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Abstract: It is shown that the difference Riccati equation of the Stenlund-Gustafsson (SG)
algorithm for estimation of linear regression models can be solved elementwise. Convergence
estimates for the elements of the solution to the Riccati equation are provided, directly relating
convergence rate to the signal-to-noise ratio in the regression model. It is demonstrated that the
elements of the solution lying in the direction of excitation exponentially converge to a stationary
solution while the other elements experience bounded excursions around their current values.

1. INTRODUCTION

One of the recent contributions to the plethora of covari-
ance anti-windup algorithms for the Kalman filter is a spe-
cialization of the Riccati equation suggested in Stenlund
and Gustafsson [2002], further referred to as Stenlund-
Gustafsson (SG) algorithm. A similar idea is presented
somewhat later in Cao and Schwartz [2004].

Being suggested as an ad hoc solution, no convergence
analysis has been conducted for the SG algorithm but
it appeared to work well in simulations. An important
feature of the algorithm that has already been demon-
strated in the seminal publication is that the difference
Riccati equation can be written for this particular case in
the form of a linear (Sylvester) matrix equation. This fact
has facilitated further results on the dynamics of the SG
algorithm and is proven for a general case in Evestedt and
Medvedev [2006b].

In Medvedev [2004], a formal proof for non-divergence of
the Riccati equation for the SG algorithm was given using
theory of converging matrix products. It was also shown
in the same paper that the linear mapping corresponding
to the Riccati (Sylvester) equation is not a contraction
in most common norms but a paracontraction in some
unspecified norm. The latter discovery posed the question
why and under what conditions the SG algorithm con-
verges.

The remarkable robustness of the SG algorithm against
lack of excitation called for its use in a number of engineer-
ing applications such as active vibration control Olsson
[2005], acoustic echo cancelation Evestedt et al. [2005] and
change detection Evestedt and Medvedev [2006a].

In this paper, convergence properties of the SG algorithm
are studied via an elementwise decomposition of the Ric-
cati equation, clearly revealing the underlying convergence
mechanism and its close relationship to the excitation
condition of recursive parameter estimation, Ljung and
Gunnarsson [1990]. After some preliminaries introducing
necessary notions and notation, recursive relationships for
elementwise solution of the Riccati equation are derived.
Further, exponential convergence of the Riccati equation
in the direction of excitation is proved followed by con-
vergence rate bounds. It is also shown that each element
outside of the current excitation direction remains within a
1 This work has been carried out with financial support by Swedish
Research Council.

bounded interval whose range is defined by excitation and
the parameters of the algorithm. Obtained convergence
results are illustrated by simulation.

2. PRELIMINARIES

Consider the following difference Riccati equation typical
to parameter estimation of regression models

P (t) = P (t− 1)−
P (t − 1)ϕ(t)ϕT (t)P (t − 1)

r(t) + ϕT (t)P (t − 1)ϕ(t)
+ Q(t) (1)

where P (·) ∈ Rn×n, Q(·) ∈ Rn×n, Q(·) = QT (·), Q(·) ≥ 0,
P (0) = PT (0), P (0) ≥ 0, ϕ(·) ∈ Rn is a regressor vector,
r(t) is a positive scalar, and t ∈ {1, 2, . . . ,∞}.

In Stenlund and Gustafsson [2002], Q(t) is treated as an
”input signal” that can be designed to provide desirable
behavior of P (t), for instance convergence to a certain
point or manifold.

A special case of the difference Riccati equation arises
when the following form of the free matrix term

Q(t) =
Pdϕ(t)ϕT (t)Pd

r(t) + ϕT (t)Pdϕ(t)
(2)

is introduced for a given constant Pd ∈ Rn×n, Pd > 0.
Evidently, the matrix Pd is then a stationary point of (1).
Notice that the classical stability proof for the Kalman
filter assuming Q(t) > 0 provided e.g. in Jazwinski [1970]
does not apply to the SG algorithm since rank Q(t) = 1,
according to (2).

The persistence of excitation condition plays a significant
role in the dynamic behavior of (1). The condition is that
there exists such c ∈ R+ and integer N that for all k

cI ≤

k+N
∑

t=k

ϕ(t)ϕ(t)T (3)

When condition (3) is not satisfied, some eigenvalues of
P (·) grow linearly in time. This phenomenon is usually
referred to as (covariance) windup. The SG algorithm
has been developed in Stenlund and Gustafsson [2002]
specifically in order to deal with the windup problem in a
systematic manner and the Riccati equation (1,2) is proved
to be non-diverging under lack of excitation in Medvedev
[2004].
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Though the idea of the above method also works in a
multivariable setting, only the scalar case, i.e. when ϕ is a
vector, is treated here for the sake of brevity.

2.1 Alternative equation form

As shown in Stenlund and Gustafsson [2002] for non-
singular P (t) and in Evestedt and Medvedev [2006b] for
a general case, the difference E(t) = P (t) − Pd obeys the
recursion

E(t + 1) = A−1
t (P (t))E(t)A−T

t (Pd) (4)

where At(X) = I + r−1(t)Xϕ(t)ϕT (t).

To distinguish between intensity and direction of excita-
tion, introduce the following notation

ρt =
ϕT (t)ϕ(t)

r(t)
, Ut =

ϕ(t)ϕT (t)

ϕT (t)ϕ(t)

where Ut is a unitary projection matrix specifying the
direction of excitation. Now, ρt characterizes the instan-
taneous intensity of excitation and can be loosely called
signal-to-noise ratio since ϕT (t)ϕ(t) is the squared Euclid-
ian norm of the regression vector and r(t) usually stands
for the variance of measurement noise in the underlying
regression model. Denote

ρ∗ = inf
t

ρt

As shown in Evestedt and Medvedev [2006b], for the
special choice of the matrix Q(t) given by (2), Riccati
equation (1) can generally be rewritten in the form of a
(linear) discrete Sylvester difference equation

P (t + 1) = A−1
t (P (t))P (t)A−T

t (Pd)

− A−1
t (P (t))PdA−T

t (Pd) + Pd (5)

A complete parameterization of all stationary solutions of
(5), including non-symmetric ones, is provided in Evestedt
and Medvedev [2006b]. However, being initiated with a
symmetric matrix, the solution P (·) stays symmetric,
which fact clearly follows from (1), (2). Therefore, E(t)
in (4) is symmetric whenever P (0) is symmetric.

In vectorized form, (4) becomes (see e. g. Horn and
Johnson [1991], p. 254)

e(t + 1) = M (Pd, P (t)) e(t)

M (Pd, P (t)) = A−1
t (Pd) ⊗ A−1

t (P (t)) (6)

where ⊗ denotes Kronecker (tensor) product and e(·) =
vec E(·).

2.2 Lyapunov transformation

It is practical to bring equation (4) to a more compact and
structure-revealing form, as suggested in Medvedev [2004].

Denote the normalized eigenvector of Ut corresponding to
the eigenvalue equal to one as ξt

1. Eigenvalue-eigenvector

decomposition of Ut immediately yields Ut = ξt
1ξ

t
1
T
. Thus,

the direction of excitation at time t can be characterized
by the vector ξt

1. The excitation condition written for the
regressor

t+k
∑

i=t

ϕiϕ
T
i > 0, k ≥ n (7)

can be equivalently stated as

rank
[

ξt
1 . . . ξt+k

1

]

= n

i. e. the vectors ξi
1, i = t, . . . , t+k span the whole Rn. For

the singular case ρt = 0, it is assumed that ξt
1 = 0.

Let the sequence {Ut} be persistently exciting on each
interval of n consecutive steps i.e.

detT (τ) 6= 0, T (τ) =
[

ξτ
1 . . . ξτ+n

1

]

Note that the exact order of ξt
1 in T is not important.

When future values of {Ut} are not available, one can in a
similar manner use past values of the regressor vector and
propagate T one step ahead.

The matrix T is constant on each interval t = τ, . . . , τ+n−
1 and is a Lyapunov transformation, Rugh [1996]. Indeed,
T is bounded since it is composed of normalized vectors
and | det T | > 0 by construction. Therefore, it preserves
stability properties of a dynamic system when used as a
state vector transformation.

Essential properties of T are that it includes all possible
directions of excitation and it is always nonsingular. Thus,
the columns of the transformation matrix are denoted as

T (t) =
[

ξ1
1(t) . . . ξn

1 (t)
]

with time variable dropped when appropriate to save
space.

Introduce a new state matrix Z(t) = T T (t)E(t)T (t). Since
E(t) is a symmetric matrix, the transformed state Z(t) is
also symmetric. It can be concluded, see Medvedev [2004]

that T⊗
2

is a Lyapunov transformation for the vectorized
sequence e(t) and therefore T T (t)E(t)T (t) is such for the
matrix sequence E(t).

After the Lyapunov transformation, (4) reads

Z(t + 1) = Ā−1
t (P (t))Z(t)Ā−T

t (Pd) (8)

where
Āt(·) = T T At(·)T

−T

It is essential to realize that T (t) is a time-varying trans-
formation and changes after each n steps of the algorithm.
This implies that the state elements of Z(t) evolve not only
due to recursion (8) but as well as a function of T (t).

For some X ∈ Rn×n, X ≥ 0, consider two vectors

dT
i (X) =

[

ξ1
1

T
Xξi

1 . . . ξn
1

T
Xξi

1

]

and
DT

i (X) =
[

D1
i (X) . . . Dn

i (X)
]

which are related to each other as to

Di(X) =
ρidi(X)

1 + ρiξ
i
1
T
Xξi

1

(9)

The inverse of Āi(X) is calculated in Medvedev [2004] to
be

Ā−1
i (X) = I − [ 0n×(i−1) Di(X) 0n×(n−i) ]

Then Āi(X) is a sum of a unit matrix and a matrix whose
non-zero elements are collected in just one column. The
position of the column is defined by the current excitation
direction ξi

1.

The structure of Āi(X) brought about by the Lyapunov
transformation makes it possible to distinguish between
the elements of Z in the direction of excitation and those
outside of it. Formally, the elements zkl, (k = i) ∨ (l = i)
are in the excitation direction and all other ( e.g. zkl, k =
1, . . . , n; l = 1, . . . , n; k 6= i, l 6= i) are outside.

For X ≥ 0, let λi(X) ≤ λi+1(X), i = 1, . . . , n − 1 be the
eigenvalues of the matrix.
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Proposition 1. (Medvedev [2004]). If X ≥ 0, X 6= 0 then

max
ξk

1
,ξi

1

|Dk
i (X)| =

ρiλn(X)

1 + ρiλn(X)
< 1 (10)

Proposition 2. Let P (t) be a solution to (5), then

Dk
i (P (t)) =

ρi

(

ξk
1

T
Pdξ

i
1 + zik(t)

)

1 + ρi

(

ξi
1
T
Pdξ

i
1 + zii(t)

)

Proof. From the definitions of Z and E, it follows

P (t) = Pd + E(t) = Pd + T−T (t)Z(t)T−1(t)

Then

Dk
i (P (t)) =

ρi

(

ξk
1

T
Pdξ

i
1 + ξk

1
T
T−T (t)Z(t)T−1(t)ξi

1

)

1 + ρi

(

ξi
1
T
Pdξ

i
1 + ξi

1
T
T−T (t)Z(t)T−1(t)ξi

1

)

(11)
Now, taking into account the identity

ξk
1

T
T−T (t) = [ 0 . . . 1 0 . . . ]

k

leads to

ξk
1

T
T−T (t)Z(t)T−1(t)ξi

1 = zik(t)
The above equality together with (11) yields the sought
result.

3. ELEMENTWISE SOLUTION

In Medvedev [2004], it was demonstrated how the original
recursive scheme (4) can be at each step decomposed into a
set of fourth-order linear autonomous systems of triangular
structure. Furthermore, at each t, the dynamics of each
element zkl of the matrix Z is shown to be defined by four
numbers, namely Dl

i(Pd), D
i
i(Pd), Dk

i (P ), Di
i(P ).

Proposition 3. (Medvedev [2004]). Let ξt
1 = ξi

1. Then the
dynamics of the elements of z(t) = {zkl, k = 1, . . . , n; l =
1, . . . , n} are governed by

z̄kl(t + 1) = E
(

Dk
i (Pd), Di

i(Pd)
)

(12)

⊗ E
(

Dl
i(P (t)), Di

i(P (t))
)

z̄kl(t)

where

E(a, b) =

[

1 −a
0 1 − b

]

and
z̄T

kl = [ zkl zki zil zii ]

Notice that for symmetric solutions, z̄kl and z̄lk are equiv-
alent up to permutation.

The result above shows that the updates of the elements of
Z outside of the current excitation direction are completely
defined by the values of the elements in the excitation
direction.

Provided (5) is initialized at a symmetric matrix P (0),
the solution of it is obviously symmetric. Thus, a further
simplification of (12) can be obtained for such practically
important cases.

Another complication inflicted by the structure of E(·, ·)
is that it has an eigenvalue equal to one which hinders
convergence analysis. Decomposition (12) is valid for any
element of Z no matter where it is situated in the matrix
with respect to the current excitation. It can be intuitively

expected that the elements of Z in the direction of exci-
tation converge and all other elements do not. In order to
get an insight into the underlying convergence mechanism,
an elementwise form of (12) is required.

Proposition 4. For symmetric solutions of (4), i.e. P (t) =
PT (t), the elements of z(t) = {zkl, k = 1, . . . , n; l =
1, . . . , n} are governed by

zkl(t + 1) = zkl(t) +
Dk

i (P )Dl
i(P )

(

1 − Di
i(Pd)

)

Di
i(Pd) − Di

i(P )
zii(t)

−
Dk

i (Pd)D
l
i(Pd)

(

1 − Di
i(P )

)

Di
i(Pd) − Di

i(P )
zii(t) (13)

which expression reads for k = l = i as

zii(t + 1) = (1 − Di
i(Pd))(1 − Di

i(P ))zii(t) (14)

Proof. Writing (12) elementwise gives

zkl(t + 1) = zkl(t) − Dk
i (P )zki(t) − Dl

i(Pd)zil(t)

+Dk
i (P )Dl

i(Pd)zii(t) (15)

zki(t + 1) = (1 − Di
i(P ))zki(t) − Dl

i(Pd)(1 − Di
i(P ))zii(t)

zil(t + 1) = (1 − Di
i(Pd))zil(t) − Dk

i (P )(1 − Di
i(Pd))zii(t)

zii(t + 1) = (1 − Di
i(Pd))(1 − Di

i(P ))zii(t)

For the case of symmetric P , Z is also symmetric since

Z(t) = T T (t)(P (t) − Pd)T (t)

and Pd = PT
d . Defining elementwise equations similar to

(15) but for zlk, zik, zli and taking into account that Z is
symmetric leads to the following identities valid for all t

(

Dl
i(P ) − Dl

i(Pd)
)

zil =
(

Dk
i (P ) − Dk

i (Pd)
)

zki

+
(

Dk
i (Pd)Dl

i(P )−Dk
i (P )Dl

i(Pd)
)

zii
(

Di
i(P ) − Di

i(Pd)
)

zki =
(

Dl
i(Pd)(1 − Di

i(P ))

+Dl
i(P )(1 − Di

i(Pd))
)

zii
(

Di
i(P ) − Di

i(Pd)
)

zil =
(

Dk
i (Pd)(1 − Di

i(P ))

+ Dk
i (P )(1 − Di

i(Pd))
)

zii

Now zki and zil in the first equation of (15) can be
expressed in terms of zii using the last two identities above,
thus producing (13).

Notice that (14) is immediately obtained from (13) by
letting k = l = i.

Proposition 4 provides a general form for elementwise eval-
uation of Z(t). However, (13) still includes the functions

D
j
i (P ), j = {k, l} which, in their turn, depend on elements

of Z(t).

Corollary 1. Equation (13) can be equivalently written as

zkl(t + 1) = zkl(t) + ρi

(

ξl
1
T
Pdξ

i
1ξ

k
1

T
Pdξ

i
1

1 + ρiξ
i
1
T
Pdξ

i
1

−
(ξl

1
T
Pdξ

i
1 + zil)(ξ

k
1

T
Pdξ

i
1 + zik)

1 + ρi(ξi
1
T
Pdξ

i
1 + zii(t))

)

(16)

or, for the special case of l = i
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zki(t + 1) =
(1 + ρiξ

i
1
T
Pdξ

i
1)zki(t) − ρiξ

k
1

T
Pdξ

i
1zii(t)

(

1 + ρiξ
i
1
T
Pdξ

i
1

)(

1 + ρi(ξi
1
T
Pdξ

i
1 + zii(t))

)

(17)
which expression reads for k = l = i as

zii(t + 1) =
zii(t)

(

1 + ρiξ
i
1
T
Pdξ

i
1

)(

1 + ρi(ξi
1
T
Pdξ

i
1 + zii)

)

(18)

Proof. The proof is straightforward by substituting in
(13) the following equalities

1 − Di
i(P ) =

1

1 + ρi

(

ξi
1
T
Pdξ

i
1 + zii(t)

) (19)

1 − Di
i(Pd) =

1

1 + ρiξ
i
1
T
Pdξ

i
1

Di
i(P )−Di

i(Pd)=
ρizii

(1+ρiξ
i
1
T
Pdξ

i
1)
(

1+ρi

(

ξi
1
T
Pdξ

i
1+zii(t)

))

(20)

Exactly as before, (17) and (18) are just the specializations
of (16) for l = i and k = l = i.

4. CONVERGENCE

From experimental studies in Evestedt and Medvedev
[2006a], Evestedt et al. [2005], Olsson [2005], it can be
concluded that the solution of Riccati equation (1,2) con-
verges to Pd whenever excitation condition (3) is satisfied.
However, no formal proof of this fact can be found in
the literature. On the negative side, it is known from
Medvedev [2004] that the mapping M(·, ·) in (6) is not
a contraction. This does not mean that (6) (or, equiva-
lently (4)) cannot converge but significantly complicates
the choice of tools for convergence analysis.

Regarding stationary behavior of the SG algorithm under
lack of excitation studied in Evestedt and Medvedev
[2006b], it is shown that solutions of (4) converge to Pd

in the elements that lie in the persistent directions of
excitation. However, the mechanism of convergence has
so far not been revealed.

The result of Corollary 1 explains why and how the solu-
tions of (4) converge. Indeed, (18) implies very fast expo-
nential convergence of the diagonal elements of Z in the
excited directions. Therefore, the following approximation
is justified

zii(t + 1) ≈
zii(t)

(

1 + ρiξ
i
1
T
Pdξ

i
1

)2

Clearly, the rate of convergence increases for higher signal-
to-noise ratios. Now, it is safe to assume that zii is
small which yields the following approximation for the off-
diagonal elements of Z in the directions of excitation, cf.
(17)

zki(t + 1) ≈
zki(t)

1 + ρiξ
i
1
T
Pdξ

i
1

The elements zki, k 6= i also exhibit exponential conver-
gence but at a lower rate than for the diagonal elements.
Thus, the assumption that zki, k = 1, . . . , n are small is as
well justified. This turns (16) into

zkl(t + 1) ≈ zkl(t), k 6= i, l 6= i

Recapitulating for the simplifications above, it can be
concluded that all elements of Z in the directions of
excitation converge exponentially to zero while all other
elements remain approximately constant. The argument
is not a formal proof but applies locally in a neighborhood
of the stationary solution of (8).

At this point, it is instructive to recall that the Lyapunov
transformation T (t) used to obtain (8) changes each n
steps therefore changing the values of generally all ele-
ments of Z. After such transformation change, any zkl can
either increase or decrease. This however does not influence
the type of convergence due to the properties of Lyapunov
transformations, Rugh [1996].

It is seldom one has much control over noise and excitation
conditions in an identification experiment which makes
the choice of Pd quite important in applications. From
(17) and (18), it becomes clear in what way Pd should
be selected to obtain a higher convergence rate for (1,
2). Since λ1(Pd) ≤ ‖Pdξ

i
1‖2 ≤ λn(Pd), Pd has to have

eigenvectors corresponding to large λi(Pd) collinear to the
frequent excitation directions.

In the sequel of the section, formal convergence proofs
for solutions of (8) are provided. Let’s first turn to the
convergence in the current direction of excitation.

Proposition 5. The mapping
[

zki(t + 1)
zii(t + 1)

]

= Fki

[

zki(t)
zii(t)

]

(21)

where

Fki =
E(ρiξ

k
1

T
Pdξ

i
1, ρiξ

i
1
T
Pdξ

i
1) + ρiξ

i
1
T
Pdξ

i
1I

(1 + ρiξ
i
1
T
Pdξ

i
1)
(

1 + ρi

(

ξi
1
T
Pdξ

i
1 + zii(t)

))

is a contraction for all k = 1, . . . , n; k 6= i.

Proof. For a matrix X of the following structure

X =

[

a b
0 c

]

it applies that

λ12(X
TX) =

a2+b2+c2±

√

((a − c)
2
+b2)((a + c)

2
+b2)

2
Now, a direct evaluation gives

λ2(F
T
kiFki) =

0.5

(1+ρiξ
i
1
T
Pdξ

i
1)

2(

1+ρi

(

ξi
1
T
Pdξ

i
1+zii(t)

))2

(

(1+ρiξ
i
1

T
Pdξ

i
1)

2
+ρ2

i (ξ
k
1

T
Pdξ

i
1)

2

+1+ (22)

ρi

√

(

(ξi
1
T
Pdξ

i
1)

2
+ (ξk

1
T
Pdξ

i
1)

2
)

fki

)

where

fki = (2 + ρiξ
i
1
T
Pdξ

i
1)

2
+ ρ2

i (ξ
k
1

T
Pdξ

i
1)

2

Noticing that

(ξk
1

T
Pdξ

i
1)

2

≤ λ2
n(Pd)

and that λ2(F
T
kiFki) is monotonically decreasing in ρi and

ξi
1
T
Pdξ

i
1 with
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lim
ρi→0

λ2(F
T
kiFki) < 1

lim
λ1(Pd)→0

λ2(F
T
kiFki) < 1

completes the proof.

Proposition 5 proves that all the elements of Z(t) in the
current excitation direction exponentially converge.

Now let’s show that the increase in the elements outside
of the current excitation direction is bounded at each step
from above and below.

Proposition 6. For each element zkl(t), k 6= i, l 6= i of Z(t)
in (8), the following inequalities apply

|zkl(t + 1) − zkl(t)| < zii(t) +
2

ρi

(1 + ρiξ
i
1

T
Pdξ

i
1) (23)

Proof. Consider the second term in the right-hand side
of (16). Recalling that

|Dk
i (P )| =

ρi|(ξ
k
1

T
Pdξ

i
1 + zik)|

1 + ρi(ξi
1
T
Pdξ

i
1 + zii(t))

< 1

the following inequalities follow

−|ξl
1

T
Pdξ

i
1| − |ξl

1

T
Pdξ

i
1 + zil|

< ρi

(

ξl
1
T
Pdξ

i
1ξ

k
1

T
Pdξ

i
1

1 + ρiξ
i
1
T
Pdξ

i
1

−
(ξl

1
T
Pdξ

i
1 + zil)(ξ

k
1

T
Pdξ

i
1 + zik)

1 + ρi(ξi
1
T
Pdξ

i
1 + zii(t))

)

< |ξl
1

T
Pdξ

i
1| + |ξl

1

T
Pdξ

i
1 + zil|

Therefore

−
1

ρi

(1 + ρiξ
i
1

T
Pdξ

i
1) −

1

ρi

(

1 + ρi(ξ
i
1

T
Pdξ

i
1 + zii(t))

)

< zkl(t + 1) − zkl(t)

<
1

ρi

(1 + ρiξ
i
1
T
Pdξ

i
1) +

1

ρi

(

1 + ρi(ξ
i
1
T
Pdξ

i
1 + zii(t))

)

which immediately gives (23).

Notice also that the lower bound is always negative and
the upper bound is always positive despite indefinite sign
of zii. Indeed, due to Proposition 1, Di

i(·) is bounded
0 < Di

i(P (t)) < 1. Thus, taking into account (19)

1

ρi

(1 + ρiξ
i
1

T
Pdξ

i
1) < zii(t) +

2

ρi

(1 + ρiξ
i
1

T
Pdξ

i
1) (24)

−zii(t) −
2

ρi

(1 + ρiξ
i
1

T
Pdξ

i
1) < −

1

ρi

(1 + ρiξ
i
1

T
Pdξ

i
1)

5. BOUNDS

Bounds (23) capture a phenomenon observed in simulation
of (8), namely that the excursions in the elements of Z(t)
outside of the current excitation direction decrease with
time. This is explained by exponential convergence of zii.
Another property of (8) is that the excursions lessen with
higher excitation intensity. This can be as well derived
from (23).

Constant and therefore less sharp bounds can be easily
obtained around the stationary solution, i.e. assuming that
zii is small

−
2

ρ∗
(1 + ρ∗λn(Pd)) < zkl(t + 1) − zkl(t)

<
2

ρ∗
(1 + ρ∗λn(Pd))

For bounds valid even near the initial conditions on (8),
more insight into evolutions of zii is needed.

As mentioned before, zii(t) can take both positive and
negative values. Inequality (24) implies that the negative
values of zii(t) are for any t bounded from below.

zii(t) > −
1

ρi

(1 + ρiξ
i
1

T
Pdξ

i
1) ≥ −

1

ρi

(1 + ρiλn(Pd))

This means that the range of negative zii is basically
defined by Pd for large signal-to-noise ratios and by the
ratio itself when it is poor.

Furthermore, by comparing (20) and (18), one obtains

zii(t + 1) =
1

ρi

(

Di
i(P (t)) − Di

i(Pd)
)

Since both Di
i(P (t)) and Di

i(Pd) are positive and less than
one

|Di
i(P (t)) − Di

i(Pd)| < 1

and, for all t

zii(t + 1) <
1

ρi

(25)

The inequality above shows that, for good excitation
conditions, zii should take a small value already after the
first step of the algorithm in the excitation direction in
question. Taking into account the exponential convergence
due to (18), all zii are quite small for t > n, provided the
excitation is good and the noise variance r in the regression
model is low.

The convergence of (1,2) is fast for high values of ρt and a
properly chosen Pd. One can also conclude that increasing
the convergence rate through Pd also increases the range
of variation for zii.

The result of Proposition 5 give rise to the following
inequality

∥

∥

∥

∥

zki(t + 1)
zii(t + 1)

∥

∥

∥

∥

2

2

≤ λ2(F
T
kiFki)

∥

∥

∥

∥

zki(t)
zii(t)

∥

∥

∥

∥

2

2

, k 6= i (26)

Taking into account (18) yields

z2
ki(t + 1) ≤ λ2(F

T
kiFki)z

2
ki(t) +

(

λ2(F
T
kiFki)

−
1

(

1 + ρiξ
i
1
T
Pdξ

i
1

)2(

1 + ρi(ξi
1
T
Pdξ

i
1 + zii)

)2






z2

ii(t)

< λ2(F
T
kiFki)

(

z2
ki(t) + z2

ii(t)
)

It can be easily checked that the factor by z2
ii in the first

inequality is non-negative and strictly less than one.

6. SIMULATION RESULTS

The bounds on the elements of Z(t) are illustrated using
a simulation example with n = 3. Regressor vectors are
chosen to vary in length but be periodic in the direction
of excitation which gives a constant transformation matrix
T .
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Fig. 1. Bound (25) on the diagonal element in the direction
of excitation.

Letting r(t) = 1 yields ρt = ϕT (t)ϕ(t). In this simulation,
ρi(τ) is taken as a random sequence of numbers between 0
and 10. This choice is only for the purpose of illustration
since it is not what typically occurs when the Riccati
equation is used in a parameter estimation algorithm. In
the latter case, the regressor vectors include input and
output signal values and possess certain structure.

Furthermore, the matrices P (0) and Pd are selected as ran-
dom positive definite matrices to make the example as gen-
eral as possible. The Riccati equation in the SG-algorithm
was implemented elementwise according to Corollary 1 and
the evaluated elements were utilized to validate (26) and
(25).

In Fig. 1, the actual values of zii are given and compared
with the upper bound provided by (25). As anticipated,
the bound is useful during initial iteration steps of the
Riccati equation but becomes conservative further on.

The contraction property proved in Proposition 5 is illus-
trated in Fig. 2. The three subplots correspond to three
elements of Z(t) in the current excitation direction outside
of the main diagonal.

7. CONCLUSION

It is shown that the Riccati equation of the SG algorithm
can be solved elementwise. The Riccati equation in ques-
tion has a free term that is of rank 1 and its convergence
properties are therefore not guaranteed by the standard
Kalman filter theory. The expressions for the elementwise
solution reveal the underlying convergence mechanism and
are instrumental in the derivation of the upper and lower
bounds on the elements of the Riccati equation solution.
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