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Abstract: This paper deals with temporal enzyme distribution in the activation of biochemical
pathways. Pathway activation arises when production of a certain biomolecule is required due
to changing environmental conditions. Under the premise that biological systems have been
optimized through evolutionary processes, a biologically meaningful optimal control problem
is posed. In this setup, the enzyme concentrations are assumed to be time dependent and
constrained by a limited overall enzyme production capacity, while the optimization criterion
accounts for both time and resource usage. Using geometric arguments we establish the bang-
bang nature of the solution and reveal that each reaction must be sequentially activated in the
same order as they appear in the pathway. The results hold for a broad range of enzyme dynamics
which includes, but is not limited to, Mass Action, Michaelis-Menten and Hill Equation kinetics.

Keywords: Biological systems; biochemical reactions; reaction kinetics; metabolic network;
optimal control

1. INTRODUCTION

Metabolic networks consist of pathways of biochemical re-
actions which consume and produce required biomolecules.
Pathway performance depends on network structure and
the kinetics of the enzymes which catalyze each interaction
(Heinrich and Schuster, 1996), leading to diverse dynamic
behaviors in terms of stability, steady state and transient
response. Most cellular processes rely on the appropriate
operation of some set of pathways and so their behaviour
underpins functional requirements for cellular operation.
It has been proposed that metabolic dynamics play a
significant role in cell fitness, and so metabolic system
design has been optimized through evolutionary processes
(Heinrich et al., 1991).

In this paper we address the mechanism responsible for
the distribution of enzyme concentrations in a metabolic
pathway in such a way that a meaningful optimality
criterion is satisfied. Previous studies have tackled this
problem by considering a number of objective functions,
e.g., flux optimization (Heinrich et al., 1991; Heinrich
and Klipp, 1996; Holzhütter, 2004), minimization of to-
tal enzyme concentration (Klipp and Heinrich, 1999) and
maximization of growth rate (Bilu et al., 2006). All these
works focus on the steady state properties of the pathway
and limit the analysis by considering constant enzyme
concentrations. Nonetheless, the temporal distribution of
the enzyme concentrations may have a critical impact on
the pathway behavior. Well defined hierarchical temporal
patterns have been observed in enzyme expression levels
in amino acid (Zaslaver et al., 2004) and E. coli flag-
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ella biosynthesis (Kalir et al., 2001). In addition, certain
metabolic pathways are naturally at rest and become ac-
tive under changes in external conditions or when cer-
tain key biomolecules are required. In cases where the
cellular response impacts fitness, we may presume that
the activation of these pathways will occur as quickly as
possible. Since the cell has a limited biosynthetic capacity
there must be a mechanism that accounts for appropriate
enzyme allocation over the activation period.

Time dependent optimal enzyme profiles have been consid-
ered in recent papers (Klipp et al., 2002; Zaslaver et al.,
2004; Oyarzún et al., 2007) considering the case of un-
branched pathways. Though using different approaches, all
these works conclude that sequential behaviors, such as the
one experimentally shown in (Zaslaver et al., 2004), can be
rationalized by optimality principles. The main drawback
behind these results lies in their lack of generality, either
because only a particular case is solved (Zaslaver et al.,
2004), or because simple (and often unrealistic) enzyme
kinetics are assumed (Klipp et al., 2002; Oyarzún et al.,
2007).

As in (Oyarzún et al., 2007), the motivation for this
work is the observation that the problem dealt with in
(Klipp et al., 2002) can be naturally posed in terms of
classical optimal control (Pontryagin et al., 1962). Here
we formulate a similar problem in a standard control
theoretic framework and, using a cost functional that
accounts for both time and enzyme usage, we extend the
results of (Oyarzún et al., 2007) in three directions: (a) the
developed framework allows mass exchange between the
pathway and its environment; (b) the results show that the
reactions must be fully activated one at a time, following
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the same sequence as they appear in the pathway; (c)
the derived qualitative behavior is valid for a broad class
of enzyme kinetics that includes, but is not restricted
to, the common Mass Action, Michaelis-Menten and Hill
Equation kinetics (Cornish-Bowden, 2004).

The main theoretical tool used throughout this paper
is Pontryagin’s Minimum Principle (PMP) (Pontryagin
et al., 1962). Together with simple geometric arguments,
the PMP provides qualitative information regarding the
bang-bang form of the optimal solution and the sequence
in which the activations must be performed. We emphasize
that in this paper we do not attempt to obtain a complete
solution of the optimization problem, but rather we aim at
deriving qualitative insights into the solution that extend
and are consistent with the previous attempts to explain
the sequential behavior seen in (Zaslaver et al., 2004).
Similarly, it must be stressed that the approach taken in
this paper should not be confused with a time-optimal
control design problem, since our idea is to rigorously ex-
plain a behavior that is already present in some biological
systems. Besides the derivation of the main results, this
paper intends to set a bridge between well known results
pertaining to control theory and the systems theoretical
analysis of biological systems, an approach that is recently
emerging as a cornerstone in the systems biology field.

2. PRELIMINARIES

In this section, we briefly state the main results of optimal
control theory developed by Pontryagin and co-workers
(Pontryagin et al., 1962). We are interested in dynamical
systems of the form

ẋ(t) = f (x(t), u(t)) , (1)

x(0) ∈ R
n, (2)

where x(t) ∈ R
n is the state vector, u(t) ∈ R

p is the
control input vector, and f (x(t), u(t)) is a continuously
differentiable function. Suppose that the control objective
is to drive the state x(t) from x(0) to a final condition
x(tf ) ∈ S, where S ⊆ R

n. We denote the set of admissible
values for u(t) as U , and let MU be the set of piece-wise
continuous functions u : [0, tf ) → U . The objective is then
to determine an optimal control input, u∗(·), such that

u∗(·) = arg min
u(·)∈MU

J , (3)

where the target cost functional is

J = q (x(tf )) +

∫ tf

0

g (x(t), u(t)) dt. (4)

Define the Hamiltonian as

H (x(t), u(t), p(t)) = g (x(t), u(t)) + p(t)T f (x(t), u(t)) ,
(5)

where the vector p(t) ∈ R
n is the system’s co-state. The

PMP gives the following set of necessary conditions for
optimality: if an optimal u∗(·) exists, then there exist
nontrivial trajectories x∗(·) and p∗(·) such that:

(a) The set of differential equations

ẋ∗(t) =
∂H (x∗(t), u∗(t), p∗(t))

∂p
, (6)

ṗ∗(t) = −
∂H (x∗(t), u∗(t), p∗(t))

∂x
, (7)

is satisfied subject to the boundary conditions x∗(0) =
x(0) and x∗(tf ) ∈ S.

(b) The Hamiltonian is minimized by the optimal control
input u∗(t) for all t ∈ [0, tf ], i.e.,

H (x∗(t), u∗(t), p∗(t)) = min
u(t)∈U

H (x∗(t), u(t), p∗(t)) .

(8)

(c) The Hamiltonian for the optimal control input is zero
for all t ∈ [0, tf ], that is,

H (x∗(t), u∗(t), p∗(t)) = 0, ∀ t ∈ [0, tf ] (9)

(d) The costate satisfies the terminal condition p∗(tf ) ∈
S⊥, where S⊥ is orthogonal to S at x(tf ).

3. PROBLEM FORMULATION

3.1 General setup

We deal with unbranched metabolic pathways as depicted
in Fig. 1, where x0 denotes the concentration of substrate
feeding the pathway, xi is the concentration of the ith
intermediate metabolite and vi is the chemical rate char-
acterizing the ith reaction. In general, we assume that
vi(t) = vi (xi(t), ui(t)), where ui(t) is the concentration
of the enzyme catalyzing the ith reaction.

x0 x1 xn· · ·
v1 vn−1v0 vn

Fig. 1. Unbranched metabolic pathway.

Following established techniques for analyzing metabolic
pathways, the substrate x0 is assumed to change in a
time scale that is considerably slower than the pathway
in which we are interested and therefore it is considered as
a constant in our analysis.

Each rate law vi characterizes the kinetic properties of one
of the enzymes catalyzing the reactions in the pathway.
These are typically nonlinear in the metabolite concen-
tration xi, so a general analysis is often not tractable.
However the results presented in this paper hold for a fairly
broad class of enzyme kinetics, namely those satisfying the
following assumptions.

Assumption 1.

1A Each rate law is linear in the enzyme concentration,
i.e., they can be written as

vi(xi(t), ui(t)) = wi(xi(t))ui(t), ∀ i = 0, 1, . . . , n,
(10)

where wi(xi(t)) does not depend on ui(t).
1B It holds

wi(0) = 0, ∀ i = 0, 1, . . . , n, (11)

dwi

dxi

> 0, ∀xi ∈ (0,∞) , ∀ i = 0, 1, . . . , n, (12)

Assumption 1A is satisfied by most enzyme kinetic models
(Cornish-Bowden, 2004), while (11) in Assumption 1B is
trivially satisfied since a nonzero concentration xi(t) is re-
quired for reaction i to occur. Equation (12) states no more
that, for a constant enzyme concentration, an increase
in substrate xi yields an increase in the rate, possibly
reaching a saturation state when xi grows unbounded.
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Therefore, Assumption 1 is satisfied by a broad class
of enzyme dynamics which includes, in particular, Mass
Action, Michaelis-Menten, and Hill Equation kinetics.

The ODE model for the pathway in Fig. 1 is given by
conservation of mass as

ẋi(t) = vi−1(t) − vi(t), ∀ i = 1, 2, . . . , n, (13)

To account for the positivity of the enzyme concentrations
and the limited total enzyme availability, we will impose
the constraint u(t) ∈ U , where U is a simplex in R

n+1

given by

U :











n
∑

i=0

ui ≤ ET

ui ≥ 0, ∀i = 0, 1, . . . , n.

(14)

For future reference we define the state, control, and flux
vectors as

x(t) = [x1(t) x2(t) · · · xn(t)]
T

, (15)

u(t) = [u0(t) u1(t) · · · un(t)]
T

, (16)

v(t) = [v0(t) v1(t) · · · vn(t)]
T

. (17)

3.2 Optimal control problem

Assuming that the pathway is initially at rest, i.e. xi(0) =
0, ∀i = 1, 2, . . . , n, we aim at obtaining enzyme temporal
profiles that in the time interval [0, tf ) drive the pathway
to a steady state characterized by a prescribed constant
flux V ∈ R+. From Fig. 1 and (13) this implies

vi(t) = V, ∀ t ≥ tf , ∀ i = 0, 1, . . . , n. (18)

As is clear from (12), each vi can (and usually does)
saturate to some upper bound, so in the sequel we will
assume that the target final flux V is consistent with
those upper bounds. The enzymes comprised in u(t) should
minimize a measure of the time and resource usage during
the pathway activation. To that end we define the cost
functional

J =

∫ tf

0

(

1 + αT u(t)
)

dt, (19)

where the weight α ∈ R
n+1 is entry wise nonnegative.

The positivity of u(t) implies that the minimization of
J implies a combined optimization of: (i) the time taken
to reach the new steady state and, (ii) a measure of the
energy demanded by the enzyme usage. Regardless the
result given by the optimization for t ∈ [0, tf ), we must
guarantee that the steady state flux V is achieved for
t ≥ tf , which from (10) and (18) implies that

ui(t) =
V

wi(t
−

f )
, ∀t ≥ tf , ∀i = 0, 1, . . . , n. (20)

Note that (20) specifies the constant enzyme levels needed
after t = tf in order to reach the target steady state flux V .
It should be stressed that the optimization is performed
over the open interval [0, tf ) so that the enzyme levels
in (20) are not significant to the optimization. This also
implies that the terminal state for the optimization prob-
lem is defined by x(t−f ) = limδ→0 x(tf − δ), δ > 0. The

continuity of x(t) implies that the value of x(t−f ) must
be consistent with the prescribed steady state flux V and

the input constraints defined in (14), which by using (20)
implies that the final state must belong to the set

S :

n
∑

i=0

V

wi(xi(t
−

f ))
≤ ET , (21)

In summary, the optimal control problem can be stated as
follows.

Problem 2. Given the system (13) with the initial and
terminal conditions

x(0) = 0, (22)

lim
δ→0

x(tf − δ) ∈ S, δ > 0, (23)

where S is the set (21) and V ∈ R+ is a feasible flux, find

u(·)∗ = arg min
u(·)∈MU

J , (24)

where U and J are defined in (14) and (19) respectively.

4. PROPERTIES OF THE OPTIMAL SOLUTION

Solving the boundary value problem (BVP) in (6) and
(7) can be a difficult task. In this section we derive some
properties of the optimal solution without solving the
BVP, but rather by using geometric arguments together
with (8) and (9). The key elements in our derivations are
the linearity of the Hamiltonian in the control variables
and the geometry of the feasible region U .

Referring to (5), (10), and (13), the Hamiltonian is given
by

H (x(t), u(t), p(t)) =

1 + αT u(t) +

n
∑

i=1

pi(t) (wi−1(t)ui−1(t) − wiui(t)) , (25)

= 1 +

n
∑

i=0

hi(t)ui(t), (26)

where the function hi(t) is called the ith switching function
and, in general, depends on the concentration vector x(t),
the substrate x0 and the co-state vector p(t). The main
result of this paper is presented next.

Theorem 3. The solution to Problem 2 is unique and given
by

u∗
i (t) =

{

ET , ∀ t ∈ Ti

0, ∀ t /∈ Ti
, (27)

where {T0, T1, . . . , Tn−1} is a partition of the interval
[0, tf ) such that T0 = [0, t0 ) and Ti = [ti−1, ti ) , ∀ i =
1, 2, . . . , n, with ti < tj , ∀ i < j and tn−1 = tf .

The proof appears in the Appendix.

The result of Theorem 3 reflects that considerable informa-
tion regarding the solution to Problem 2 can be obtained
without the need of solving the BVP arising from applying
the PMP. The metabolic pathways under consideration
can exhibit nonlinear dynamics, leading to a quite involved
form of the BVP and hence considerably complicating its
solution. Thus, the information provided by Theorem 3 is
a convenient way to overcome the difficulties introduced
by the BVP and still be able to identify its qualitative
behavior.

Moreover, this characterization of the solution makes
the computation of the optimal input much easier, since
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one needs only to optimize over the n switching times
{t0, t1, . . . , tn−1}, rather than over the whole class of
admissible inputs.

Equation (27) states that the optimal enzyme profiles
are of bang-bang type and are composed of switching
sequences between 0 and the maximum level ET . This
clearly resembles the nature of solutions in classical time-
optimal control (Pontryagin et al., 1962) and has inter-
esting implications in the context of metabolic pathway
activation. In fact, from (27) we first note that optimizing
the pathway activation implies that for any time instant,
all the available enzyme must be used, thus demanding full
enzyme biosynthetic activity. Moreover, the optimization
enforces activation of only one reaction at a time and
most importantly, the sequence of activations follows a well
defined temporal pattern. The optimal activation sequence
is {v0, v1, . . . , vn−1}, a pattern that exactly matches the
ordering in which the reactions appear in the pathway.
This phenomenon has been described in (Klipp et al.,
2002; Zaslaver et al., 2004) for the special case of specific
pathway lengths and reaction kinetics (Mass Action in
the first case and Michelis-Menten with transcriptional
regulation in the latter). Since the requirements imposed
by Assumption 1 hold for a broad class of enzyme kinetics,
Theorem 3 extends the finding of sequential behavior to a
more general class of metabolic pathways than previously
considered. In addition, we note that reaction vn does not
appear in the optimal sequence, since its activation is not
required to drive the pathway to the final state, but only to
achieve the target chemical flux V after the time interval
where the optimization is performed. The sketch in Fig. 4
indicates shows a qualitative plot of the optimal solutions
(with n = 3, ET = 1 and tf = 8.5). It should be noticed
that for t ≥ tf the optimal enzyme profiles are obtained
directly from (20).

The generality of the results suggest that the aforemen-
tioned sequential behavior is a feature underlying time-
optimal activation of unbranched pathways rather than a
property arising from studying specific case. The activa-
tion sequence depends essentially on the time courses of
the switching functions and, as can be checked from (A.3)
in Appendix A, the ith reaction is activated whenever
the corresponding switching function hi(t) is the minimum
of the set {h0(t), h1(t), . . . , hn(t)}. Further consideration
reveals that the sequential behavior is a consequence of
both pathway structure and a common property shared
by the enzyme kinetics. From an intuitive point of view,
the “pipeline” structure of the pathway implies the ith
metabolite cannot be produced unless the upstream por-
tion of the pathway has already been built up. Moreover,
the monotonicity of the chemical rates, as expressed by
(12) in Assumption 1B, precludes the possibility of having
to activate an upstream reaction after the ith has already
been activated, a fact that arises from (A.16) and (A.17).
This analysis suggests that the described sequential behav-
ior might be indeed a property underpinning time-optimal
unbranched pathway activation.

The form of the optimal enzyme profiles reveals an in-
herent regulatory mechanism that allocates enzyme con-
centrations to achieve optimality. In cellular systems this
regulation is performed at a transcriptional level through
the regulation of the transcription factors that trigger the

expression of the required enzymes. However, so far we
have excluded from our analysis any sort of metabolite-
level regulatory mechanisms, which in some cases are cru-
cial to perform biological functions. This issue is briefly
dealt with in the next section for a particular case.
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Fig. 2. Qualitative sketch of optimal solution for n = 3,
ET = 1 and tf = 8.5.

5. ABOUT FEEDBACK REGULATED PATHWAYS

On the metabolic scale, regulation is often implemented
through allosteric enzymes, which display a distinctive
kinetic behavior (Cornish-Bowden, 2004). The key idea
is that the catalytic activity of an allosteric enzyme is
dependent not only on its substrate, but also on another
metabolite in the pathway. To illustrate this situation, let
us consider an unbranched pathway as the one depicted in
Fig. 5, which has an inhibitory feedback loop from x3 to
reaction v0.

v1 v2v0
x2x1x0 x3

v3

Fig. 3. Pathway with an allosteric feedback loop.

In this case we extend the definition of the reaction rate
v0 so that that v0(t) = v0 (x0(t), x3(t), u0(t)). A widely
accepted model for allosteric kinetics (Monod et al., 1965)
is given by

v0 =
kx0/Ks (1 + x0/Ks)

n−1

(1 + x0/Ks)
n

+ L (1 + x3/KI)
n u0, (28)

where the parameters (k, n, L, Ks, KI) are characteristic
for each allosteric enzyme.

It can be seen that, though v0 is nonlinear in both x0 and
x3, it is still linear in u0. A close look at the proof presented
in Appendix A reveals that in this case the analysis
remains unchanged and therefore, the results presented
in the previous sections still hold in this more complex
scenario. From a control theoretic viewpoint, this is an
interesting result since it states that, in this particular
case, the form of the optimal solution is invariant under
allosteric feedback of this kind.

On the other hand, since the feedback modifies the steady
state concentrations, from a biological viewpoint this find-
ing suggests that this sort of feedback inhibition may have
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a much more significant role in regulating steady state be-
havior than in regulating the dynamic behavior of pathway
activation. This implication has not been corroborated
experimentally.

6. CONCLUDING REMARKS

Using geometric properties of the cost functional and the
feasible set of control inputs, we have derived qualita-
tive properties behind the optimal activation of metabolic
pathways. The main strength of the results lies on the
fact that mild assumptions on the reaction kinetics are
required, thus encompassing a broad family of monomolec-
ular kinetics. Interesting extensions would be to include
enzyme production dynamics, transcriptional regulation
and the study of multimolecular reactions.
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Appendix A. PROOF OF THEOREM 3

Denote the set of vertexes of U as V = {e0, e1, . . . , en} ∪
{0}, where ei has ET in its (i+1)th entry and 0 elsewhere.
Similarly, the set of n−dimension faces of U is defined as
F = {F0, F1, . . . , Fn}∪{P}, where Fi and P are the faces
defined by the hyperplanes Fi = {u(t) ∈ U : ui(t) = 0}
and P = {u(t) ∈ U :

∑n

i=0 ui(t) = ET }, respectively. We
notice from (26) that H (x(t), u(t), p(t)) is a linear function
defined over the convex polyhedron U . Therefore, from
(8) it follows that the optimal control is located in the
boundary of U for all t ∈ [0, tf ) and, moreover, it holds
that u∗(t) ∈ V , ∀t ∈ [0, tf ). Let u∗1(t) be the optimal
solution for t ∈ [ta, tb] such that u∗1(t) is located at vertex
ei. If there exists another optimal solution u∗2(t) 6= u∗1(t)
for t ∈ [ta, tb] such that u∗2(t) ∈ Fi \ V , then the linearity
of H implies that any point in Fi is also optimal for t ∈
[ta, tb]. In particular, since 0 ∈ Fi, ∀i, this implies that the
origin is also optimal. However, from (9) it holds that H
must vanish along the optimal trajectory, which together
with (26) makes clear that u∗(t) 6= 0, ∀t ∈ [0, tf ), thus
contradicting the optimality of the origin. Hence it follows
that u∗(t) /∈ Fi \V , ∀i, so that u∗(t) ∈ P and therefore the
optimal solution satisfies

n
∑

i=0

u∗
i (t) = ET . (A.1)

Let {T0, T1, . . . , Tq} be a partition of the interval [0, tf )
such that T0 = [0, t0 ) and Ti = [ti−1, ti ) , ∀ i =
1, 2, . . . , q, with ti < tj , ∀ i < j and tq = tf . Let
U∗

ℓ = {ui} , i ∈ Iℓ, be the set of enzymes in the optimal
solution that are active in the interval Tℓ, that is, the
optimal control u∗(t) lies in the convex hull of vertexes
{ej} , j ∈ Iℓ, ∀ t ∈ Tℓ. This implies that each control
satisfies ui(t) > 0, ∀ t ∈ Tℓ, ∀ i ∈ Iℓ and they belong to
the surface

∑

i∈Iℓ

ui(t) = ET . (A.2)

We consider the partition {T0, T1, . . . , Tq} in such a way
that U∗

i 6= U∗
i+1, ∀ i = 0, 1, . . . , q − 1. By using (9) and

(26) it follows that for all t ∈ [0, tf ) there exists hi(t) < 0
for some i ∈ {0, 1, . . . , n}, which together with (8) implies
that

hj(t) = min {h0(t), h1(t), . . . , hn(t)} , ∀ j ∈ Iℓ, ∀ t ∈ Tℓ.
(A.3)

In addition, from combining (9), (26), (A.2), and (A.3) it
follows that the switching function corresponding to each
active enzyme is given by

hi(t) = −
1

ET

< 0, ∀ i ∈ Iℓ, ∀ t ∈ Tℓ. (A.4)

In this setup, the proof follows by showing that

U∗
ℓ = {uℓ} , ∀ ℓ = 0, 1, . . . , q, (A.5)

q = n − 1. (A.6)

From (25) and (26) it can be shown that the ith switching
function is given by
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hi(t) = αi + (pi+1(t) − pi(t))wi(t), ∀ i = 0, 1, . . . , n,
(A.7)

with p0(t) = 0 and pn+1(t) = 0. Similarly, from (7), (13),
and (26) we derive the general form of the ODE for the
ith co-state

ṗi(t) = (pi(t) − pi+1(t))
∂wi

∂xi

ui(t), ∀ i = 1, 2, . . . , n.

(A.8)

We note from (11) and (21) that x(t−f ) 6= 0, which using

the fact that x(0) = 0 implies that each ui(t) must be
active for some nonempty interval, i.e. for each ui, i =
0, 1, . . . , n there exists an interval Ri 6= ∅ such that

ui(t) 6= 0, ∀ t ∈ Ri. (A.9)

The proof follows using an inductive procedure based on
the following result.

Fact 4. Consider interval Tℓ, ℓ ≥ 2, and assume that

xi(tℓ) = 0, ∀ i > ℓ + 1, (A.10)

U∗
j = {uj} , ∀ j ≤ ℓ. (A.11)

Then,

U∗
ℓ+1 = {uℓ+1} . (A.12)

Proof: From (13), (A.7), and (A.8) it can be shown that

ḣj(t) = (ṗj+1(t) − ṗj(t))wj(t)+

(pj+1(t) − pj(t))
∂wj

∂xj

ẋj(t), ∀ j < ℓ, ∀ t ∈ Tℓ,

= (pj+1(t) − pj+2(t))
∂wj+1

∂xj+1
wj(t)uj+1(t)−

(pj(t) − pj+1(t))
∂wj

∂xj

wj−1(t)×

uj−1(t), ∀ j ≤ n, ∀ t ∈ Tℓ, . (A.13)

Equation (A.13) shows that the only inputs that affect

ḣj(t), ∀ t ∈ Tℓ are uj−1(t) and uj+1(t). Therefore, since
uj(t) = 0, ∀ j 6= ℓ, ∀ t ∈ Tℓ it follows that

ḣj(t) = 0, ∀ j < ℓ − 1, ∀ j = ℓ, ∀ t ∈ Tℓ. (A.14)

On the other hand, if j = ℓ−1 then uj+1(t) = ET , ∀ t ∈ Tℓ

and uj−1(t) = 0, which after substituting in (A.13) yields

ḣℓ−1(t) = (pℓ(t) − pℓ+1(t))
∂wℓ

∂xℓ

wℓ−1(t)ET , ∀t ∈ Tℓ.

(A.15)

Combining (A.15) and (A.7) with i = ℓ leads to

ḣℓ−1(t) =

(

αℓ − hℓ(t)

wℓ(t)

)

∂wℓ

∂xℓ

wℓ−1(t)ET , ∀t ∈ Tℓ. (A.16)

Equation (A.7) with i = ℓ implies that wℓ(t) > 0, ∀ t ∈ Tℓ,
since otherwise hℓ(t) = αℓ ≥ 0 for some t ∈ Tℓ and

(A.4) cannot be satisfied. This guarantees that ḣℓ−1(t)
in (A.16) is well defined in the interval Tℓ. Similarly,
(A.7) and (A.11) imply that wℓ−1(t) > 0, ∀ t ∈ Tℓ−1 and
ẋℓ−1(t) = 0, ∀ t ∈ Tℓ, which means that wℓ−1(t) is constant
in Tℓ so that wℓ−1(t) > 0, ∀ t ∈ Tℓ. Using (12), (A.4) and
αℓ ≥ 0 in (A.16) yields

ḣℓ−1(t) > 0, ∀ t ∈ Tℓ. (A.17)

Therefore, combining (A.11) with (A.4), (A.14), and
(A.17) implies that the trajectory of the jth switching
function satisfies

hj(t) = −
1

ET

, ∀ j ≤ ℓ, ∀ t ∈ Tj, (A.18)

ḣj(t) > 0, ∀ j < ℓ, ∀ t ∈ Tj+1, (A.19)

ḣj(t) = 0, ∀ j < ℓ, ∀ tj+1 < t < tℓ. (A.20)

Suppose that uj ∈ U∗
ℓ+1, j < ℓ, then in order to satisfy

(A.4), (A.18)-(A.20) imply that hj(t) must be discontin-
uous at t = tℓ, which is not possible since both x(t) and
p(t) are continuous. Hence, it follows that

uj /∈ U∗
ℓ+1, ∀ j < ℓ. (A.21)

For the case when j = ℓ, suppose that uℓ ∈ U∗
ℓ+1 holds,

then in particular vertex eℓ is optimal ∀ t ∈ Tℓ+1, which
implies that U∗

ℓ+1 = U∗
ℓ , contradicting the fact that U∗

i 6=
U∗

i+1, ∀ i = 0, 1 . . . , q − 1, and therefore we have that

uℓ /∈ U∗
ℓ+1. (A.22)

Now suppose there exists uj ∈ U∗
ℓ+1, j > ℓ + 1, then

the linearity of H (x(t), p(t), u(t)) and U implies that in
particular vertex ej is optimal ∀ t ∈ Tℓ+1, which implies
that

ẋi(t) = 0, ∀ i 6= {j, j + 1} . (A.23)

From (A.10) we have that xi(tℓ) = 0, ∀ i > ℓ + 1 and
hence using (A.23) we conclude that xi(t) = 0, ∀ i > ℓ +
1, ∀ t ∈ Tℓ+1, but in view of (A.7) and (11) in Assumption
1B, this implies that hi(t) = αi ≥ 0, ∀ i > ℓ + 1, which
contradicts (A.4) and therefore

uj /∈ U∗
ℓ+1, ∀ j > ℓ + 1. (A.24)

Therefore, (A.12) follows from combining (A.21), (A.22)
and (A.24) with (A.9). 2

Consider the interval T0 and suppose there exists uj ∈
U∗

0 , j > 0. Then in particular vertex ej is optimal ∀ t ∈ T0,
which implies that ẋi(t) = 0, ∀i 6= j, i 6= j + 1. But since
x(0) = 0 it follows that x(t) = 0, ∀ t ∈ T0, which from
(11) and (A.7), implies that hi(t) = αi ≥ 0, ∀ i > 0, which
contradicts (A.4) and therefore we conclude that

U∗
0 = {u0} . (A.25)

Now consider interval T1 and suppose u0 ∈ U∗
1 . Then in

particular vertex e0 is optimal ∀ t ∈ T1, which implies
that U∗

1 = U∗
0 , contradicting our hypothesis that U∗

i 6=
U∗

i+1, ∀ i = 0, 1 . . . , q. Furthermore, suppose there exists
uj ∈ U∗

1 , j > 1, then in particular vertex ej is optimal
∀ t ∈ T1, which implies that ẋi(t) = 0, ∀i 6= j, i 6= j + 1.
From (A.25) we have that xi(t0) = 0, ∀ i > 1 and hence,
we conclude xi(t) = 0, ∀ i > 1, ∀ t ∈ T1. From (11) and
(A.7), this implies that hi(t) = αi ≥ 0, ∀ i > 1, which
contradicts (A.4) and hence uj /∈ U∗

1 , ∀ j > 1 and

U∗
1 = {u1} . (A.26)

Eqs. (A.25) and (A.26) imply that xi(t1) = 0, ∀ i > 1 and
therefore, we can inductively use Fact 4, leading to the
desired result (A.5). Consider interval Tn, so that from
(A.5) it holds that U∗

n = {un}. Then from (A.3) it follows
that hn(t) = min {h0(t), h1(t), . . . , hn(t)} , ∀ t ∈ Tn, but
from (A.18)-(A.20) we have that it does not exist hi(t), i 6=
n such that hi(t) ≤ hn(t) for t ≥ tn−1, thus implying
that ẋn(t) < 0, ∀ t ≥ tn−1. This in turn means that
limt→∞ xn(t) = 0 and therefore the terminal condition
(21) fails and tf → ∞, which leads us to the conclusion
that un(t) is never active and (A.6) follows. 2
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