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Abstract: This paper considers a discrete-time infinite horizon discounted cost Markov decision
problem in which the transition probability vector for each state-control pair is uncertain. A
popular approach to this problem has been to find a policy that performs best in the worst-case
scenario. A policy obtained in this manner, however, tends to be conservative. We construct a
robust formulation for the problem, which produces a less conservative policy. We characterize
the performance of the robust formulation via the probability that the optimal cost of a random
instance of the problem is at most that of the robust formulation. A congestion-dependent
pricing problem for network services is examined as a numerical example.

1. INTRODUCTION

A Markov Decision Problem (MDP) is a stochastic sequen-
tial decision making problem, whose defining characteristic
is the Markov property: given the current state, transitions
to a new state in the future are independent of all the past
states. The probability distribution of those transitions
is often assumed to be precisely known. The objective is
then to find a decision policy (i.e., a decision rule) that
optimizes a certain cost criterion for the problem.

The validity of the assumption that the transition prob-
abilities are precisely known, however, has been debated.
Some argue that in many real-world applications the tran-
sition probabilities may have to be estimated from his-
torical data or observations. As such, they are subject to
estimation errors, making them uncertain (or ambiguous).

When the transition probabilities are uncertain, one could
choose to use some representative values for them, ignoring
the uncertainty. This approach has been deemed unaccept-
able because an optimal policy of an MDP is typically
sensitive to the transition probabilities. An alternative
approach is to take all possible scenarios for the transi-
tion probabilities into consideration and to seek a policy
that performs best in the worst-case scenario. Indeed, the
literature has focused on this worst-case approach: Satia
and Lave [1973], White and Eldeib [1994], Nilim and El
Ghaoui [2005], Iyengar [2005].

To explain the motivation for our work, let us step back
and think of general constrained optimization problems
in which problem data are uncertain. For those problems,
the classical robust optimization approach aims to find a
solution that is immune to data uncertainty (i.e., a solution
with guaranteed feasibility). See, for example, Ben-Tal
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and Nemirovski [1998] that studied various classes of
constrained optimization problems from this perspective.

Noting that the classical robust optimization approach
tends to produce an ultra conservative solution when
applications can tolerate a small chance of infeasibility,
Bertsimas and Sim [2004] and Paschalidis and Kang [2005,
2006] considered a “relaxed” robust optimization approach
to linear programming problems with data uncertainty.
The goal of this approach is to produce an improved solu-
tion with a certain probabilistic guarantees of feasibility. In
particular, Paschalidis and Kang [2005, 2006] showed that
if one exploits distributional information on the uncertain
data in this approach, the resulting solution becomes more
cost-effective.

The worst-case approach to an MDP with uncertain tran-
sition probabilities is, in spirit, the same as the classical ro-
bust optimization approach to a constrained optimization
problem with uncertain data. Therefore, it is reasonable
to suspect that an optimal policy from the worst-case
approach could also be too conservative in some cases.
This motivates us to extend the ideas of Paschalidis and
Kang [2005, 2006] to the MDP in an attempt to find a less
conservative policy. In this paper, we consider a formula-
tion, referred to as the robust MDP, that produces such
a policy. To characterize the performance of this robust
formulation, we examine the probability that the optimal
cost of a random instance of the MDP is at most that of
the robust formulation. To the best of our knowledge, this
line of analysis has not been pursued in the literature.

This paper is organized as follows. In Section 2, we de-
scribe the MDP under consideration and provide back-
ground information. We then define the robust MDP and
present a probabilistic characterization of its performance
in Section 3. To illustrate our robust approach numerically,
we consider a congestion-dependent pricing problem for
network services in Section 4. We conclude in Section 5.
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Notation: We use boldface letters to denote vectors. All
vectors are assumed to be column vectors. x′ represents
the transpose of the vector x. The vector of all zeros is
denoted by 0. P [A] means the probability of the event A,
and E[X] denotes the mean of the random variable X.

2. PROBLEM SETTING

We consider a discrete-time infinite horizon discounted
cost MDP with finite state space S and control space
U . For notational simplicity, we assume that U is state-
independent, i.e., each state has the identical control space
U . When the system is at state i ∈ S and control u ∈ U
is taken, the stationary cost c(i, u) is incurred, which we
assume nonnegative and bounded. The system then makes
a transition to state j with probability pij(u) , P [j | i, u].
At the new state j, the process is repeated. Let pi(u) =
(pij(u))j∈S be the transition probability vector associated
with the state-control pair (i, u). A stationary policy π is a
mapping from S to U , and let Π be the set of all (allowable)
stationary policies. Let 0 < α < 1 be the discount factor.

In the framework of standard MDPs, it is assumed that
the transition probability vectors pi(u), ∀ i ∈ S, u ∈ U , are
precisely known. Let us denote by ω the collection of the
transition probability vectors, i.e., ω , {pi(u)}i∈S,u∈U .
Given the initial state i0 = i, the cost of policy π is
calculated as

V π
ω (i) = Eω

[ ∞∑

t=0

αtc(it, π(it)) | i0 = i
]
,

where it is the state at epoch t and the expectation is
taken with respect to ω. The objective is then to find an
optimal policy π∗ that minimizes V π

ω (i) for all i ∈ S, i.e.,

V ∗
ω (i) = min

π∈Π
V π

ω (i), ∀ i ∈ S. (1)

When ω represents the collection of the nominal transition
probability vectors, we refer to (1) as the nominal MDP
and use the notation V ∗

N (i) and πN instead of V ∗
ω (i) and

π∗, respectively.

It is well known that the optimal value function V ∗
ω satisfies

Bellman equations and that V ∗
ω and π∗ can be determined

by value or policy iteration (see, for instance, Puterman
[1994], Bertsekas [2005, 2007]). We also note that one can
solve (1) through the linear programming formulation

max
∑

i∈S

V (i) (2)

s. t. V (i) ≤ c(i, u) + α
∑

j∈S

pij(u)V (j), ∀ i ∈ S, u ∈ U,

whose optimal solution V (i) is equal to V ∗
ω (i) for all i ∈ S.

The uncertainty in the transition probabilities can be
modeled by assuming that pi(u) belongs to some bounded

set Ωi(u). For instance, Ωi(u) can be described as Ωi(u) ,

{p | p ≤ p ≤ p, p ∈ ∆|S|}, where p ≥ p ≥ 0 and ∆|S| is

the probability simplex in R
|S|. Let Ω , ×Ωi(u), i.e., the

Cartesian product of Ωi(u).

When the transition probabilities are uncertain, the worst-
case approach considered in the literature seeks a policy
that minimizes the worst possible cost. Such a policy,
denoted by πF , is obtained through the following classical
robust MDP or “fat” MDP :

V ∗
F (i) = min

π∈Π
max
ω∈Ω

Eω

[ ∞∑

t=0

αtc(it, π(it)) | i0 = i
]
, ∀ i ∈ S.

(3)

We refer to πF as the fat policy. Nilim and El Ghaoui
[2005] showed that V ∗

F (i), ∀ i ∈ S, satisfy the following set
of equations, which we call the fat Bellman equations:

V ∗
F (i) = min

u∈U

{
c(i, u) + α max

pi(u)∈Ωi(u)

∑

j∈S

pij(u)V ∗
F (j)

}
, ∀ i,

(4)

with πF being found through

πF (i) = argmin
u∈U

{
c(i, u) + α max

pi(u)∈Ωi(u)

∑

j∈S

pij(u)V ∗
F (j)

}
, ∀ i.

Nilim and El Ghaoui [2005] proposed a value iteration
algorithm for solving (4). (Iyengar [2005] independently
proved the validity of (4) and developed value and policy
iteration algorithms.)

One might be tempted to use the linear programming ap-
proach (cf. (2)) for solving the fat MDP (3) by formulating
it as

max
∑

i∈S

V (i)

s. t. V (i) ≤ c(i, u) + α max
pi(u)∈Ωi(u)

∑

j∈S

pij(u)V (j), ∀ i, u.

Unfortunately, this formulation is not a convex problem:
the max operator in the constraints makes the feasible set
nonconvex. So it is unlikely that efficient exact solution
algorithms exist.

Let V πF

ω (i) be the cost of the fat policy for the initial state
i0 = i when state transitions occur according to a given
ω, i.e.,

V πF

ω (i) = Eω

[ ∞∑

t=0

αtc(it, πF (it)) | i0 = i
]
.

Lemma 1. For any ω ∈ Ω, V ∗
ω (i) ≤ V πF

ω (i) ≤ V ∗
F (i) for all

i ∈ S.

Proof. The first inequality follows from the fact that πF

is a suboptimal policy of the MDP with ω. The second
inequality holds because

V πF

ω (i) = Eω

[ ∞∑

t=0

αtc(it, πF (it)) | i0 = i
]

≤ max
ω∈Ω

Eω

[ ∞∑

t=0

αtc(it, πF (it)) | i0 = i
]

= V ∗
F (i).

Lemma 1 shows that for any ω ∈ Ω, the optimal cost V ∗
ω (i)

is guaranteed to be no greater than the fat cost V ∗
F (i). Put

differently, V ∗
F (i) is an a priori upper bound on V ∗

ω (i) that
cannot be determined until ω is realized. In this sense, the
fat MDP is conservative.

3. THE ROBUST MARKOV DECISION PROBLEM

The rationale for considering the fat MDP (3) is to
protect against the case where a certain set of transition
probability vectors causes a high cost. However, if such
a case happens rarely, the use of the fat policy would be
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unnecessarily conservative. Thus, one would be interested
in finding a policy that is less conservative than the fat
policy, but permitting a small possibility of the policy
being a bad one.

In order to obtain a less conservative policy than the
fat policy, we restrict the uncertainty sets Ωi(u). Let

Ri(u) ⊆ Ωi(u) and R , ×Ri(u). We define the robust
MDP as

V ∗
R(i) = min

π∈Π
max
ω∈R

Eω

[ ∞∑

t=0

αtc(it, π(it)) | i0 = i
]
, ∀ i ∈ S.

(5)

Let πR denote an optimal policy of the robust MDP, which
will be referred to as the robust policy. Similarly to the fat
MDP, V ∗

R(i), ∀ i ∈ S, satisfy the following robust Bellman
equations:

V ∗
R(i) = min

u∈U

{
c(i, u) + α max

pi(u)∈Ri(u)

∑

j∈S

pij(u)V ∗
R(j)

}
, ∀ i,

(6)

with

πR(i) = argmin
u∈U

{
c(i, u) + α max

pi(u)∈Ri(u)

∑

j∈S

pij(u)V ∗
R(j)

}
, ∀ i.

One can use a value iteration algorithm (or a policy
iteration algorithm) to determine V ∗

R(i) and πR(i) for all
i ∈ S. The following lemma formalizes the argument that
the robust policy πR is less conservative than the fat policy
πF .

Lemma 2. V ∗
R(i) ≤ V ∗

F (i) for all i ∈ S.

Proof.

V ∗
R(i) = min

π∈Π
max
ω∈R

Eω

[ ∞∑

t=0

αtc(it, π(it)) | i0 = i
]

≤ max
ω∈R

Eω

[ ∞∑

t=0

αtc(it, πF (it)) | i0 = i
]

≤ max
ω∈Ω

Eω

[ ∞∑

t=0

αtc(it, πF (it)) | i0 = i
]

= V ∗
F (i).

Having defined the robust MDP, we now characterize
its performance by comparing its optimal cost with the
optimal cost of a random instance of the MDP. Specifically,
we are interested in the probability P

[
V ∗

ω (i) ≤ V ∗
R(i)

]
for

a randomly selected ω ∈ Ω. To that end, let us consider
the cost of the robust policy, V πR

ω (i), for the MDP with ω
when the initial state is i0 = i, i.e.,

V πR

ω (i) = Eω

[ ∞∑

t=0

αtc(it, πR(it)) | i0 = i
]
.

Lemma 3. For any ω ∈ Ω, V ∗
ω (i) ≤ V πR

ω (i) for all i ∈ S.
Moreover, if ω ∈ R, then V πR

ω (i) ≤ V ∗
R(i) for all i ∈ S.

Proof. The first part follows from the fact that πR is a
suboptimal policy for the MDP with ω. For the second
part, if ω ∈ R,

V πR

ω (i) = Eω

[ ∞∑

t=0

αtc(it, πR(it)) | i0 = i
]

≤ max
ω∈R

Eω

[ ∞∑

t=0

αtc(it, πR(it)) | i0 = i
]

= V ∗
R(i).

It follows from Lemma 3 that

P
[
V ∗

ω (i) ≤ V ∗
R(i)

]
≥ P

[
V πR

ω (i) ≤ V ∗
R(i)

]
. (7)

Consider the probability of the complement of V πR

ω (i) ≤
V ∗

R(i).

P
[
V πR

ω (i) > V ∗
R(i)

]

= P
[
V πR

ω (i) > V ∗
R(i) | ω ∈ R

]
P

[
ω ∈ R

]

+ P
[
V πR

ω (i) > V ∗
R(i) | ω /∈ R

]
P

[
ω /∈ R

]

= P
[
V πR

ω (i) > V ∗
R(i) | ω /∈ R

]
P

[
ω /∈ R

]
, (8)

where the second equality follows from Lemma 3. Let
pi(πR(i)) ∈ ω be the transition probability vector for the
state-control pair (i, πR(i)). Since V πR

ω (i) and pi(πR(i))
satisfy V πR

ω (i) = c(i, πR(i)) + α
∑

j∈S pij(πR(i))V πR

ω (j),

we can write the first probability in (8) as

P
[
V πR

ω (i) > V ∗
R(i) | ω /∈ R

]

= P
[
c(i, πR(i)) + α

∑

j∈S

pij(πR(i))V πR

ω (j) >V ∗
R(i) | ω /∈R

]

= P
[∑

j∈S

pij(πR(i))V πR

ω (j) > C(i) | ω /∈ R

]
, (9)

where C(i) = 1
α

{
V ∗

R(i) − c(i, πR(i))
}
.

The V πR

ω (i) in (9) cannot be computed until ω is realized.
To rid V πR

ω (i) of their dependency on a particular ω, we
calculate the worst cost of the policy πR for all ω /∈ R as
follows:

V πR(i) = max
ω/∈R

Eω

[ ∞∑

t=0

αtc(it, πR(it)) | i0 = i
]
, ∀ i ∈ S.

The V πR(i) can be obtained through the following set of
equations: for all i ∈ S

V πR(i) = c(i, πR(i)) + α max
pi(πR(i))∈ω/∈R

∑

j∈S

pij(πR(i))V πR(j).

(10)

It may not be easy to compute V πR(i) because the require-
ment of pi(πR(i)) ∈ ω /∈ R could make the maximization
problem in (10) complicated. In that case, one may use

V̂ πR(i) instead of V πR(i), which are the solution of 1

V̂ πR(i) = c(i, πR(i))

+ α max
pi(πR(i))∈Ωi(πR(i))

∑

j∈S

pij(πR(i))V̂ πR(j), ∀ i ∈ S.

Replacing V πR

ω (i) in (9) with V πR(i), we obtain

P
[∑

j∈S
pij(πR(i))V πR

ω (j) > C(i) | ω /∈ R

]

≤ P
[∑

j∈S
pij(πR(i))V πR(j) > C(i) | ω /∈ R

]

≤ P
[
V′pi(πR(i)) ≥ C(i) | ω /∈ R

]
, (11)

where V is the vector whose components are the V πR(i).

1 The use of V̂ πR (i) could make the analysis weaker.
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Putting (8), (9), and (11) together and using Markov’s
inequality, we obtain for θ ≥ 0

P
[
V πR

ω (i) > V ∗
R(i)

]

≤ P
[
V′pi(πR(i)) ≥ C(i) | ω /∈ R

]
P

[
ω /∈ R

]

≤ e−θC(i)E
[
eθV′pi(πR(i)) | ω /∈ R

]
P

[
ω /∈ R

]

= exp
[
−θC(i) + Λpi(πR(i))∈ω/∈R(θV)

]
P

[
ω /∈ R

]
,

where Λpi(πR(i))∈ω/∈R(θV) , log E
[
eθV′pi(πR(i)) | ω /∈ R

]
.

Optimizing over θ, we arrive at the following proposition.

Proposition 4. It holds that

P
[
V πR

ω (i) > V ∗
R(i)

]

≤ exp
[
inf
θ≥0

{
−θC(i) + Λpi(πR(i))∈ω/∈R(θV)

}]
P

[
ω /∈ R

]
.

(12)

Let ǫ be the value of the right hand side of (12). From
(7), we then have P

[
V ∗

ω (i) ≤ V ∗
R(i)

]
≥ 1 − ǫ. In other

words, no matter what the transition probabilities are,
V ∗

ω (i) is no greater than V ∗
R(i) with probability at least

1− ǫ. In general, computing the probability bound in (12)
exactly would pose computational challenges. Sometimes,
however, ω is induced by a few parameters (as is the case in
the example in Section 4). In this case, the computational
challenges could be mild.

4. AN EXAMPLE

To numerically demonstrate the discussions of Section 3,
we consider a revenue maximization problem for conges-
tion-dependent pricing for certain network services. This
problem, which will be described below, is a simplified
version of the one discussed extensively in Paschalidis and
Tsitsiklis [2000] (with the known transition probabilities).

Consider a service provider who provides access to a
communication network or some other form of on-line
services. Service requests, say “calls”, arrive according to
a Poisson process and stay connected to the network for
a time interval that is exponentially distributed with rate
µ. Connection time intervals of calls are independent and
are also independent of interarrival times of calls. The
service provider has a total amount R of some resource,
say “bandwidth”. Each incoming call requires r units
of bandwidth and is only accepted if that bandwidth is
available. Otherwise, the call is rejected and lost. When a
call arrives and is accepted, it pays a fee of u. The service
provider can change the value of u at the times when a
call arrives or when a call departs. We assume that there
is a known demand function λ(u), which determines the
arrival rate of calls as a function of u. We further assume
that there exists a fee umax beyond which the demand λ(u)
becomes zero.

In this setting, the goal is to determine an optimal policy
of setting the value of u as a function of the number of
calls in the system, so that the following long-term (infinite
horizon) total discounted revenue is maximized:

lim
T→∞

E
[∫ T

0

e−αtλ(u(t))u(t)dt
]
,

where u(t) is the fee at time t and α the discount factor.

Let us denote the maximum number of calls that the
system can admit by K , ⌊R/r⌋. We define the state space

as S = {1, . . . ,K} and the control space as U = [0, umax].
The above continuous-time MDP can be converted to a
discrete-time one through uniformization, whose Bellman
equations are given by

V (i) =
1

α + ν
max
u∈U

{
g(i, u) + ν

∑

j∈S

pij(u)V (j)
}

, ∀ i, (13)

where V (i) is the maximum long-term revenue when there
are i calls in the system, g(i, u) is the “per-stage” revenue
for the state-control pair (i, u), and ν is the uniformization
constant to be determined later. (We refer the reader to
Bertsekas [2007] about the conversion of continuous-time
MDPs to discrete-time counterparts by uniformization.)
The per-stage revenue is given by

g(i, u) =

{
λ(u)u if i 6= K,

0 if i = K.
(14)

The transition probabilities are

pij(u) =






λ(u)/ν if i 6= K and j = i + 1,

iµ/ν if i 6= 0 and j = i − 1,

1 − λ(u)
ν − iµ

ν if 1 ≤ i = j ≤ K−1,

1 − λ(u)/ν if i = j = 0,

1 − iµ/ν if i = j = K,

0 otherwise.

(15)

We consider a linear demand function with an uncertain
“y-intercept”. Let λ(u) = λ0 −λ1u, and assume that λ0 is

uniformly distributed over the interval [λ0 − λ̂0, λ0 + λ̂0],

where λ0 > λ̂0 > 0. Hence for any fee u, the arrival rate

of calls belongs to the interval [λ0 − λ̂0 − λ1u, λ0 + λ̂0 −
λ1u]. Note that the uniformization constant can be set to

ν = λ0 + λ̂0 + Kµ.

In the nominal MDP, λ0 is set to λ0. Inserting the per-
stage revenue (14) and the transition probabilities (15)
into (13), we have

V ∗
N (0) =

1

α + ν
max

0≤u≤umax

{
(λ0 − λ1u)u

+ (λ0 − λ1u)V ∗
N (1) +

(
ν − (λ0 − λ1u)

)
V ∗

N (0)
}

,

V ∗
N (i) =

1

α + ν
max

0≤u≤umax

{
(λ0 − λ1u)u

+ (λ0 − λ1u)V ∗
N (i + 1) + iµV ∗

N (i − 1)

+
(
ν − (λ0 − λ1u) − iµ

)
V ∗

N (i)
}

, 1 ≤ i ≤ K−1,

V ∗
N (K) =

1

α + ν
max

0≤u≤umax

{
iµV ∗

N (K−1)

+ (ν − iµ)V ∗
N (K)

}

=
1

α + ν

{
iµV ∗

N (K−1) + (ν − iµ)V ∗
N (K)

}
.

In the fat MDP, λ0 can take any value from its range.
This introduces uncertainty in the transition probabilities
because some components of pi(u) are functions of λ0.
Specifically, it leads to pi(u) ∈ Ωi(u) =

{
p(λ0) | λ0 ∈

[λ0 − λ̂0, λ0 + λ̂0]
}
, where if 1 ≤ i ≤ K−1
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pj(λ0) =






(λ0 − λ1u)/ν if j = i + 1,

iµ/ν if j = i − 1,

1 − (λ0 − λ1u)/ν − iµ/ν if j = i,

0 otherwise,

and if i = 0

pj(λ0) =






(λ0 − λ1u)/ν if j = i + 1,

1 − (λ0 − λ1u)/ν if j = i,

0 otherwise,

and if i = K

pj(λ0) =






iµ/ν if j = i − 1,

1 − iµ/ν if j = i,

0 otherwise.

We note that it is also possible to model Ωi(u) as Ωi(u) ={
p | p ≤ p ≤ p, p ∈ ∆K

}
, for appropriately defined p

and p.

The Bellman equations (13) are then modified to account
for the uncertainty in the transition probabilities as follows
(cf. (4)): for all i ∈ S

V (i) =
1

α+ν
max
u∈U

{
min

pi(u)∈Ωi(u)

[
g(i, u) + ν

∑

j∈S

pij(u)V (j)
]}

.

(16)

Note that since the per-stage revenue g(i, u) is also a
function of uncertain λ0, it is included in the inner mini-
mization. It can be seen that the Bellman equations (16)
become

V ∗
F (0) =

1

α + ν
max

0≤u≤umax

{
min

λ0∈[λ0−λ̂0,λ0+λ̂0]

[
(λ0 − λ1u)u

+ (λ0 − λ1u)V ∗
F (1) +

(
ν − (λ0 − λ1u)

)
V ∗

F (0)
]}

,

V ∗
F (i) =

1

α + ν
max

0≤u≤umax

{
min

λ0∈[λ0−λ̂0,λ0+λ̂0]

[
(λ0 − λ1u)u

+ (λ0 − λ1u)V ∗
F (i + 1) + iµV ∗

F (i − 1)

+
(
ν − (λ0 − λ1u) − iµ

)
V ∗

F (i)
]}

, 1 ≤ i ≤ K−1,

V ∗
F (K) =

1

α + ν
max

0≤u≤umax

{
min

λ0∈[λ0−λ̂0,λ0+λ̂0]

[
iµV ∗

F (K−1)

+ (ν − iµ)V ∗
F (K)

]}

=
1

α + ν

{
iµV ∗

F (K−1) + (ν − iµ)V ∗
F (K)

}
.

To construct the robust MDP, we introduce a parameter
0 < β < 1, which reduces the range of λ0 to [λ0 −

βλ̂0, λ0 + βλ̂0]. Consequently, pi(u) belongs to the set

Ri(u) =
{
p(λ0) | λ0 ∈ [λ0−βλ̂0, λ0 +βλ̂0]

}
, where pj(λ0)

is defined as before. The Bellman equations for the robust
MDP are then given by (cf. (6) and (16))

V ∗
R(0) =

1

α + ν
max

0≤u≤umax

{
min

λ0∈[λ0−βλ̂0,λ0+βλ̂0]

[
(λ0 − λ1u)u

+ (λ0 − λ1u)V ∗
R(1) +

(
ν − (λ0 − λ1u)

)
V ∗

R(0)
]}

,

V ∗
R(i) =

1

α + ν
max

0≤u≤umax

{
min

λ0∈[λ0−βλ̂0,λ0+βλ̂0]

[
(λ0 − λ1u)u

+ (λ0 − λ1u)V ∗
R(i + 1) + iµV ∗

R(i − 1)

+
(
ν − (λ0 − λ1u) − iµ

)
V ∗

R(i)
]}

, 1 ≤ i ≤ K−1,

V ∗
R(K) =

1

α + ν
max

0≤u≤umax

{
min

λ0∈[λ0−βλ̂0,λ0+βλ̂0]

[
iµV ∗

R(K−1)

+ (ν − iµ)V ∗
R(K)

]}

=
1

α + ν

{
iµV ∗

R(K−1) + (ν − iµ)V ∗
R(K)

}
.

For computational tests, we set R = 30, r = 2, µ = 1,

λ0 ∈ [60 − 10, 60 + 10] (i.e., λ0 = 60 and λ̂0 = 10),
λ1 = 5, α = 0.9, and β = 0.5. We also set umax = (λ0 +

λ̂0)/λ1 = 14. We discretize the continuous control space
U = [0, umax] into 50 controls. We solve the nominal, fat,
robust MDPs by value iteration.

Table 1 shows the maximum long-term revenues for each
problem, and the optimal fee policy for each problem is
shown in Table 2. When there are 15 calls in the system
(i.e., when the system is full), the optimal fee can be set to
any value because any new arriving calls are rejected and
do not contribute to the total revenue. (As shown above,
the Bellman equations for V ∗

N (15), V ∗
F (15), and V ∗

R(15) do
not involve the maximization over 0 ≤ u ≤ umax.)

Table 1. Maximum long-term revenues

i V ∗

N
(i) V ∗

R
(i) V ∗

F
(i)

0 157.28 137.07 117.48

1 155.92 136.01 116.68

2 154.47 134.86 115.81

3 152.90 133.62 114.87

4 151.21 132.28 113.84

5 149.39 130.82 112.71

6 147.40 129.22 111.47

7 145.23 127.46 110.09

8 142.85 125.51 108.55

9 140.21 123.34 106.81

10 137.26 120.90 104.84

11 133.94 118.11 102.57

12 130.13 114.89 99.91

13 125.70 111.09 96.73

14 120.36 106.46 92.77

15 113.55 100.43 87.52

Table 2. Optimal fees

i πN (i) πR(i) πF (i)

0 6.571 6.000 5.429

1 6.857 6.000 5.429

2 6.857 6.000 5.429

3 6.857 6.286 5.429

4 6.857 6.286 5.429

5 6.857 6.286 5.714

6 7.143 6.286 5.714

7 7.143 6.571 5.714

8 7.429 6.571 6.000

9 7.429 6.857 6.000

10 7.714 6.857 6.000

11 8.000 7.143 6.286

12 8.286 7.429 6.571

13 8.571 7.714 6.857

14 9.429 8.571 7.714

15 - - -

Note that there is a one-to-one correspondence between
the value of λ0 and ω in this example. In other words,
once λ0 is known, all the transition probabilities are fixed
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(although they are still functions of u). Hence in terms
of notation, we can use λ0 in place of ω. We are now
interested in an empirical estimate of P

[
V ∗

λ0
(0) ≥ V ∗

R(0)
]
,

i.e., the probability that the maximum long-term revenue
for a randomly chosen λ0 when no calls in the system
initially is at least V ∗

R(0). To that end, we consider the
probability

P
[
V πR

λ0
(0) < V ∗

R(0)
]

= P
[
V πR

λ0
(0) < V ∗

R(0) | λ0 /∈ [λ0 − βλ̂0, λ0 + βλ̂0]
]

× P
[
λ0 /∈ [λ0 − βλ̂0, λ0 + βλ̂0]

]
.

(See (8) and the discussion preceding it. The inequality
sign is reversed because the example is a maximization
problem.) We uniformly generated 1000 instances of λ0

from [λ0−λ̂0, λ0+λ̂0]. Among them, 500 instances satisfied

λ0 /∈ [λ0−βλ̂0, λ0+βλ̂0]. Out of those 500 instances of λ0,
247 instances resulted in V πR

λ0
(0) < V ∗

R(0). Hence empiri-

cally P
[
V πR

λ0
(0) < V ∗

R(0)
]

= 0.247. We thus conclude that

with probability about 0.753, V ∗
R(0) can serve as a lower

bound on an unknown V ∗
λ0

(0) (cf. the discussion below
(12)). In fact this “probability of confidence” would be
higher than 0.753 because even if V πR

λ0
(0) < V ∗

R(0), it is

possible that V ∗
λ0

(0) ≥ V ∗
R(0).

Setting β to a larger value will increase P
[
V ∗

λ0
(0) ≥ V ∗

R(0)
]

by decreasing the value of V ∗
R(0). By taking this trade-off

into consideration, one can adjust the value of β to obtain
an appropriately robust MDP. In Figure 1, the empirical
estimates of P

[
V ∗

λ0
(0) ≥ V ∗

R(0)
]

are plotted for various
values for β. The solid line in the middle is obtained when

λ0 is uniformly distributed in [λ0 − λ̂0, λ0 + λ̂0], which we
assumed earlier. When the probability distribution of λ0

is triangle 2 and reverse-triangle 3 , the dashed line in the
top and the dash-dotted line in the bottom represent the
empirical estimates of P

[
V ∗

λ0
(0) ≥ V ∗

R(0)
]
, respectively.

As the figure shows, for a given value of β, the probability
of confidence (i.e., P

[
V ∗

λ0
(0) ≥ V ∗

R(0)
]
) increases as the

realizations of λ0 tend to be close to its mean value λ0 (in
other words, as the variance of λ0 decreases).

5. CONCLUSION

The transition probabilities of an infinite horizon dis-
counted cost MDP can be uncertain due to estimation
errors. If the estimation errors are not negligible, the
uncertainty (or ambiguity) in the transition probabilities
should be factored in when solving the MDP. In this case,
a policy that performs best in the worst-case scenario has
been sought in the literature. We have considered a robust
formulation for the MDP to obtain a less conservative
policy than the one from the worst-case approach. By
comparing the optimal cost of the robust formulation
with that of a random instance of the MDP, we have
2 The density function of the triangle distribution is

fλ0
(λ) =

{
λ/λ̂2

0
−

(
λ0 − λ̂0

)
/λ̂2

0
if λ0 − λ̂0 ≤ λ ≤ λ0,

−λ/λ̂2

0
+

(
λ0 + λ̂0

)
/λ̂2

0
if λ0 ≤ λ ≤ λ0 + λ̂0.

3 The density function of the reverse-triangle distribution is

fλ0
(λ) =

{
−λ/λ̂2

0
+ λ0/λ̂2

0
if λ0 − λ̂0 ≤ λ ≤ λ0,

λ/λ̂2

0
− λ0/λ̂2

0
if λ0 ≤ λ ≤ λ0 + λ̂0.
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Fig. 1. Empirical estimates of P
[
V ∗

λ0
(0) ≥ V ∗

R(0)
]

characterized the performance of the robust formulation
probabilistically. Extending the results of this paper to an
infinite horizon average cost MDP and to an approximate
MDP will be considered in the future.

REFERENCES

A. Ben-Tal and A. Nemirovski. Robust convex optimiza-
tion. Mathematics of Operations Research, 23(4):769–
805, 1998.

D. P. Bertsekas. Dynamic Programming and Optimal
Control, volume 1. Athena Scientific, Belmont, 3rd
edition, 2005.

D. P. Bertsekas. Dynamic Programming and Optimal
Control, volume 2. Athena Scientific, Belmont, 3rd
edition, 2007.

D. Bertsimas and M. Sim. The price of robustness.
Operations Research, 52(1):35–53, 2004.

G. Iyengar. Robust dynamic programming. Mathematics
of Operations Research, 30(2):257–280, 2005.

A. Nilim and L. El Ghaoui. Robust control of Markov
decision processes with uncertain transition matrices.
Operations Research, 53(5):780–798, 2005.

I. Ch. Paschalidis and S.-C. Kang. Robust linear optimiza-
tion: On the benefits of distributional information and
applications in inventory control. In Proceedings of the
44th IEEE Conference on Decision and Control, pages
4416–4421, Seville, Spain, 2005.

I. Ch. Paschalidis and S.-C. Kang. On the benefits of
distributional information in robust linear optimization.
In Proceedings of the 5th IFAC Symposium on Robust
Control Design, Toulouse, France, 2006.

I. Ch. Paschalidis and J. N. Tsitsiklis. Congestion–
dependent pricing of network services. IEEE/ACM
Transactions on Networking, 8(2):171–184, 2000.

M. L. Puterman. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. John Wiley & Sons,
New York, 1994.

J. K. Satia and R. E. Lave. Markovian decision processes
with uncertain transition probabilities. Operations Re-
search, 21(3):728–740, 1973.

C. C. White and H. K. Eldeib. Markov decision processes
with imprecise transition probabilities. Operations Re-
search, 42(4):739–749, 1994.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

413


