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1 Introduction

It is a well known fact that a switched system is not nec-
essarily (Lyapunov) stable provided that the individual sys-
tems (without switches) are stable; conversely, a set of unsta-
ble systems may be rendered stable via proper switching –cf.
(Liberzon 2003). For instance, commonly used assumptions
include that switching is sufficiently slow –that the switching
signal has the so-called dwell-time. Indeed, it may be shown
that under a sufficiently large constant dwell-time stability (in
various senses) of the individual subsystems implies a simi-
lar property for the switched system –cf. (Morse 1995, Hes-
panha et al. 2003, Hespanha and Morse 1999, Liberzon 1999,
Liberzon 2003, Vu et al. 2005, Xie et al. 2001). The dwell-time
assumption was weakened in (Hespanha and Morse 1999, Vu
et al. 2005) by introducing the average dwell-time assumption;
it is supposed that over a sufficiently large interval, a dwell-
time spaced switch occurs yet, locally (in time) it is possi-
ble to switch from one subsystem to another at any desired
rate. See also the recent article (Hespanha and Teel 2005)
on input-output stability. Further, state dependent dwell-time
was introduced in (Persis et al. 2003); this consists in making
the length of time intervals between switches a function of the
current system state, which in certain cases, leads to a more
efficient switching rule.

The contribution of this paper is twofold: firstly, we con-
sider uniform output stability –cf. (Fradkov et al. 1999,
Rumyantsev and Oziraner 1987, Sontag and Wang 1999, Son-
tag and Wang 2001, Vorotnikov 1998) as opposed to classi-
cal Lyapunov stability; secondly, we relax the assumption on
constant dwell-time to ensure global stability for the switched
system, based on a uniform (in the initial conditions) stability
property imposed on each subsystem. That is, we show that,
in general, dwell-time shall depend on initial conditions. In
the same context, we analyse output stability for systems with
input disturbances and establish that dwell-time depends on
the “amplitude” of such disturbances. Finally, we relax such
conditions for exponentially stable systems.

2 Preliminaries

Consider a family of systems

ẋ = fq(x,d), y = h(x), q ∈ I, (1)

where x ∈ Rn, d ∈ Rm is a disturbance, y ∈ Rp is the output
of interest and q is an index, element of I ⊂ Z>0. We assume

that fq : Rn+l → Rn, h : Rn → Rp are continuous and locally
Lipschitz and that d : R+ → Rm is Lebesgue measurable and

locally essentially bounded:

||d|| [ 0,t) = ess sup { |d(s)|, s ∈ [ 0, t) } .

We denote by MRm the set of globally essentially bounded
functions, i.e., that satisfy ||d‖ := ‖d‖[ 0,+∞) < ∞.

A continuous function σ : R+ → R+ is of class K if it is
strictly increasing and σ ( 0) = 0; it is of class K∞ if it is also
radially unbounded; a continuous function β : R+×R+ → R+

is of class KL, if β(·, t) it is of class K for each t and β(s, ·) is
strictly decreasing to zero for each s.

Let i : R+ → I be piecewise constant and right-continuous,
the family of systems (1) defines the following switched system

ẋ = fi(t)(x,d), y = h(x) . (2)

Following (Morse 1995, Hespanha and Morse 1999, Vu et
al. 2005, Persis et al. 2003) we recall the definition of dwell-
time.

Definition 1 The switching signal i(t) is said to have aver-
age dwell-time 0 < τD < +∞ if between switches and for any
t2 ≥ t1 ≥ 0we have, for any integer 1 ≤ N0 < +∞,

N[ t1,t2) ≤ N0 +
t2 − t1

τD
,

where N[ t1,t2) is the number of switches. If the interval be-
tween any two switches is not less than τDthe switching signal
i has the dwell-time property and N0 = 1. The switching signal
i(t) is said to have state-dependent dwell-time τD : Rn → R+

if, for any x ∈ Rn and some δ ∈ K, the estimate 0 < τD(x) ≤
δ(1 + |x|) holds.

The system (2) where i has average dwell-time, state-
dependent dwell-time or constant dwell-time, has a finite num-
ber of switches on any finite-time interval and its solution is
continuous and defined, at least, locally.

The switched system, for a switching signal i(t), is called
forward complete if, for all initial conditions x0 ∈ Rn and all
inputs d ∈ MRm , the solutions x(t,x0,d) of the switched sys-
tem (2) are defined for all t ≥ 0. We denote the output trajec-
tories by y(t,x0,d) = h(x(t,x0,d)) and, on occasions, we use
the short-hand notation x(t) = x(t,x0, d), y(t) = y(t, x0, d)
and y0 := y(0, x0, 0)). Furthermore, we recall the follow-
ing two definitions from (Sontag and Wang 1999, Sontag and
Wang 2001).

Definition 2 We say that for some fixed q ∈ I the forward
complete system (1) is state independent IOS (SIIOS) with re-
spect to the output y and the input d if, for all x0 ∈ Rn and
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d ∈ MRm , there exist functions β′
q ∈ KL, γ′

q ∈ K such that ,
for all t ≥ 0,

|y(t,x0, d)| ≤ β′
q(|y0)|, t) + γ′

q(||d||[ 0,t)) .

We say that the switched forward complete system (2) with
i : R+ → I is SIIOS with respect to the output y and the in-
put d if, for all x0 ∈ Rn and d ∈ MRm , there exist functions
β′ ∈ KL, γ′ ∈ K such that, for all t ≥ 0,

|y(t,x0,d)| ≤ β′(|y0|, t) + γ′(||d||[ 0,t)) .

The systems are exponentially SIIOS if β′
q(s, r) = a s e−b r or

β′(s, r) = a s e−b r for some a > 0, b > 0.

Definition 3 We say that a switched forward-complete system
(2) with i : R+ → I is IOS with respect to the output y and the
input d if for all x0 ∈ Rn and d ∈ MRm there exist functions
β ∈ KL, γ ∈ K such that , for all t ≥ 0,

|y(t,x0,d)| ≤ β(|x0|, 0) + γ(||d||[ 0,t)) .

The difference between IOS and SIIOS consists in the depen-
dence on initial conditions: for SIIOS system if initial ampli-
tude of variable y is small, then the overall amplitude of y dur-
ing transients is also “small”. For an IOS system the output
y(t), even with small initial values may have large transient val-
ues if x is “large” in norm. In contrast to this, the asymptotic
behaviour of IOS and SIIOS systems’ trajectories is similar: in
either case, and in the absence of disturbances, the trajectories
converge to the manifold {y = 0}. Consequently, in the par-
ticular case when y = x both properties boil down to the well
known input-to-state stability (ISS). Other closely connected
input-output stability properties for nonlinear dynamical sys-
tems can be found, e.g., in (Sontag and Wang 2001).

Assumption 1 For each fixed q ∈ I system from (1) is forward
complete and SIIOS with respect to output y and input d for
functions βq ∈ KL, γ ∈ K.

Note that from Definition 2 it holds that βq(s, 0) ≥ s, s ≥ 0.

3 Main Results

3.1 Uniform decrease for nonlinear stable systems

In (Xie et al. 2001) it was shown, under suitable smooth-
ness assumptions on the switching systems, that if all systems
in family (1) are ISS then the switched system (2) is also ISS,
provided that switching signal has average dwell-time τd > 0
and there exists a constant 0 < µ < 1 s.t. for all i, j ∈ I, and
all s ≥ 0,

βi(2βj(2s, τD), τD) ≤ µs. (3)

This implies that systems in I are exponentially stable:

Lemma 1 The class KL functions βi, for i ∈ I, satisfy the in-
equality (3) for all s ≥ 0 and for some constants τd > 0 and µ
(s.t. 0 < µ < 1) if and only if there exists λ (with 0 < λ < 1)
such that βi(s, t) ≤ λs for all i ∈ I. �

Proof . Sufficiency. Let λ =
√

µ/2. Assume that βi(s, t) ≤ λs
for all i ∈ I and all s ≥ 0. Then,

βi(2βj(2s, τD), τD) ≤ 2λβj(2s, τD) ≤ 4λ2s =: µs .

Necessity. We show that inequality (3) implies that, defining
λ := max{µ, 1/2}, we have, for any i ∈ I and all s ≥ 0,

βi(s, τd) ≤ λs . (4)

We proceed by reductio ad absurdum. Assume that (4) does
not hold i.e. there exist i ∈ I and s∗ ∈ R≥0 such that
βi(s∗, τd) > λs∗. Then, noting that β(·, τd) ∈ K∞ we obtain

βi(2βi(2s∗, τd), τd) > βi(2βi(s∗, τd), τd)

> βi(2λs∗, τd)

≥ β(s∗, τd) > λs∗ ≥ µs∗,

where in the third inequality we used the fact that 2λ ≥ 1.
From (3) we have βi(2βi(2s∗, τd), τd)µs∗. �

Proposition 1 Let Assumption 1 and Ineq. (4) hold. Then,
each system in (1) admits an exponential estimate for all
x0 ∈ Rn, d ∈ MRm , t ≥ 0 and q ∈ I , i.e.,

|y(t,x0,d)| ≤ λ−1βq(|y0)|, 0)e ln(λ)t/τD + Λγ(||d||[0,t)) (5)

+∞
X

k=0

λk = Λ < +∞. (6)

Proof . Let q ∈ I and t ≥ τD be arbitrary; define n as the
largest integer smaller than t/τD, denoted n = ⌊t/τD⌋. Then,
using Assumption 1 we obtain, for any t ≥ 0,

|y(t)| ≤ βq(|y0|, t) + γ(||d||[0,t)) .

Then,

|y(t)|≤ βq(|y({n − 1}τD)|, t − {n − 1}τD) + γ(||d||[{n−1}τD ,t))

≤ λ|y({n − 1}τD)| + γ(||d||[0,t))

and, for any k ∈ {1, . . . , n},

|y({n − k}τD)| ≤ βq(|y({n − k}τD)|, τD) + γ(||d||[0,t))

≤ λ|y({n − k}τD)| + γ(||d||[0,t))

Therefore,

|y(t)| ≤ λ[ βq(|y({n − 2}τD)|, τD) + γ(||d||[0,t)) ] + γ(||d||[0,t))

≤ λ2|y({n − 2}τD)| + (1 + λ)γ(||d||[0,t))

≤ λ2[ βq(|y({n − 3}τD)|, τD) + γ(||d||[0,t)) ]

+ (1 + λ)γ(||d||[0,t))

≤ λ3|y({n − 3}τD)| + (1 + λ + λ2)γ(||d||[0,t)) .

By induction we obtain

|y(t)| ≤ λn|y0| +
n−1
X

k=1

λkγ(||d||[0,t)) + γ(||d||[0,t))

≤ λn|y0| + Λγ(||d||[0,t))

≤ λ−1|y0|e ln(λ)t/τD + Λγ(||d||[0,t)) . (7)

For t ∈ [ 0, τD) it holds that

|y(t)| ≤ βq(|y0|, 0) + γ(||d||[ 0,t)) . (8)

The result follows by combining the bounds (7) and (8). �
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Remark 1 According to Lemma 8 from (Sontag 1998) (see also
Lemma A1 from (Sontag and Wang 1999) and Lemma A2 from
(Sontag and Wang 2001)) there always exists a function σq ∈ K

such that βq(s, r) ≤ σq(s)σq(e
−r)). If βq(s, r) = σq(s)σq(e−r)

for some σq ∈ K, s ≥ 0, q ∈ I and βq satisfies (4) i.e.,

σq(s) ≤ λ s/σq(e−τD), s ≥ 0 then, under the conditions of
Proposition 1 each system in the family (1) is exponentially
SIIOS for all x0 ∈ Rn, d ∈ MRm and q ∈ I :

|y(t)| ≤ |y0|/σq(e−τD) e ln(λ) t/τD + Λ γ(||d||[ 0,t)) .

Such conclusion fails for a general functions βq ∈ KL e.g.,

βq(s, r) =



s/(1 + r) if s ≤ 1 ;

s2/(1 + s r) if s > 1 ,
βq(s, 0) =



s if s ≤ 1 ;

s2 if s > 1 ,

belongs to class KL and has dwell-time τD = λ−1 − 1, but
βq(s, 0) does not possess linear grow rate condition. �

In Theorem 1 of (Xie et al. 2001) the authors of the latter im-
plicitly impose exponential stability for each system in family
(1). An attempt to overcome the requirement on exponential
stability was made in (Persis et al. 2003), where the authors
introduced state-dependent dwell-time τD : Rn → R+. A key
property to ensure its existence is local Lipschitz continuity
of functions βj with respect to the first argument, near zero.

For βj(s, r) = σ(s)σ(e−t), σ ∈ K, as considered in (Persis et
al. 2003), this condition may be formulated as

lim
s→0

σ(s)

s
< +∞.

Now, let us recast this hypothesis for family (1):

Assumption 2 For all r ≥ 0 and all j ∈ I let

lim
s→0

βj(s, r)

s
≤ c < +∞ (9)

As it follows from the next propositions such requirement
is equivalent to exponential stability of the system for any
compact set of initial conditions. For example, the system
ẋ = −x2, whose solution is x(t) = x0/(1 + x0 t) with initial
state x0 ∈ R+, is non-exponentially asymptotically stable. In
this case, β(s, r) = s/(1 + sr) and the system does not satisfy
(9) for r = +∞ and there exists no τD such that the system’s
trajectories satisfy, locally, an exponential bound.

Proposition 2 Let Assumption 2 hold then, for any R > 0 there
exists τR > 0 such that (4) holds locally for any 0 < λ < 1,
0 ≤ s ≤ R, q ∈ I and βq(s, τR) ≤ λ s.

Proof . For τ ≥ 0 consider the function

b(τ ) = sup
0≤s≤R

βq(s, τ )

s
,

which is well-defined and bounded (due to continuity of βq the
supremum exists and is finite for any ε ≤ s ≤ R, ε > 0, while
the existence of the supremum for ε → 0 is guaranteed by (9)).
It follows that

0 ≤ b(τ ) ≤ B, B = sup
0≤s≤R

βq(s, 0)

s
,

since βq(s, τ ) ≤ βq(s, 0) for any τ ≥ 0 (note also that βq(s, 0) ≤
B s for 0 ≤ s ≤ R). The function b(τ ) is decreasing; to see this,

take τ2 > τ1 ≥ 0 then, βq(s, τ2) < βq(s, τ1) and

b(τ2) − b(τ1) = sup
0≤s≤R

βq(s, τ2)

s
− sup

0≤s≤R

βq(s, τ1)

s

≤ sup
0≤s≤R

βq(s, τ2) − βq(s, τ1)

s
≤ 0 .

Assume now that function b(·) does not “decrease” to zero
then, for all τ ≥ 0 there exists δ > 0 such that b(τ ) ≥ δ and

δ ≤ lim
τ→+∞

b(τ ) = lim
τ→+∞

sup
0≤s≤R

βq(s, τ )

s

= sup
0≤s≤R

lim
τ→+∞

βq(s, τ )

s
= 0 ≤ B,

which is a contradiction, so δ = 0. Thus, for any 0 < λ < 1
there exists τR > 0 such that b(τR) ≤ λ. �

Proposition 3 For each system in (1), let Assumptions 1 and
2 hold. Then, for any R ≥ 0 and bd ≥ 0 there exist
0 < λ < 1, τR = τR(R,bd, λ) > 0 such that, for all x0 ∈ XR,
XR = {x ∈ Rn : |h(x)| ≤ R }, ‖d‖ ≤ bd and all t ≥ 0,

|y(t,x0,d)| ≤ λ−2 |y0|e ln(λ) t/τR + Λ γ(||d||[ 0,t)) .

Proof . By Assumption 1 for any q ∈ I , R ≥ 0, x0 ∈ Rn such
that |y0| ≤ R and any ‖d‖ ≤ bd we have

|y(t)| ≤ R̃, R̃ = βq(R, 0) + γ(bd) , t ≥ 0 .

As it was proved in Proposition 2, for such R̃ there exists
τR > 0 such that relation (4) holds for any solution with
|y0| ≤ R and ‖d‖ ≤ bd. Repeating the arguments of Propo-
sition 1 we obtain, for t ≥ τR, the estimate

|y(t,x0, d)| ≤ λ−1|y0| e ln(λ) t/τR + Λ γ(||d||[ 0,t)),

and, considering that βq(s, 0) ≤ B̃ s for 0 ≤ s ≤ R̃, where

B̃ = sup
0≤s≤R̃

βq(s,0)
s ) we obtain

|y(t,x0,d)| ≤ B̃|y0)| + γ(||d||[ 0,t)) ∀ t ≤ τR .

Taking λ−1 ≥ B̃ and combining the last two estimates we
obtain the desired result. �

According to the proof of Proposition 3, to calculate λ = λ(R)
and the local dwell-time constant τR = τR(R,bd, λ) for a sys-
tem q ∈ I , one can solve the equations:

sup
0≤s≤βq(R,0)+γ(bd)

βq(s, 0)

s
= λ−1,

sup
0≤s≤βq(R,0)+γ(bd)

βq(s, τR)

s
= λ.

3.2 SIIOS stability of nonlinear switched systems with
constant dwell-time

The results contained in (Xie et al. 2001) and (Persis et
al. 2003) for switched systems of the form (2) follow from
Proposition 3.
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Lemma 2 Let Assumptions 1 and 2 hold. Then, for any con-
stants R and bd > 0, any 0 < λ < 1 there exists dwell-time
τR = τR(R,bd, λ) > 0, B = B(R,bd, λ) > 0 such that the
switched system (2) is forward complete and, for all d ∈ MRm

such that ‖d‖ ≤ bd, x0 ∈ XR, XR = {x ∈ Rn : |h(x)| ≤ R },
R ∈ R+, the following bound holds:

|y(t,x0,d)| ≤ λ−1B|y0|e ln(λ)t/τR + Λ2γ(||d||[0,t)),

for all t ≥ 0 and Λ is defined in (6). �

Proof . The system (2) with dwell-time switching signal are
locally continuous on some interval [ 0, T ); indeed, T = +∞
since for each t and for some fixed q ∈ I the solutions of (2)
match those of the family (1), which is forward complete by
assumption. Let R ≥ 0 be arbitrary, then as in proof of Propo-
sition 2 for any 0 < λ < 1 there exists τ q

R = τ q
R(R,bd, λ) > 0

such that

sup
0≤s≤β̄(R+Λ2γ(bd ))+γ(bd)

βq(s, τ q
R)

s
= λ,

Bq = sup
0≤s≤β̄(R+Λ2γ(bd ))+γ(bd)

βq(s, 0)

s
≥ 1,

β̄(s) = max
q∈I

{βq(s, 0)}.

Then, for any system from (1), any x0 ∈ XR, d ∈ MRm such
that ‖d‖ ≤ bd and all t ≥ 0,

|y(t,x0,d)| ≤ λ−1Bq |y0|e ln(λ)t/τq

R + Λγ(||d||[0,t)) .

Let B = max
q∈I

{Bq } and let τR = ln(λ2/B) max
q∈I

{ τ q
R }/ ln(λ)

be the dwell-time constant then, for any q ∈ I and all t ≥ 0

|y(t,x0,d)| ≤ λ−1B|y0|e ln(λ2/B)t/τR + Λγ(||d||[0,t)) .

Let us now partition the interval [ 0, T ) into a concatenation
of subintervals whose limits are given by i(t). For simplicity
let as assume that there exists k ≥ 0 such that T = tk+1),

[ 0, T ) =
k
S

j=0
[ tj , tj+1), i(t) = i(tj) for t ∈ [ tj , tj+1) and

t0 = 0. By the dwell-time property, for all intervals [ tj , tj+1),
0 ≤ j ≤ k we have tl+1 − tl ≥ τR. Now, by assumption we
have

|y(tj+1)| ≤ λ−1|y(tj)|e ln(λ2/B)[tj+1−tj ]/τR + Λγ(||d||[tj ,tj+1))

≤ λ|y(tj)| + Λγ(||d||[0,T )) .

Further substituting the latter inequality for y(tj+1) in the
estimate for the next interval [ tj+1, tj+2) we obtain

|y(tj+2)| ≤ λ−1[λ|y(tj)| + Λγ(||d||[tj ,tj+1))]

× e ln(λ2/B)[tj+2−tj+1]/τR + Λγ(||d||[tj+1 ,tj+2))

≤ λ2|y(tj)| + (1 + λ)Λγ(||d||[0,T )).

Repeating recursively these calculations, for any arbitrary
k > 0, we obtain

|y(tj+k)| ≤ λk|y(tj)| + Λ
k

X

r=0

λrγ(||d||[0,T ))

≤ λk|y(tj)| + Λ2γ(||d||[0,T ))

≤ λ−1|y(tj)|e ln(λ)t/τR + Λ2γ(||d||[0,T )) .

We now show that |y(t)| ≤ β̄(R +Λ2 γ(bd)) + γ(bd). The
property holds for j = 0 by definition (x0 ∈ XR, Λ ≥ 1). In
view of Assumption 1 it holds for all t ∈ [ tj , tj+1) with j ≥ 1

|y(t)| ≤ β̄(|y(tj)|) + γ(||d||[ tj ,tj+1))

≤ β̄(|y(0)| + Λ2γ(||d||)) + γ(||d||),

Additionally, on each interval it holds that for all t ∈ [ tj , tj+1)
with j = 0, 1, 2, . . . ,,

|y(t)| ≤ λ−1B|y(tj)| + Λ γ(||d||[ tj ,tj+1)).

Combining the last estimates the result follows. �

3.3 SIIOS stability of nonlinear switched systems with
average dwell-time

We consider now, switching systems driven by i(t) with
average dwell-time 0 < τD < +∞ and 1 < N0 < +∞. We
seek to relax the exponential stability requirement. The main
technical difficulty strives in the complexity of computing the
lengths of different time intervals between switches; e.g., one
may have arbitrarily small delays between switches. To avoid
this, we wish to establish conditions under which intervals with
a minimal “useful” length exists. Before presenting the main
result of this section we need to introduce some preliminary
statements on the maximal and minimal length of intervals
between switches.

In the sequel we denote such value by τD N−1
0 .

Claim 1 On any time interval [ ts, te) with te − 4 τD ≥ ts ≥ 0
there exists at least one time interval between switches, such
that its length is larger than τD N−1

0 , N0 > 1.

Proof . The total number of switches over [ ts, te) is bounded
by

N[ ts,te) ≤ N0 +
te − ts

τD
.

Assume that the claim does not hold i.e., intervals between
switches have length smaller than τD N−1

0 . It follows that the
maximum total length of time intervals between switches is
limited by

„

N0 +
te − ts

τD
+ 1

«

τD

N0
=

(N0 + 1) τD + te − ts
N0

while the residual length of time over the interval [ ts, te) can
be estimated to be

te − ts− (N0 + 1) τD + te − ts
N0

=

(N0 − 1) (te − ts) − (N0 + 1) τD

N0
≥ (3N0 − 5)

τD

N0
.

Then, for any whole number N0 > 1 we obtain that the resid-
ual length is bigger than zero which is a contradiction hence,
there exists an interval with length bigger than τD N−1

0 . �

Now, the maximum number of intervals over which the signal
i(t) is continuous (constant) on an interval [ ts, te) is denoted
by I[ ts,te) and bounded by

I[ ts,te) ≤ N0 +
te − ts

τD
+ 1,
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while the maximum number of intervals with length τD N−1
0 ,

denoted by I
τD N−1

0

[ ts,te)
, admits the upper-bound

I
τD N−1

0

[ ts,te)
≤ N0

te − ts
τD

+ 1 .

Note that for N0 > 1 and (te − ts) τ−1
D ≥ 3 we have I

τD N−1

0

[ ts,te)
>

I[ ts,te).
the number of subintervals with length
Next, we may make a statement on the number of subin-

tervals with length τD N−1
0 within intervals of length bigger

than τD N−1
0 .

Claim 2 Consider any interval [ ts, te) with te−4 τD ≥ ts ≥ 0.
Between any two switchings within [ ts, te), spaced at least

τD N−1
0 units of time, there exist at least κ[ ts,te) subin-

tervals of length τD N−1
0 with N0 > 1, where

κ[ ts,te) ≥
(N0 − 1) (te − ts)

τD
− N0.

Proof. Assume that there is 1 ≤ n ≤ N0+(te−ts) τ−1
D +1 inter-

vals between switches with length bigger than τD N−1
0 . Then,

the maximum total length of time intervals between switches
with length less than τD N−1

0 is limited by
„

N0 +
te − ts

τD
+ 1 − n

«

τD

N0
=

(N0 + 1 − n) τD + te − ts
N0

and the residual over [ ts, te) can be estimated from

te − ts − (N0 + 1 − n) τD + te − ts
N0

=
(N0 − 1) (te − ts) − (N0 + 1 − n) τD

N0
.

The number κn of subintervals with length τD N−1
0 in n inter-

vals may be estimated to satisfy

κn ≥ (N0 − 1)(te − ts) − (N0 + 1 − n)τD

N0

N0

τD
− n + 1

=
(N0 − 1)(te − ts) − (N0 + 1 − n)τD

τD
− n + 1 ≥ n

where n−1 was subtracted from the last expression to account
for th effect that to compute the the whole number of subin-
tervals with length bigger than τD N−1

0 we must divide the
length of residual intervals modulo n. Thus,

κ[ ts,te) = min
1≤n≤N0+(te−ts) τ−1

D
+1

{ κn : κn ≥ n }

=
(N0 − 1) (te − ts)

τD
− N0

and the minimum of the above expression is reached for n = 1.
�

Next, we consider the relation between the number κ[ ts,te)

of subintervals with length bigger than τD N−1
0 and the total

possible number of intervals I[ ts,te):

α[ts,te) =
I[ts,te)

κ[ts,te)

=

„

N0 +
te − ts

τD

+ 1

«„

(N0 − 1)(te − ts)

τD

− N0

«−1

=
(N0 + 1)τD + (te − ts)

(N0 − 1)(te − ts) − N0τD
.

For te − ts ≥ q τD with q ≥ 3 and N0 > 1 the denominator of
the above expression is always positive and for q ≥ 4

1

N0 − 1
≤ α[ ts,te) ≤

N0 + 5

3N0 − 4
.

The following lemma on SIIOS of switched systems is rem-
iniscent of Theorem III.1 from (Vu et al. 2005), which was
formulated in terms of “exponential” Lyapunov functions.

Lemma 3 Let Assumptions 1 and 2 hold. Then, for any con-
stants R ∈ R+, bd > 0, and 0 < λ < 1 there exists a dwell-
time τR = τR(R,bd, λ) > 0 and a number B = B(R,bd, λ) >
0 such that the switched system (2) is forward complete and,
for all t ≥ 0, d ∈ MRm such that ‖d‖ ≤ bd, x0 ∈ XR, with
XR = {x ∈ Rn : |h(x)| ≤ R } we have

|y(t,x0,d)| ≤ (λ−1B)N0+4[ λ−1|y0|e0.25 ln(λ)t/τR

+ (N0 + 4) Λ3γ(||d||[ 0,T )) ],

where Λ is defined in (6). �

Proof . The solutions of System (2) are continuous and de-
fined, at least locally, on [ 0, T ). Actually, T = +∞ since for
each fixed t the solutions of system (2) equal those of a system
from family (1) for some fixed q = i(t) ∈ I , which is forward
complete by assumption. Now, for any 0 < λ < 1 there exists
+∞ > τ q

R = τ q
R(R,bd, λ) > 0 such that

sup
0≤s≤β̄(R+Λ2 γ(||d||))+γ(||d||)

βq(s, τ q
R)

s
= λ,

Bq = sup
0≤s≤β̄(R+Λ2 γ(||d||))+γ(||d||)

βq(s, 0)

s
≥ 1,

β̄(s) = max
q∈I

{βq(s, 0) }

then, for any x0 ∈ XR, d ∈ MRm and for all t ≥ 0 we have

|y(t,x0,d)| ≤ λ−1Bq |y0|e ln(λ)t/τq

R + Λγ(||d||[0,t)) .

Next, let B = max
q∈I

{Bq }, τR = ln(λ2/B) max
q∈I

{ τ q
R }/ ln(λ) be

the dwell-time constant; then, for any q ∈ I and for all t ≥ 0,

|y(t,x0,d)| ≤ λ−1B|y0|e ln(λ2/B)t/τR + Λγ(||d||[0,t)) .

This estimate is valid while |y(t)| ≤ β̄(R + Λ2 γ(||d||)) +
γ(||d||), t ≥ 0. Consider the interval [ 0, T ) which can be di-
vided into subintervals of length 4 τR i.e.:

[ 0, T ) =
K
[

r=0

[ 4 τR r, 4 τR (r + 1)) + [ 4 τR (K + 1), T ) .

For each 0 ≤ r ≤ K the interval [ 4 τR r, 4 τR (r + 1)) can
be constructed as a concatenation of intervals where the sig-
nal i(t) takes the same value i.e., [ 4 τR r, 4 τR (r + 1)) =

k
S

j=0
[ tj , tj+1), i(t) = i(tj) for t ∈ [ tj , tj+1); t0 = 4 τR r,

tk+1 = 4 τR (r + 1) .
By the average dwell-time property and Claim 1 there ex-

ists at least one interval [ tl, tl+1) with 0 ≤ l ≤ k such that

tl+1 − tl ≥ τR N−1
0 while for all other 0 ≤ j ≤ k with j 6= l it
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possibly holds that tj+1 − tj < τR N−1
0 . On each interval and

for each SIIOS system from (1) we have

|y(t)| ≤ λ−1B|y(tj)|e ln(λ2/B)(t−tj)/τR + Λγ(||d||[tj ,t)),

for all t ∈ [tj , tj+1) and 0 ≤ j ≤ k. Furthermore, for j 6= l we
have

|y(tj+1)| ≤ λ−1B|y(tj)| + Λ γ(||d||[ tj ,tj+1)),

while, for j = l,

|y(tl+1)| ≤ βi(tl)(|y(tl)|, tl+1 − tl) + γ(||d||[ tl,tl+1)) .

Invoking Claim 2 we obtain

k + 1 ≤ N[4 τD r,4 τD (r+1)) ≤ N0 + 4,

κ[4 τD r,4 τD (r+1)) ≥ 2, tl+1 − tl ≥ τd N−1
0 .

Now, without loosing generality, we can assume that the first
k−1 intervals have length less than τR N−1

0 while the lth (with

l = k), has length larger than τR N−1
0 . Then,

|y(tk)| ≤ λ−1B|y(tk−1)| + Λγ(||d||[tk−1,tk))

≤ λ−1B[λ−1B|y(tk−2)|
+ Λγ(||d||[tk−2,tk−1))] + Λγ(||d||[tk−1,tk))

...

≤ (λ−1B)k|y(t0)|

+ Λ

k−1
X

r=0

(λ−1B)rγ(||d||[tk−r−1,tk−r)) .

For y(tl+1) = y(tk+1) we have

|y(tk+1)| ≤ λ(λ−1B)−N0−3`

(λ−1B)k|y(t0)|

+ Λ
k−1
X

r=0

(λ−1B)rγ(||d||[tk−r−1,tk−r))
´

+ Λγ(||d||[tk,tk+1)) ≤ λ|y(t0)|

+ Λ
k

X

r=0

(λB−1)k−rγ(||d||[tk−r ,tk−r+1))

≤ λ|y(t0)| + Λ2γ(||d||[t0,tk+1)).

For all t ∈ [t0, tk+1) it holds that

|y(t)| ≤ (λ−1B)N0+4[|y(t0)| + Λ{N0 + 4}γ(||d||[t0,tk+1))] .

Such estimates hold for all intervals 0 ≤ r ≤ K:

|y(4τR(r+1))| ≤ λ|y(4τRr)|+Λ2γ(||d||[4τRr,4τR(r+1))), (10)

|y(t)| ≤ (λ−1B)N0+4[|y(4τRr)| + Λ{N0 + 4}
× γ(||d||[4τRr,4τR(r+1)))],

for all t ∈ [4τDr, 4τD(r + 1)). Using the estimate (10), for all
0 ≤ r ≤ K, we obtain

|y(4τD(K + 1))| ≤ λ(λ · · · {λ|y0| + Λ2γ(||d||[0,4τR))} · · ·
+ Λ2γ(||d||[4τR(r−1),4τRr)))

+ Λ2γ(||d||[4τRr,4τR(r+1)))

≤ λK |y0| + Λ3γ(||d||[0,T ))

≤ λ−1|y0|e0.25 ln(λ)t/τR + Λ3γ(||d||[0,T )

Then, the following estimate holds for all t ≥ 0:

|y(t)| ≤ (λ−1B)N0+4[λ−1|y0|e0.25 ln(λ)t/τR

+ (N0 + 4)Λ3γ(||d||[0,T ))].

Finally, let us verify that |y(t)| ≤ β̄(R + Λ2γ(||d||)) + γ(||d||)
any t ≥ 0. This holds true for t ∈ [0, 4τR) by construction and,
from (10), it also holds for all other t ∈ [4τR, T ). �

Results of 2 and 3 establish that, taking average dwell time
and sufficiently large constant dwell-time, we may ensure SI-
IOS for switched system (2) assuming that the systems from
(1) are, independently, locally exponentially stable.

4 Conclusion

The problem of output stability of switched nonlinear sys-
tems has been considered. Two solutions are proposed: based
on constant and average dwell-time. We have shown that, for
fairly generic nonlinear switched systems, to ensure a global
stability property the dwell-time constant must depend on the
initial conditions as well as disturbances “infinity norms”.
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Birkhäuser. Boston.

Vu, L., D. Chatterjee and D. Liberzon (2005). ISS of switched
systems and applications to switching adaptive control.
In: Proc. 44th. IEEE Conf. Decision Contr.

Xie, W., C. Wen and Z. Li (2001). Input-to-state stabilization
of switched nonlinear systems. IEEE Trans. on Automat.
Contr. 46, 1111–1116.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

3652


