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Abstract: The problem of decentralized robust tracking and model following is considered
for a class of uncertain large scale systems including delayed state perturbations in the
interconnections. In this paper, it is assumed that the upper bounds of the delayed state
perturbations, uncertainties, and external disturbances are unknown. A modified adaptation
law with σ–modification is introduced to estimate such unknown bounds, and on the basis
of the updated values of these unknown bounds, a class of decentralized local memoryless
state feedback controllers is constructed for robust tracking of dynamical signals. The proposed
decentralized adaptive robust tracking controllers can guarantee that the tracking errors between
each time–delay subsystem and the corresponding local reference model without time–delay
decrease uniformly asymptotically to zero.

1. INTRODUCTION

It is well known that except for significant uncertainties,
the time–delay is often encountered in various practical
engineering systems to be controlled, such as chemical
processes, hydraulic, and rolling mill systems, and the
existence of the delay is frequently a source of instability.
Therefore, it is important to consider the robust tracking
and model following problem of dynamical time–delay sys-
tems with significant uncertainties. Such a robust tracking
and model following problem has been well discussed, and
some approaches for an actual system to tracking dynami-
cal signals of a given reference model have been developed
(see, e.g. Shyu and Chen [1995], Oucheriah [1999], Wu
[2001] and the references therein).

In the control literature, for dynamical systems with un-
certainties and external disturbances, the upper bounds
of uncertainties and external disturbances are generally
supposed to be known, and such bounds are employed to
construct some types of stabilizing state (or output) feed-
back controllers (see, e.g. Shyu and Chen [1995], Oucheriah
[1999], Wu [2001], Hopp and Schmitendorf [1990] and Wu
[2000] for the problem of robust tracking and model follow-
ing). However, in a number of practical control problems,
such bounds may be unknown, or be partially known. Spe-
cially, in the problem of robust tracking and model follow-
ing, it is also difficult to evaluate the upper bounds of un-
certainties and external disturbances. Therefore, for such
a class of uncertain systems whose uncertainty bounds are
partially known, some types of adaptive control schemes
should be introduced to update these unknown bounds.
For such uncertain systems, several types of adaptive ro-
bust state feedback controller have been proposed (see, e.g.

Brogliato and Trofino Neto [1995], Choi and Kim [1993],
Wu [1999], Wu [2000] and Wu [2002]). In particular, in
a recent paper Wu [2004], the problem of robust tracking
and model following is considered for uncertain time–delay
composite dynamical systems. It is assumed in Wu [2004]
that the upper bounds of the uncertainties and external
disturbances are unknown, an improved adaptation law
with σ–modification is proposed to estimate such unknown
bounds, and a class of adaptive robust tracking controllers
is proposed for robust tracking of dynamical signals. How-
ever, because of its complexity, few efforts are made to
consider the problem of decentralized robust tracking and
model following for uncertain large scale time–delay sys-
tems with the unknown bounds of uncertainties and ex-
ternal disturbances.

In this paper, we consider the problem of the decentral-
ized robust tracking and model following for a class of
uncertain large scale dynamical systems including delayed
state perturbations in the interconnections. We assume
that the upper bounds of the delayed state perturbations,
uncertainties, and external disturbances are unknown. For
such a class of uncertain large scale time–delay systems,
we want to develop some decentralized local state feedback
controllers for robust tracking of dynamical signals. For
this purpose, we first introduce a class of modified adapta-
tion laws with σ–modification to estimate these unknown
bounds. Then, by making use of the updated values of
the unknown bounds, we construct a class of decentralized
adaptive robust tracking controllers. We will shown that
by employing the proposed decentralized adaptive robust
tracking controllers, one can guarantee that the track-
ing errors between each time–delay subsystem and the
corresponding local reference model without time–delay
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decrease uniformly asymptotically to zero. That is, it is
possible for each time–delay subsystem to track exactly
the given local reference system.

2. PROBLEM FORMULATION

We consider a large scale time-delay system S composed of
N interconnected subsystems Si, i = 1, 2, · · · , N , described
by the following differential–difference equations:

dxi(t)
dt

=
[
Ai +∆Ai(υi, t)

]
xi(t)

+
[
Bi +∆Bi(ξi, t)

]
ui(t) (1a)

yi(t)=Cixi(t) (1b)
where t ∈ R+ is the time, xi(t) ∈ Rni is the current value
of the state, ui(t) ∈ Rmi is the input (or control) vector,
and yi(t) ∈ Rli is the output vector. Each dynamical
subsystem is interconnected as

ui(t) =
N∑

j=1

Aij(ζi, t)xj(t− hij) + wi(νi, t) (2)

where i = 1, 2, . . . , N .

In (1) and (2), for each i ∈ {1, 2, . . . , N}, Ai, Bi, Ci

are known constant matrices of appropriate dimensions.
In particular, the matrix Aij(·) stands for the extent
of interconnection between Si and Sj , and are assumed
to be continuous in all their arguments; ∆Ai(·), ∆Bi(·)
represent the uncertainties of the systems, wi(·) is the
external disturbance vector, and are also assumed to be
continuous in all their arguments. Moreover, the uncertain
parameters (υi, ξi, ζi, νi) ∈ Ψi ⊂ RLi , i ∈ {1, 2, . . . , N},
are Lebesgue measurable and take values in a compact
bounding set Ωi ; the time delays hij , i, j = 1, 2, . . . , N ,
are assumed to be any positive constants which are not
required to be known for the system designer. In this
paper, x(·) ∈ Rn denotes

[
x�1 (·) · · · x�

N
(·) ]�, where n =

n1 + · · ·+ n
N
.

The initial condition for each subsystem with time delays
is given by

xi(t) = χ
i
(t), t ∈ [t0 − h̄i, t0] (3)

where χ
i
(t) is a continuous function on [t0 − h̄i, t0], and

h̄i is defined as follows.
h̄i := max

{
h̄ij , j = 1, 2, . . . , N

}
For this class of input–interconnected large scale dynam-
ical systems including delayed state perturbations in the
interconnections, we introduce a decentralized local mem-
oryless state feedback controller ūi(t) given by

ūi(t) = pi(xi(t), t), i = 1, 2, . . . , N (4)

for each subsystem which modifies (2) to

ui(t) = ūi(t) +
N∑

j=1

Aij(ζi, t)xj(t− hij) + wi(νi, t) (5)

where i = 1, 2, . . . , N , pi(·) : Rni × R+ → Rmi is a
continuous function which will be proposed later.

On the other hand, for each i ∈ {1, 2, · · · , N}, the reference
signal ŷi(t), which should be followed by the output yi(t)
of each subsystem Si, is assumed to be the output of a
reference model Ŝi described by the differential equation
of the form:

dx̂i(t)
dt

= Âix̂i(t) + B̂iri(t) (6a)

ŷi(t) = Ĉix̂i(t) (6b)

where x̂i(t) ∈ Rn̂i is the state vector of the reference
model, ŷi(t) ∈ Rl̂i is the output vector of the reference
model, ri(t) ∈ Rm̂i is the input vector of the reference
model, and Âi, B̂i, Ĉi are known constant matrices of ap-
propriate dimensions. Here, ŷi(t) has the same dimension
as yi(t), i.e. l̂i = li. Furthermore, we require that the model
state must be bounded, i.e. for each reference model Ŝi,
there exists a finite positive constant Mi such that for all
t ≥ t0, ‖x̂i(t)‖ ≤Mi. In addition, the input vector of each
reference model is assumed to be bounded, i.e. ‖ri(t)‖ ≤ r̄i,
where r̄i is any positive constant.

As pointed out in Hopp and Schmitendorf [1990], not
all models of the form given in (6) can be tracked by
a corresponding subsystem given in (1) with a feedback
controller. Here, the requirement for the developed decen-
tralized local controller to track the model described by (6)
is the existence of the matrices Gi ∈ Rni×n̂i ,Hi ∈ Rmi×n̂i ,
Fi ∈ Rmi×m̂i , such that for each i ∈ {1, 2, . . . , N}, the
following matrix algebraic equation holds.


Ai Bi 0

0 0 Bi

Ci 0 0




Gi

Hi

Fi


 =



GiÂi

GiB̂i

Ĉi


 (7)

For each i ∈ {1, 2, . . . , N}, if a solution cannot be found
to satisfy this algebraic matrix equation, a different local
model or output matrix Ci must be chosen. In particular,
the approach to finding the solution of the algebraic matrix
equation similar to (7), where Bi is not included, is also
discussed in detail in Shyu and Chen [1995], Hopp and
Schmitendorf [1990].

Now, the question is how to synthesize a decentralized
local state feedback controller ūi(t) such that the output
yi(t) of each time–delay subsystem follows the output ŷi(t)
of the corresponding local reference model without time–
delay.

Remark 2.1. For the model following problem of uncer-
tain composite dynamical systems, some robust state (or
output) feedback tracking controllers are presented in the
control literature (see, e.g. Hopp and Schmitendorf [1990],
Wu [2000] for uncertain systems without time–delay, and
Shyu and Chen [1995], Oucheriah [1999], Wu [2001] for
uncertain time–delay systems, and the references therein).
In particular, in a recent paper Shigemaru and Wu [2001],
the model following problem of uncertain large scale in-
terconnected systems has been discussed. However, few
efforts are made to consider the problem of decentralized
robust tracking and model following for uncertain large
scale systems with time–delay, because of its complexity. In
this paper, we will consider the problem of robust tracking

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

6143



and model following for a class of large scale dynamical sys-
tems with delayed state perturbations, uncertainties, and
external disturbances, and want to propose decentralized
robust tracking controller.

Before proposing our decentralized robust tracking con-
trollers, we introduce for system (1) the following standard
assumptions.

Assumption 2.1. The pairs (Ai, Bi), i = 1, 2, · · · , N ,
given in system (1) are completely controllable.

Assumption 2.2. For each i ∈ {1, 2, . . . , N}, there exist
some continuous and bounded matrix functions Ni(·),
Ei(·) of appropriate dimensions such that

∆Ai(υi, t) =BiNi(υi, t)

∆Bi(ξi, t) =BiEi(ξi, t)

Remark 2.2. It is obvious that Assumption 2.2 defines the
matching condition about the uncertainties of the isolated
subsystems, and is a rather standard assumption for robust
control problem. It is well known that these matching
conditions restrict the structure of each subsystem by stip-
ulating that all uncertainties and interconnections should
fall into the range space of the control vector Bi. However,
this fact is true for a large class of systems, particularly
mechanical systems.

For convenience, we now introduce the following notations
which represent the bounds of the delayed state perturba-
tions, uncertainties, and external disturbances.

ρi(t) :=max
υi

∥∥∥Ni(υi, t)
∥∥∥

κi(t) :=max
ξi

∥∥∥Ei(ξi, t)
∥∥∥

µi(t) :=min
ξi

[
1
2
λmin

(
Ei(ξi, t) + E�

i (ξi, t)
)]

w̃i(t) :=max
νi

∥∥∥wi(νi, t)
∥∥∥

ρij(t) :=max
ζi

∥∥∥Aij(ζi, t)
∥∥∥, j = 1, 2, . . . , N

where i ∈ {1, 2, . . . , N}, ‖ · ‖ is the spectral norm of a
matrix, and λmin(·) and λmax(·) denote the minimum and
maximum eigenvalues of the matrix, respectively. Here, the
functions ρi(t), κi(t), µi(t), w̃i(t), ρij(t) are assumed to be
unknown. Moreover, the uncertain ρi(t), κi(t), µi(t), w̃i(t),
ρij(t) are also assumed, without loss of generality, to be
uniformly continuous and bounded for any t ∈ R+.

By employing the notations given above, we also introduce
for uncertain large scale system (1) the following standard
assumption.

Assumption 2.3. For every t ≥ t0 and any i ∈
{1, 2, . . . , N}, the unknown function µi(t) > −1.

Remark 2.3. It is worth pointing out that for the un-
certain large scale interconnected system described by (1)
and (5), Assumption 2.3 is standard. It is well known that
the assumption mentioned in Assumption 2.3 is a neces-
sary condition for robust stability of uncertain dynamical
systems (see, e.g., Shyu and Chen [1995], Oucheriah [1999],

Wu [2000], Wu [2002] and the references relative to robust
stabilization of uncertain systems).

Remark 2.4. It is well known that in a number of
practical control problems, the bounds ρi(t), κi(t), µi(t),
w̃i(t), ρij(t), may be unknown, or it is difficult to evaluate
them. Therefore, some updating laws to such unknown
bounds must be introduced to construct adaptive robust
controllers. In this paper, we will propose a class of decen-
tralized local memoryless adaptive robust tracking con-
trollers which can guarantee that tracking errors between
each time–delay subsystem and the local reference model
without time–delay decrease asymptotically to zero.

On the other hand, it follows from Assumption 2.1 that
for any given positive definite matrix Qi ∈ Rni×ni , there
exists an unique positive definite matrix Pi ∈ Rni×ni as
the solution of the algebraic Riccati equation of the form

A�
i Pi + PiAi − ηiPiBiB

�
i Pi = −Qi (8)

where ηi is any given positive constant.

3. MAIN RESULTS

In this section, we propose a class of decentralized local
memoryless state feedback controllers which can guarantee
that the output yi(t) of each subsystem follows the output
ŷi(t) of the corresponding local reference model and the
tracking error decreases asymptotically to zero. For this,
let the tracking error between each subsystem and the local
reference model be defined as

ei(t) = yi(t)− ŷi(t), i ∈ {1, 2, . . . , N} (9)

then the decentralized local state feedback tracking control
laws can be constructed as

ūi(t) = Hix̂i(t) + Firi(t) + p̃i(t) (10)

where Hi ∈ Rmi×n̂i and Fi ∈ Rmi×m̂i are assumed to
satisfy (7), and p̃i(t) is auxiliary control function which
will be given later.

Here, we first define for each subsystem a new state vector
zi(t), called the auxiliary state, as follows:

zi(t) := xi(t)−Gix̂i(t), i ∈ {1, 2, . . . , N} (11)

where Gi ∈ Rni×n̂i is still assumed to satisfy the algebraic
equation described by (7).

From (7) and (11) we can obtain the relationship between
the tracking error ei(t) and the auxiliary state vector zi(t)
as follows.

ei(t) = Cizi(t), i ∈ {1, 2, . . . , N} (12)

For each subsystem, applying (10) to (1a) and (5) yields
an auxiliary time–delay subsystem Ŝi, i ∈ {1, 2, . . . , N},
of the form:

dzi(t)
dt

=
[
Ai +∆Ai(υi, t)

]
zi(t)

+
[
Bi +∆Bi(ξi, t)

]
p̃i(t) + gi(υi, ξi, ζi, νi, ri, x̂i, t)
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+
[
Bi +∆Bi(ξi, t)

] N∑
j=1

Aij(ζi, t)zj(t− hij) (13)

where

gi( · ) :=
[
∆AiGi +∆BiHi

]
x̂i(t) + ∆BiFiri(t)

+
[
Bi +∆Bi

]( N∑
j=1

AijGj x̂j(t−hij) + wi

)
(14)

Then, by making use of the matching condition (see
Assumption 2.2), (14) can be readily reduced to

gi(υi, ξi, ζi, νi, ri, x̂i, t) = Bifi(υi, ξi, ζi, νi, ri, x̂i, t) (15)

where

fi( · ) :=
[
NiGi + EiHi

]
x̂i(t) + EiFiri(t)

+
[
Ii+Ei

]( N∑
j=1

AijGj x̂j(t−hij) + wi

)
(16)

Furthermore, we introduce for (16) the following notation.

βi(t) := max
{∥∥fi(υi, ξi, ζi, νi, ri, x̂i, t)

∥∥ :

(υi, ξi, ζi, νi) ∈ Ψi,
∥∥ri(t)∥∥ ≤ r̄i,∥∥x̂i(t)
∥∥ ≤Mi, t ∈ R+

}
Here, without loss of generality, the uncertain function
βi(t), i ∈ {1, 2, . . . , N}, is still assumed to be uniformly
continuous and bounded for any t ∈ R+.

In this paper, since the bounds ρi(t), ρij(t), κi(t), µi(t),
βi(t) have been assumed to be continuous and bounded for
any t ∈ R+, we can suppose that there exist some positive
constants ρ∗i , ρ

∗
ij , κ

∗
i , µ

∗
i , β

∗
i , which are defined by

ρ∗i :=max
{
ρi(t) : t ∈ R+

}
ρ∗ij :=max

{
ρij(t) : t ∈ R+

}
κ∗i :=max

{
κi(t) : t ∈ R+

}
µ∗i :=min

{
µi(t) : t ∈ R+

}
> −1

β∗i :=max
{
βi(t) : t ∈ R+

}
Here, it is worth pointing out that the constants ρ∗i , ρ

∗
ij , κ

∗
i ,

µ∗i , β
∗
i , are still unknown. Therefore, such unknown bounds

can not be directly employed to construct the decentralized
robust tracking controllers.

Withot loss of generality, we also introduce the following
definitions:

ψ∗
i :=

1
1 + µ∗i

(
1 + η−1

i αi (ρ∗i )
2

+
N∑

j=1

η−1
i αi

(
(1 + κ∗i ) ρ

∗
ij

)2) (17a)

φ∗i :=
β∗i

1 + µ∗i
(17b)

where ηi and αi are any positive constants. In particular,
it is obvious from (17) that for any i ∈ {1, 2, . . . , N}, ψ∗
and φ∗ are unknown positive constants.

Now, we give the auxiliary control function p̃i(t), i =
1, 2, . . . , N , as follows.

p̃i(t) = pi1(zi(t), t) + pi2(zi(t), t) (18a)
where pi1(·) and pi2(·) are given by the following functions:

pi1(zi(t), t) =− 1
2
ηiψ̂i(t)B�

i Pizi(t) (18b)

pi2(zi(t), t) =− φ̂2
i (t)B

�
i Pizi(t)∥∥B�

i Pizi(t)
∥∥ φ̂i(t) + σi(t)

(18c)

and where σi(t) ∈ R+ is any positive uniform continuous
and bounded function which satisfies limt→∞

∫ t

t0
σi(τ)dτ ≤

σ̄i < ∞, where σ̄i is any positive constant. Here for any
i ∈ {1, 2, . . . , N}, Pi ∈ Rni×ni is the solution of the Riccati
equation described by (8).

In particular, for any i ∈ {1, 2, . . . , N}, ψ̂i(·) and φ̂i(·) in
(18) are, respectively, the estimates of the unknown ψ∗

i and
φ∗i , which are updated by the following adaptive laws:

dψ̂i(t)
dt

=−γ1iσi(t)ψ̂i(t) + γ1iηi

∥∥B�
i Pizi(t)

∥∥2
(19a)

dφ̂i(t)
dt

=−γ2iσi(t)φ̂i(t) + γ2i

∥∥B�
i Pizi(t)

∥∥ (19b)

where for any i ∈ {1, 2, . . . , N}, γ1i, γ2i are any positive
constants, and ψ̂i(t0), φ̂i(t0) are finite.

For each auxiliary subsystem, applying (18) to (13) yields
the following closed–loop auxiliary time–delay subsystem:

dzi(t)
dt

=
[
Ai − 1

2
ηiψ̂i(t)BiB

�
i Pi

]
zi(t)

+
[
∆Ai(υi, t)− 1

2
ηiψ̂i(t)∆Bi(ξi, t)B�

i Pi

]
zi(t)

+
[
Bi +∆Bi(ξi, t)

]
pi2(zi(t), t)

+
[
Bi +∆Bi(ξi, t)

] N∑
j=1

Aij(ζi, t)zj(t− hij)

+gi(υi, ξi, ζi, νi, ri, x̂i, t) (20)

On the other hand, letting ψ̃i(t)= ψ̂i(t) − ψ∗
i and φ̃i(t)=

φ̂i(t) − φ∗i we can rewrite (19) as the following error
system:

dψ̃i(t)
dt

=−γ1iσi(t)ψ̃i(t) + γ1iηi

∥∥B�
i Pizi(t)

∥∥2

−γ1iσi(t)ψ∗ (21a)

dφ̃i(t)
dt

=−γ2iσi(t)φ̃i(t) + γ2i

∥∥B�
i Pizi(t)

∥∥
−γ2iσi(t)φ∗ (21b)

Here, we define ψ̃(t) :=
[
ψ̃1(t) ψ̃2(t) · · · ψ̃

N
(t)
]� and

φ̃(t):=
[
φ̃1(t) φ̃2(t) · · · φ̃N

(t)
]�.
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In the following, by (z, ψ̃, φ̃)(t) we denote a solution of
the closed–loop auxiliary time–delay system and the error
system. Then, we can obtain the following theorem.

Theorem 3.1. Consider the adaptive closed–loop auxil-
iary time–delay system described by (20) and (21) with
(18), which satisfies Assumptions 2.1 to 2.3. Then, the
solutions (z, ψ̃, φ̃) (t; t0, z(t0), ψ̃(t0), φ̃(t0)) of the closed-
loop auxiliary time–delay system described by (20) and
the error system described by (21) are uniform bounded
and

lim
t→∞ z(t; t0, z(t0)) = 0 (22)

Proof : For the adaptive closed–loop auxiliary time-delay
system described by (20) and (21), we first define a
Lyapunov–Krasovskii functional candidate as follows.

V (z, ψ̃, φ̃)=
N∑

i=1

z�i (t)Pizi(t)+
1
2
ψ̃�(t)

(
I+µ∗

)
Γ−1

1 ψ̃(t)

+ φ̃�(t)
(
I+µ∗

)
Γ−1

2 φ̃(t)

+
N∑

i=1

N∑
j=1

α−1
i

t∫
t−hij

z�j (τ)zj(τ)dτ (23)

where for each i ∈ {1, 2, . . . , N}, Pi is the solution to
(8), αi is any positive constant, and (I + µ∗) ∈ RN×N ,
Γ−1

1 ∈ RN×N , Γ−1
2 ∈ RN×N are positive definite matrices

which are defined by

(
I + µ∗

)
:= diag

{(
1 + µ∗1

)
, . . . ,

(
1 + µ∗

N

)}
Γ−1

1 := diag
{
γ−1
11 , γ

−1
12 , . . . , γ

−1
1N

}
Γ−1

2 := diag
{
γ−1
21 , γ

−1
22 , . . . , γ

−1
2N

}

Let (z(t), ψ̃(t), φ̃(t)) be the solutions to (20) and (21) for
t ≥ t0. Then by taking the derivative of V (·) along the
trajectories of (20) and (21), and by making use of some
manipulations, it can be obtained that

dV (z, ψ̃, φ̃)
dt

≤
N∑

i=1

{
− z�i (t)Q̃izi(t)

+
(
1 + µ∗i

)[− ηiψ̂i(t)
∥∥B�

i Pizi(t)
∥∥2

+ηiψ
∗
i

∥∥B�
i Pizi(t)

∥∥2
+ 2φ∗i

∥∥B�
i Pizi(t)

∥∥
− 2φ̂2

i (t)
∥∥B�

i Pizi(t)
∥∥2∥∥B�

i Pizi(t)
∥∥ φ̂i(t) + σi(t)

+γ−1
1i ψ̃i(t)

dψ̃i(t)
dt

+ 2γ−1
2i φ̃i(t)

dφ̃i(t)
dt

] }
(24)

where for any i ∈ {1, 2, . . . , N},

Q̃i := Qi − α−1(1 +N)Ii > 0 (25)

Notice that the facts that for any i ∈ {1, 2, . . . , N},
ψ̂i(t) = ψ̃i(t) + ψ∗

i , φ̂i(t) = φ̃i(t) + φ∗i

it follows from (21) and (25) that

dV (z, ψ̃, φ̃)
dt

≤
N∑

i=1

{
− λmin

(
Q̃i

)
‖zi(t)‖2

+
(
1 + µ∗i

)[ 2
∥∥B�

i Pizi(t)
∥∥ φ̂i(t) · σi(t)∥∥B�

i Pizi(t)
∥∥ φ̂i(t) + σi(t)

−σi(t)ψ̃2
i (t)− σi(t)ψ̃i(t)ψ∗

i

−2σi(t)φ̃2
i (t)− 2σi(t)φ̃i(t)φ∗i

] }
(26)

Then, in the light of the inequality of the form

0 ≤ ab

a+ b
≤ a, ∀ a, b > 0

from (26) we can obtain that for all (t, z, ψ̃, φ̃) ∈ R×Rn×
RN ×RN ,

dV (z, ψ̃, φ̃)
dt

≤
N∑

i=1

{
− λmin

(
Q̃i

)
‖zi(t)‖2

+
1
4
(
1 + µ∗i

)
σi(t)

[
8 + |ψ∗

i |2 + 2 |φ∗i |2
]}

(27)

Letting

z̃(t) :=
[
z�(t) ψ̃�(t) φ̃�(t)

]�
ε̄i :=

1
4
(
1 + µ∗i

)[
8 + |ψ∗

i |2 + 2 |φ∗i |2
]

η̄min :=min
{
λmin

(
Q̃i

)
, i = 1, 2, . . . , N

}
we can obtain from (27) that for any t ≥ t0,

dV (z̃(t))
dt

≤ −η̄min ‖z(t)‖2 +
N∑

i=1

ε̄iσi(t) (28)

On the other hand, in the light of the definition, given in
(23), of the Lyapunov–Krasovskii functional, there always
exist two positive constants δmin and δmax such that for
any t ≥ t0,

γ̃1(‖z̃(t)‖) ≤ V (z̃(t)) ≤ γ̃2(‖z̃(t)‖) (29)

Then, in the light of (28) and (29), by employing the
method which has been used in Wu [2004], we can show
that the solutions z̃(t) of (20) and (21) are uniformly
bounded, and that the auxiliary state z(t) converges uni-
formly asymptotically to zero. ∇∇∇

Thus, from Theorem 3.1 we can obtain the following
theorem which shows that by employing the decentralized
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local state feedback controllers described in (10) with
(18) and (19), one can guarantee the zero–tracking errors
between each time–delay subsystem and the local reference
model without time–delay.

Theorem 3.2. Consider the model following problem
of the uncertain large scale time–delay system described
by (1) and (5), which satisfies Assumptions 2.1 to 2.3.
Then, by using the decentralized local state feedback
controllers ui(t) described in (10) with (18) and (19),
one can guarantee that the tracking error ei(t), i ∈
{1, 2, . . . , N}, between each subsystem and local reference
model, decreases uniformly asymptotically to zero.

Proof : From Theorem 3.1, we have shown that each adap-
tive closed–loop auxiliary time–delay subsystem described
by (20) and (21) is uniformly asymptotically stable. That
is, for the auxiliary state zi(t) of each subsystem, we can
obtain that

lim
t→∞ ‖zi(t)‖ = 0, i ∈ {1, 2, . . . , N}

Then, it can easily be obtained from the relationship
between ei(t) and zi(t), i.e. ei(t) = Cizi(t), that each
local tracking error ei(t), i ∈ {1, 2, . . . , N}, also decreases
uniformly asymptotically to zero. ∇∇∇
Remark 3.1. It is well known that though the adaptive
controllers resulting from the adaptation laws with σ–
modification can guarantee the uniform ultimate bounded-
ness of the resulting adaptive closed–loop systems, we can-
not obtain the results that states of the adaptive closed–
loop systems converge always uniformly asymptotically to
zero. In a recent paper Wu [2004], the adaptation laws
with σ–modification have been improved to guarantee an
asymptotic stability results. In this paper, the improved
adaptation laws, described by (19), are extended to the
problem of decentralized robust tracking model following
for uncertain large scale time–delay systems to develop a
class of decentralized memoryless adaptive robust tracking
controllers.

Remark 3.2. In order to illustrate the validity of the
results obtained in the paper, a numerical example is also
given, and the simulation is carried out. It is known from
the results of the simulation that the proposed decentral-
ized local robust tracking controllers can indeed guarantee
that the tracking errors between each subsystem and the
corresponding local reference model decrease asymptoti-
cally to zero in the presence of delayed state perturbations,
uncertain parameters, and external disturbances. (The de-
tails of the illustrative numerical example and the figures
of the simulation will be displayed in the presentation.)

4. CONCLUDING REMARKS

The problem of the decentralized robust tracking and
model following has been considered for a class of uncer-
tain large scale systems including delayed state perturba-
tions in the interconnections. Here, the upper bounds of
the delayed state perturbations, uncertainties, and exter-
nal disturbances are assumed to be unknown. For such
a class of uncertain large scale time–delay systems, we
have proposed a class of decentralized memoryless adap-
tive robust state feedback controllers for robust tracking

of dynamical signals. We have shown that by employ-
ing the proposed decentralized adaptive robust tracking
controllers, one can guarantee that the tracking errors
between each time–delay subsystem and the corresponding
local reference model without time–delay decrease uni-
formly asymptotically to zero.

REFERENCES

K.K. Shyu and Y.C. Chen. Robust tracking and model
following for uncertain time–delay systems. Int. J.
Contr., 62, 589–600, 1995.

S. Oucheriah. Robust tracking and model following of
uncertain dynamic delay systems by memoryless linear
controllers. IEEE Trans. Automat. Contr., 44, 1473–
1577, 1999.

H. Wu. design of memoryless controllers for robust
tracking and model following of uncertain systems with
multiple time delays. IEEJ Trans. Electronics Informat.
Syst., 121, 1268–1276, 2001.

T.H. Hopp and W.E. Schmitendorf. Design of a linear con-
troller for robust tracking and model following. ASME
J. Dyn. Syst. Measurement Contr., 112, 552–558, 1990.

H. Wu. Robust tracking and model following control with
zero–tracking error for uncertain dynamical systems. J.
Optim. Theory Appl., 107, 169–182, 2000.

B. Brogliato and A. Trofino Neto. Practical stabilization
of a class of nonlinear systems with partially known
uncertainties. Automatica, 31, 145–150, 1995.

C.H. Choi and H.S. Kim. Adaptive regulation for a class of
uncertain systems with partial knowledge of uncertainty
bounds. IEEE Trans. Automat. Contr., 38, 1246–1250,
1993.

H. Wu. Continuous adaptive robust controllers guar-
anteeing uniform ultimate boundedness for uncertain
nonlinear systems. Int. J. Contr., 72, 115–122, 1999.

H. Wu. Adaptive stabilizing state feedback controllers of
uncertain dynamical systems with multiple time delays.
IEEE Trans. Automat. Contr., 45, 1697–1701, 2000.

H. Wu. Decentralized adaptive robust control for a class
of large–scale systems including delayed state perturba-
tions in the interconnections. IEEE Trans. Automat.
Contr., 47, 1745–1751, 2002.

H. Wu. Adaptive robust tracking and model following of
uncertain dynamical systems with multiple time delays.
IEEE Trans. Automat. Contr., 49, 611–616, 2004.

S. Shigemaru and H. Wu. Decentralized robust tracking
and model following for uncertain large–scale intercon-
nected systems. J. Optim. Theory Appl., 110, 35–52,
2001.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

6147


