5)-(7). Find the set R∆ of
all causal controllers (α(ζ), β(ζ)) such that

det

[
a(ζ) Opn −b(ζ)
−c(ζ) In −d(ζ)
O`p −β(ζ) α(ζ)

]
≈ ∆(ζ) , (15)

where ∆(ζ) is a given polynomial, and the symbol ≈
denotes the equivalence of polynomial matrices (and,
as a special case, of scalar polynomials).

The sampled-data polynomial stabilization problem is a
special case of the SDPMC problem. In this case ∆(ζ)
in (15) is an arbitrary polynomial that is free of roots
inside the closed unit disk. For given matrices a(ζ), b(ζ),
c(ζ), d(ζ) and a specified polynomial ∆(ζ), Eq. (15) can
be considered as a polynomial equation for the unknown
matrices α(ζ), β(ζ). Unlike Diophantine polynomial equa-
tions, which are traditionally considered in literature, e.g.
(Kučera 1991, Kailath 1980), we will refer to equations of
the form (15) as determinant polynomial equations.

4. MAIN RESULTS

1.
Theorem 3. For the solvability of the SDPMC problem, it
is necessary that

∆(0) 6= 0 . (16)

If (16) holds, Eq. (15) can have only causal solutions. For
∆(0) = 0, equation (15) does not possess causal solutions.

2. The system Sτ will be called completely modal con-
trollable if Eq. (15) is solvable for any polynomial ∆(ζ).
This means that an arbitrary set of modes can be assigned
for the system Sτ by a discrete-time controller.

The conditions for complete modal controllability can be
represented in the following form.

Theorem 4. For complete modal controllability of the sys-
tem Sτ , it is necessary and sufficient that the pair (M,G)
be completely observable, and the pair (M,F ) be com-
pletely controllable, where the matrices F , G are given by

F =M−ρ1

T∫
0

H−1(ν + θ1)B(ν + θ1)h(ν) dν ,

(17)
G=C(γ2)H(γ2)M−(ρ2+1) .

3.
Theorem 5. Let the system Sτ be completely modal con-
trollable and condition (16) be fulfilled. Then, for a fixed
polynomial ∆(ζ) there exists the set R∆ of solutions of
Eq. (15), which contains only causal controllers and can
be constructed using the following algorithm:

a) Construct the matrix fraction description (MFD)
(Kailath 1980)

c(ζ)(I − ζM)−1 = g−1(ζ)f(ζ) ,

where g(ζ) and f(ζ) are polynomial matrices such
that for any ζ, we have

rank [ g(ζ) f(ζ) ] = n .

In this case, det g(0) 6= 0.
b) Find an arbitrary basic controller (α0(ζ), β0(ζ)) sat-

isfying

det
[

g(ζ) −f(ζ)b(ζ)− g(ζ)d(ζ)
−β0(ζ) α0(ζ)

]
= 1 .

From (Rosenwasser and Lampe 2006) it follows that
under the given assumptions the set of basic con-
trollers is not empty.

c) The set R∆ of causal solutions to (15) is given by

α(ζ) =D(ζ)α0(ζ)−N(ζ)[f(ζ)b(ζ) + g(ζ)d(ζ)] ,

β(ζ) =D(ζ)β0(ζ)−N(ζ)g(ζ) ,

where N(ζ) and D(ζ) are polynomial matrices, the
former can be chosen arbitrarily, while the latter
satisfies the single condition

detD(ζ) ≈ ∆(ζ) .

4. If the system Sτ is not completely modal controllable,
Eq. (15) might have no solutions for some polynomials
∆(ζ). The following theorem provides for conditions of
solvability in this case.
Theorem 6. Let the system Sτ be not completely modal
controllable. Let also ϕ1(ζ) be a greatest common left
divisor of the matrices a(ζ) and b(ζ) such that for all ζ
we have

[ a(ζ) b(ζ) ] = ϕ1(ζ) [ a1(ζ) b1(ζ) ] ,

and for all ζ

rank [ a1(ζ) b1(ζ) ] = p . (18)

Let also ϕ2(ζ) be a greatest common right divisor of the
matrices a1(ζ) and c(ζ) such that[

a1(ζ)

c(ζ)

]
=

[
a2(ζ)

c1(ζ)

]
ϕ2(ζ) ,
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and for all ζ

rank
[
a2(ζ)

c1(ζ)

]
= p .

Denote

detϕ1(ζ) = δ1(ζ) , detϕ2(ζ) = δ2(ζ) .

Then the following propositions hold:

a) For all ζ, the following equality is true:

rank [ a2(ζ) b1(ζ) ] = p . (19)

b) Equation (15) is solvable if and only if

∆1(ζ) =
∆(ζ)

δ1(ζ)δ2(ζ)
turns out to be a polynomial.

c) If b) holds and ∆1(0) 6= 0, the set of causal solutions
of Eq. (15) coincides with the set of solutions of

det

 a2(ζ) Opn −b1(ζ)
−c1(ζ) In −d(ζ)
O`p −β(ζ) α(ζ)

 ≈ ∆1(ζ) ,

which, with account for (18) and (19), can be con-
structed using the algorithm of Theorem 5.

5. EXAMPLE

1. Consider the modular control problem for the FDLCP
process with

A(t) = − sin t
2− cos t

, B(t) = 1, C(t) = 1 , T = 2π .

In this case, we get

H(t) =
1

2− cos t
, H−1(t) = 2− cos t ,

and the monodromy matrix becomes

M = H(2π) = 1 .

Furthermore, for concreteness we assume

h(t) = 1, 0 < t < T ,

and

0 < τ1 < 2π, 0 < τ2 < 2π , (20)

which implies ρ1 = ρ2 = 0, τ1 = θ1, τ2 = θ2.

2. Denote

r(λ) = 2λ− sinλ .

Then, we obtain from (11)

Γ1(ε) =
{

0 , 0 ≤ ε ≤ τ1 ,

H(ε)[r(ε)− r(τ1)] , τ1 ≤ ε ≤ 2π,
(21)

and as follows from (12)

Γ2(ε) =
{
H(ε)r(ε) , 0 ≤ ε ≤ τ ,

H(ε)r(τ1) , 0 ≤ ε ≤ 2π .
(22)

From (21) and (22), we find

Γ1 = Γ1(ε)|ε=2π = r(2π)− r(τ1)

Γ2 = Γ2(ε)|ε=2π = r(τ1) .

3. For calculating the coefficients Γ1(γ2) and Γ2(γ2), we
have to decide between the two cases

τ1 + τ2 ≤ T (23)

and

τ1 + τ2 ≥ T . (24)

When (23) is fulfilled, we obtain γ2 ≥ τ1, and therefore

Γ1(γ2) =H(γ2)[r(γ2)− r(τ1)] ,

Γ2(γ2) =H(γ2)r(τ1) .

In case of (24), we have γ2 ≤ τ1, and therefore

Γ1(γ2) = 0 , Γ2(γ2) = H(γ2)r(γ2) .

Using the above expressions, we find for the present
example

a(ζ) = 1− ζ , b(ζ) = Γ1ζ + Γ2ζ
2

c(ζ) =H(γ2)ζ

d(ζ) = Γ1(γ2)ζρ1+ρ2+1 + Γ2(γ2)ζρ1+ρ2+2 .

4. Determinant polynomial equation (15) takes the form

det

 1− ζ 0 −b(ζ)
−c(ζ) 1 −d(ζ)

0 −β(ζ) α(ζ)

 ≈ ∆(ζ) ,

which is equivalent to the set of Diophantine equations

α(ζ)a(ζ)− β(ζ)v(ζ) ≈ ∆(ζ) , (25)

where

v(ζ) = d(ζ)(1− ζ) + b(ζ)c(ζ) . (26)

In the given case, we have

v(1) = b(1) = Γ1 + Γ2 = 4π 6= 0 . (27)

Therefore, the polynomials a(ζ) and b(ζ) are coprime, and
equation (25) is solvable for any polynomial ∆(ζ). Hence,
the investigated system is completely modal controllable
for all τ1 and τ2 satisfying condition (20).

5. It follows from (27), that there exists a controller α0(ζ),
β0(ζ) with

α0(ζ)a(ζ)− β0(ζ)v(ζ) = 1 .

Thus for a fixed polynomial ∆(ζ) the solution of the modal
control problem takes the form

α(ζ) = `∆(ζ)α0(ζ)−m(ζ)v(ζ) ,

β(ζ) = `∆(ζ)β0(ζ)−m(ζ)a(ζ) ,

wherem(ζ) is an arbitrary polynomial and ` is an arbitrary
constant.
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CONCLUSIONS

The report deals with closed-loop systems that consist of a
linear continuous-time periodic plant and a sampled linear
controller where the sampling period coincides with the
period of the process. It is assumed that pure delays act
on the input and the output of the sampled controller.

The characteristic matrix of the closed-loop system is
constructed and the set of causal discrete controllers is
found, such that the set of eigenvalues of the characteristic
matrix has a given form. The solution opens new possibil-
ities for the practical design of digital controllers for this
complicated class of processes.

Appendix A. PROOFS FOR THE BASIC
STATEMENTS

A.1 Proof of Theorem 1

Integrating equation (1), we obtain

x(t) =H(t)M−kx(kT ) +
t∫

kT

H(t)H−1(ν)B(ν)u(ν − τ1) dν .

Let us take here
t = kT + ε , ν = kT + µ .

Using the notation (9), we find

xk(ε) =H(ε)xk +
(A.1)

ε∫
0

H(ε)H−1(µ)u(kT + µ− τ1) dµ .

From (5), (6) and (7), we obtain

u(kT + µ− τ1) =


h(µ+ γ1)ψk−ρ1−1

for − T < µ− θ1 < 0 ,

h(µ− θ1)ψk−ρ1

for 0 < µ− θ1 < T .

(A.2)

Inserting (A.2) into (A.1), we find

xk(ε) =H(ε)xk +
ε∫

0

H(ε)H−1(µ)B(µ)h(µ+ γ1) dµψk−ρ1−1

for 0 ≤ ε ≤ θ1
(A.3)

xk(ε) =H(ε)xk +
θ1∫
0

H(ε)H−1(µ)B(µ)h(µ+ γ1) dµψk−ρ1−1 +

ε∫
θ1

H(ε)H−1(µ)B(µ)h(µ− θ1) dµψk−ρ1

for θ1 ≤ ε ≤ T ,

which is equivalent to the first equation in (10). For the
proof of the second equation in (10), we assume

ξ(t) = y(t− τ2) = C(t− τ2)x(t− τ2) .

Hence
ξk = ξ(kT ) = C(kT − τ2)x(kT − τ2) .

But, obviously
C(kT − τ2) = C(γ2) .

Moreover,

x(kT − τ2) = x(kT − ρ2T − θ2)

= x(kT − ρ2T − T + γ2) .
which together with the first equation in (10) leads to the
second equation in (10).

Hereinafter, the symbol indicates the end of a proof.

A.2 Proof of Corollary 2

Inserting in equation (A.3) ε = T and substituting k by
k − 1, we obtain the first equation in (13).

A.3 Proof of Theorem 3

From (14), we obtain

detQ(ζ, α, β)|ζ=0 = det a(0) detα(0)

= detα(0) .
If in (15) ∆(0) = 0, then detα(0) = 0, i.e. the controller
(α(ζ), β(ζ)) is non-causal. If however, ∆(0) 6= 0, then
detα(0) 6= 0, so that the controller (α(ζ), β(ζ)) becomes
causal.

A.4 Proof of Theorem 4

It was shown in (Lampe and Rosenwasser 2007a), that the
determinant polynomial equation (15) is solvable for any
polynomial ∆(ζ), if and only if for all ζ

rank [ Ip − ζM b(ζ) ] = p , (A.4)

rank
[
Ip − ζM
c(ζ)

]
= p . (A.5)

The generalized theorem of Bezout (Gantmacher 1959)
yields the existence of polynomial matrices b1(ζ) satisfying

b(ζ) = (Ip − ζM)b1(ζ) +B1 ,

where
B1 = M−(ρ1+1)[Γ1 +M−1Γ2] = F ,

and F is the matrix determined by (17). Hence, from the
equality

[ Ip − ζM b(ζ) ]
[
Ip −b1(ζ)
Olp Il

]
= [ Ip − ζM F ] ,

we conclude that the matrices [ Ip − ζM b(ζ) ] and
[ Ip − ζM F ] are equivalent. Thus, taking advantage from
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the fact that the monodromy matrix M is non-singular,
we reason that condition (A.4) is fulfilled in the case
and only in the case, when the pair (M,F ) is completely
controllable. Analogously, we can show, that condition
(A.5) is fulfilled if and only if the pair (M,G) is completely
observable.

A.5 Proofs for Theorems 5 and 6

The proofs directly emerge from the general properties of
MFD, proven in (Lampe and Rosenwasser 2007a).
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