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Abstract: We present an accelerator scheme for use with existing packages that solve nonlinear
programming problems with a large number of inequality constraints that arise in the process of
discretizing continuous-time optimal control problems with state-space constraints. This scheme
is based on the concept of outer approximations used in semi-infinite programming and acts as
an external, active constraints set strategy.
Our scheme constructs a finite sequence of inequality constrained nonlinear programming
problems, containing a progressively larger subset of the constraints in the original problem,
and submits these problems to a nonlinear programming solver for a fixed number of iterations.
We prove that this scheme computes a solution of the original problem and show, by means of
numerical experiments, that it results in reductions in computing time ranging from a factor of
6 to a factor of over 400.
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1. INTRODUCTION

Optimal control problems with state space constraints are
usually solved by discretizing the dynamics, which results
in the conversion of the continuous-time optimal control
problem into a discrete-time optimal control problem with
many inequality constraints. A discrete-time optimal con-
trol problem is a nonlinear programming problem and
hence can be solved by nonlinear programming algorithms.
The distinguishing features of these nonlinear program-
ming problems are (i) the required gradients can be com-
puted using adjoint equations, and (ii) although they have
very large numbers of inequality constraints, relatively few
of these inequalities are active.

An important example of optimal control problems with
state space constraints arises in the control of unmanned
aerial vehicles (UAV’s) using receding horizon control
(RHC). RHC is a form of sample-data control that de-
termines the control to be applied over the next sampling
interval by solving an optimal control problem during the
current sampling interval. The optimal control problems
for RHC control of UAV’s are characterized by large num-
bers of collision avoidance inequalities and by expensive
evaluations of the gradients of these inequality defining
functions. Since potential collisions are confined to rela-
tively short segments of the UAV trajectories, most of the
collision avoidance inequalities are inactive. In the case
of UAV’s, the sampling intervals are short and hence the
viability of the RHC scheme is largely determined by the
speed of the nonlinear programming solvers.

⋆ This work is supported by ARO SWARMS (W911NF-0510219),
ONR MURI (N00014-02-1- 0720), and ARO Phase II STTR
(W911NF-06-C-0192)

Unfortunately, most standard nonlinear programming
packages, including the excellent set found in TOMLAB
Holmström et al. [2006], including SNOPT by Murray
et al. [2002], NPSOL by Gill et al. [1998], Schittkowski
SQP by Schittkowski [1982], and KNITRO 1 by Byrd et al.
[2006], are not designed to exploit the fact that a problem
with a large number of nonlinear inequality constraints
may have few active constraints.

In this paper, we present an accelerator scheme for general
nonlinear programming packages, based on the theory of
outer approximations (see Polak [1997], p. 460), which acts
as an external active constraint set strategy for solving
nonlinear programming problems with a large number of
inequality constraints. This strategy constructs a finite
sequence of inequality constrained nonlinear programming
problems, containing a progressively larger subset of the
constraints in the original problem, and submits them to
a nonlinear programming solver for a fixed number of
iterations. We prove that this scheme computes a solution
of the original problem and show, by means of numerical
experiments, that when applied to UAV control, this
strategy results in reductions in computing time ranging
from a factor of 6 to a factor of over 400. Our new
strategy is particularly effective when used with nonlinear
programming solvers that allow warm starts. It may be
useful to observe that a related strategy in Polak et al.
[2007] for solving semi-infinite minimax problems using
log-sum-exponential smoothing has proved to be equally
effective.

In Section 2 we present a motivational optimal control
example, in Section 3 we state our strategy in the form of

1 KNITRO is a collection of optimization algorithms, and we use
the algorithm option ‘Interior/Direct’ with quasi-Newton symmetric
rank one updates in this paper.
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Fig. 1. Initial trajectory (dashed red) and optimal tra-
jectory (solid blue). Active constraints (constraints
within feasibility tolerance) are marked as ‘*’.

an algorithm and provide theoretical justification for it, in
Section 4 we present numerical results, and our concluding
remarks are in Section 5.

Notation We will denote elements of a vector by super-
scripts (e.g., xi) and elements of a sequence or a set by
subscripts (e.g., ηk). 2

2. OPTIMAL CONTROL EXAMPLE

In order to motivate our approach, consider the following
simple, fixed-time optimal control problem, which consists
of minimizing the sum of the energy used by a UAV and
the square of the distance to a desired destination point.
The UAV trajectory is required to stay out of a circle.
As we will see, while the number of state space constrains
is as large as the number of points used to discretize the
dynamics, only those that touch the forbidden circle are
active. A geometric representation of the constraints is
shown in Fig. 1, which presents the given initial trajectory
and the computed optimal trajectory for the example
below.

For the sake of simplicity, we assume that the UAV flies at
a constant speed v and that the scalar control u determines
the yaw rate of the UAV. In order to state the optimal
control problem as an end-point problem defined on [0, 1],
we rescale the state dynamics using the actual terminal
time T and augment the 3-dimensional physical state with
a fourth component, x4, so that

x4(t) =

∫ t

0

T

2
u2(τ)dτ (1)

represents the energy used. The resulting dynamics have
the form

dx

dt
=











Tv cosx3

Tv sinx3

Tu
T

2
u2











, h(x(t), u(t)) (2)

with the initial state x(0) given. We will denote the
solution of the dynamic equation (2) by x(t, u), with
t ∈ [0, 1]. The optimal control problem now assumes the
form

min
u∈R

f0(u)
△
= x4(1, u) + (x1(1, u) − 10)2 + (x2(1, u) − 10)2,

(3)
subject to:

f t(u)
△
= (x1(t, u) − 5)2 + (x2(t, u) − 5)2 ≥ 22, t ∈ [0, 1].

(4)

In order to solve this problem, we must discretize the
dynamics. We use Euler’s method to obtain

x̄(tk+1) − x̄(tk) = ∆h(x̄(tk), ū(tk)), x̄(0) = x(0), (5)

with ∆
△
= 1/N , N ∈ N, tk

△
= k∆ and k ∈ {0, 1, . . . , N}. We

use an overbar to distinguish between the exact variables
and the discretized variables. We will denote the solution
of the discretized dynamics by x̄(tk, ū), k = 0, 1, . . . , N .
Letting

ū
△
= (ū(t0), ū(t1), . . . , ū(tN−1)), (6)

we obtain the discretized optimal control problem

min
ū∈RN

f̄0(ū)
△
= x̄4(1, ū) + (x̄1(1, ū)− 10)2 + (x̄2(1, ū)− 10)2,

(7)
subject to the constraints

f̄k(ū)
△
= − (x̄1(tk, ū) − 5)2 − (x̄2(tk, ū) − 5)2 + 22 ≤ 0,

k ∈ {1, . . . , N}.
(8)

Clearly, (7), (8) is a mathematical programming problem
which is distinguished from ordinary mathematical pro-
gramming problems only by the fact that adjoint equations
can be used in the computation of the gradients of the
functions fk(·), k = 0, 1, . . . , N .

3. THE ALGORITHM

We now proceed in a more abstract setting. Consider the
inequality constrained minimization problem:
Pq min{f0(η) | f j(η) ≤ 0, j ∈ q}, (9)

where η ∈ R
n, and q , {1, . . . , q}. We assume that

functions f j : R
n → R are at least once continuously

differentiable. In the context of discrete optimal control
problems, η can be either a discretized control sequence or
an initial state - discretized control sequence pair 2 .

Next we define the index set qǫ(η) with ǫ > 0 by

qǫ(η) , {j ∈ q | f j(η) ≥ ψ+(η) − ǫ}, (10)

where
ψ(η) , max

j∈q
f j(η), (11)

2 see Polak [1997] Chapter 4 for a detailed treatment of discrete time
optimal control problems
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and

ψ+(η)
△
= max{0, ψ(η)}. (12)

Definition 1. We say that an algorithm defined by a re-
cursion of the form

ηk+1 = A(ηk), (13)

for solving inequality constrained problems of the form
(9), is convergent if any accumulation point of a sequence
{ηi}

∞
i=0, constructed according to the recursion (13), is a

feasible stationary point. 2

Finally, we assume that we have a convergent algorithm
for solving inequality constrained problems of the form
(9), represented by the recursion function A(·), i.e., given
a point ηk the algorithm constructs its successor ηk+1

according to the rule (13).

Algorithm 2: Active-Set Algorithm for Inequality Con-
strained Minimization Problems.

Data: η0, ǫ > 0, Niter ∈ N

Step 0: Set i = 0, Q0 = qǫ(η0).
Step 1: Set ζ0 = ηi and perform Niter iterations of the
form ζk+1 = A(ζk) on the problem
PQi min{f0(ζ)|f j(ζ) ≤ 0, j ∈ Qi} (14)

to obtain ζNiter
and set ηi+1 = ζNiter

.
Step 2: Compute ψ(ηi+1).
if ζNiter

is returned as a global, local, or stationary
solution of PQi

and ψ(ηi+1) ≤ 0, then
STOP,

else
Compute

Qi+1 = Qi ∪ qǫ(ηi+1), (15)

and set i = i+ 1, and go to Step 1.
end if

Lemma 3. Suppose that ǫ > 0 and that the sequence
{ηi}

∞
i=0, in R

n, is such that ηi → η̂ as i→ ∞. Then there
exists an i0 such that for all i ≥ i0, q0(η̂) ⊂ qǫ(η̂).

Proof. By definition (10), for any j ∈ q0(η̂),

f j(η̂) − ψ+(η̂) ≤ 0. (16)

First suppose that ψ+(η̂) = ψ(η̂) ≥ 0. Then the set q0(η̂)
is nonempty. Since all the functions f j(·) and ψ(·) are
continuous, [f j(ηi)−ψ+(ηi)] → [f j(η̂)−ψ+(η̂)] as i→ ∞.
Hence there must exist an i0 such that for all i ≥ i0 and
j ∈ q0(η̂),

f j(η̂) − ψ+(η̂) ≥ −ǫ, (17)

which proves that for all i ≥ i0, q0(η̂) ⊂ qǫ(η̂).

Next suppose that ψ(η̂) < 0. Then ψ+(η̂) = 0 and the set
q0(η̂) is empty. Since the empty set is a subset of any set,
the desired result follows.

Lemma 4. Suppose that ǫ > 0 and that the sequence
{ηi}

∞
i=0, in R

n, is such that ηi → η̂ as i → ∞ and that
Q = ∪∞

i=0qǫ(ηi) ⊂ q. For any η ∈ R
n, let

ψQ(η̂) = max
j∈Q

f j(η). (18)

If ψQ(η̂) ≤ 0, then ψ(η̂) ≤ 0.

Proof. By Lemma 3, q0(η̂) ⊂ Q. Since by assumption,
f j(η̂) ≤ 0 for all j ∈ Q, it follows that ψ(η̂) ≤ 0.

Lemma 5. Suppose that Q ⊂ q and consider the problem
PQ

min{f0(η)|f j(η) ≤ 0, j ∈ Q}. (19)

Suppose that η̂ ∈ R
n is feasible for Pq, i.e, f j(η) ≤ 0 for

all j ∈ q.

(a) If η̂ is a global minimizer for PQ, then it is also a
global minimizer for Pq.

(b) If η̂ is a local minimizer for PQ, then it is also a local
minimizer for Pq.

(c) If η̂ is a stationary point for PQ, i.e., it satisfies the
F. John conditions in John [1948] (or Theorem 2.2.4,
p. 188 in Polak [1997]), then it is also a stationary
point for Pq.

Proof. Clearly, since η̂ is feasible for Pq it is also feasible
for PQ.

(a) Suppose that η̂ is not a global minimizer for Pq. Then
there exists an η∗ such that f j(η∗) ≤ 0 for all j ∈ q and
f0(η∗) < f0(η̂). Now, η∗ is also feasible for PQ and hence
η̂ cannot be a global minimizer for PQ, a contradiction.

(b) Suppose that η̂ is not a local minimizer for Pq.
Then there exists a sequence {ηi}

∞
i=0 such that ηi → η̂,

f0(ηi) < f0(η̂) and f j(ηi) ≤ 0 for all i and j ∈ q. But this
contradicts the assumption that η̂ is a local minimizer for
PQ.

(c) Since η̂ satisfies the F. John conditions for PQ, there
exist multipliers µ0 ≥ 0, µj ≥ 0, j ∈ Q, such that
µ0 +

∑

j∈Q µ
j = 1,

µ0∇f0(η̂) +
∑

j∈Q

µj∇f j(η̂) = 0 (20)

and
∑

j∈Q

µjf j(η̂) = 0. (21)

Clearly, η̂ also satisfies the F. John conditions for Pq with
multipliers µj = 0 for all j /∈ Q and otherwise as for PQ.

Combining the above lemmas, we get the following con-
vergence result.

Theorem 6. Suppose that the problem Pq has feasible
solutions, i.e., there exist vectors η∗ such that f j(η∗) ≤ 0
for all j ∈ q.

(a) If Algorithm 2 constructs a finite sequence {ηi}
k
i=0,

exiting in Step 2, with i+ 1 = k, then ηk is a global,
local, or stationary solution for Pq, depending on the
exit message from the solver defined by A(·).

(b) If {ηi}
∞
i=0 is an infinite sequence constructed by

Algorithm 2 in solving Pq. Then any accumulation
point 3 η̂ of this sequence is feasible and stationary
for Pq.

Proof. (a) If sequence {ηi}
k
i=0 is finite, then, by the

exit rule, it is feasible for Pq and it is a global, local, or
stationary solution for PQi

. It now follows from Lemma
4, that it is also a global, local, or stationary solution for
Pq.
(b) Since the sets Qi grow monotonically, and since q
is finite, there must exist an i0 and a set Q ⊂ q, such

3 A point η̂ is said to be an accumulation point of the sequence
{ηi}

∞

i=0
, if there exists an infinite subsequence, indexed by K ⊂ N,

{ηi}i∈K , such that ηi

K
−→ η̂. as i

K
−→ ∞
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that Qi = Q for all i ≥ i0. Next, it follows from the fact
that A(·) is convergent, that for any accumulation point η̂,
ψQ(η̂) ≤ 0 and hence, from Lemma 4 that ψ(η̂) ≤ 0, i.e.,
that η̂ is a feasible point for Pq. Since for any accumulation
point η̂, by Lemma 3, q0(η̂) ⊂ Q, it now follows from
the fact that A(·) is convergent and Lemma 5 that any
accumulation point η̂ is stationary for Pq.

4. NUMERICAL RESULTS

All numerical experiments were performed using MAT-
LAB V7.2 and TOMLAB V5.5 Holmström et al. [2006] in
Windows XP, on a desktop computer with an Intel Xeon
3.2GHz processor with 3GB RAM. Optimization solvers
tested in this paper were the Schittkowski SQP algorithm
with cubic line search Schittkowski [1982], NPSOL 5.02
Gill et al. [1998], SNOPT 6.2 Murray et al. [2002], and
KNITRO Byrd et al. [2006]. It should be clear from the
form of Algorithm 2, that our strategy benefits consid-
erably from warm starts of the nonlinear programming
solvers to be used after constructing the active set Qi.
Hence it is desirable to use solvers with as extensive a
warm start capability as possible, so that one can trans-
mit the last value of important information from the
last iteration of a solver on the problem PQi

as initial
conditions for solving the problem PQi+1

. SNOPT allows
the user to provide initial variables and their states and
slack variables. NPSOL allows the user to provide initial
variables and their states, Lagrange multipliers, as well as
an initial Hessian approximation matrix for quasi-Newton
updates. conSolve, the TOMLAB implementation of the
Schittkowski SQP algorithm, allows the user to provide
an initial solution vector and initial Hessian matrix ap-
proximation. KNITRO allows the user to provide only the
initial solution vector. For maximum efficiency, this data
must be saved at the end of the i−th run and transmitted
as initial data for the i+ 1-th run of the solver.

As we will see from our numerical results, the performance
of Algorithm 2 is much more sensitive to the parameters
Niter and ǫ when using a solver, such as KNITRO, that
has minimal warm start features, than when it is using a
solver with extensive warm start features.

4.1 Single UAV Example

Our first set of results are for the optimal control problem
(7), (8) described in Section 2, with initial state x0 =
(0, 0, π/4, 0). All computations were initialized using the
control ū0 = 8 × 10−311×N . The Parameters used in
the numerical experiments were T = 25, v = 0.5, and
N = 64, thus there were 64 inequality constraints (8) in
the discretized optimal control problem.

The numerical results are summarized in the Tables 1 -
4. In these tables, Ngrad, the total number of gradient
evaluations, and tCPU , the total CPU time for achieving an
optimal solution using Algorithm 2, are defined as follows:

Table 1. External Active-Set Strategy with
Schittkowski SQP Algorithm, Single UAV Ex-

ample.

ǫ Niter iT f0
Ngrad |Q| tCP U %Raw

1 10 13 5.0367 7996 27 46.4 109.3
1 20 5 5.0367 5953 21 32.8 77.3
1 30 3 5.0367 3112 16 17.8 41.8

0.1 10 10 5.0367 1478 8 11.2 26.5
0.1 20 6 5.0367 1757 8 12.9 30.4
0.1 30 3 5.0367 986 8 7.59 17.9

0.01 10 12 5.0367 1114 5 10.4 24.4
0.01 20 5 5.0367 752 6 7.06 16.6
0.01 30 4 5.0367 676 5 7.55 17.8

Raw 5.0367 9600 64 42.5 100

Table 2. External Active-Set Strategy with
NPSOL, Single UAV Example.

ǫ Niter iT f0
Ngrad |Q| tCP U %Raw

1 10 11 5.0367 3214 16 18.2 38.0
1 20 5 5.0367 2625 16 14.2 29.7
1 30 3 5.0367 2113 16 11.3 23.5

0.1 10 12 5.0367 1578 8 10.5 22.0
0.1 20 6 5.0367 1411 8 9.05 18.9
0.1 30 4 5.0367 1465 8 9.17 19.1

0.01 10 12 5.0367 915 5 7.30 15.2
0.01 20 7 5.0367 920 5 7.32 15.3
0.01 30 5 5.0367 808 5 6.73 14.0

Raw 5.0367 11136 64 47.9 100

Table 3. External Active-Set Strategy with
SNOPT, Single UAV Example.

ǫ Niter iT f0
Ngrad |Q| tCP U %Raw

1 10 9 5.0367 2196 16 12.7 50.5
1 20 6 5.0367 1871 16 10.5 41.7
1 30 2 5.0367 893 16 4.87 19.4

0.1 10 7 5.0367 732 8 4.96 19.8
0.1 20 6 5.0367 808 8 5.43 21.6
0.1 30 2 5.0364 794 7 5.16 20.6

0.01 10 9 5.0367 575 5 4.64 18.5
0.01 20 6 5.0367 395 5 3.43 13.7
0.01 30 5 5.0367 500 5 4.29 17.1

Raw 5.0367 5760 64 25.1 100

Ngrad =

iT
∑

i=0

|Qi| ×

{

number of gradient function calls
during i-th inner iteration

}

tCPU =

iT
∑

i=0

[

{

CPU time spent for
i-th inner iteration

}

+

{

CPU time spent for
setting up i-th inner iteration

}

]

.

(22)

In the above, and in the tables, iT is the value of the
iteration index i at which Algorithm 2 is terminated by the
termination tests incorporated in the optimization solver
used. Also, %RAW , the percentage of tCPU with respect
to the computation time with the raw algorithm, i.e. using
the solver with the full set of constraints (shown in the last
row of each table), is used in tables.

Observations.

• For all solvers, there exist parameter pairs of ǫ and
Niter which result in more than an 80% reduction in

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

14298



Table 4. External Active-Set Strategy with
KNITRO, Single UAV Example.

ǫ Niter iT f0
Ngrad |Q| tCP U %Raw

1 50 60 5.0369 48689 16 301 1187
1 75 1 5.0367 770 11 5.23 20.6
1 100 1 5.0367 770 11 5.19 20.5

0.1 50 2 5.0367 492 7 4.72 18.6
0.1 75 2 5.0367 492 7 4.72 18.6
0.1 100 2 5.0367 492 7 4.79 18.9

0.01 50 4 5.0367 376 5 5.62 22.1
0.01 75 4 5.0367 376 5 5.57 22.0
0.01 100 4 5.0367 376 5 5.59 22.0

Raw 5.0367 5568 64 25.4 100

total CPU time, as compared to using these solvers
without our active-set strategy.

• When using an optimization solver without an ex-
tensive warm start functionality, the performance of
Algorithm 2 is much more sensitive to the value of
Niter than when using a solver with an extensive
warm start functionality. Thus with SNOPT and
NPSOL, Algorithm 2 is not very sensitive to the
values of Niter. With conSolve, Algorithm 2 yields
better performance when Niter ≥ 10 is given. With
KNITRO, Algorithm 2 does not work at all well with
Niter ≤ 40, but it was possible to achieve an 80%
reduction in computing time (similar to the other
solvers), as compared to the direct use of KNITRO,
with proper values of Niter and ǫ. (Table 4).

4.2 Multi-UAV Example

The next example consists of controlling multiple UAVs.
Suppose that we have Na UAVs, each with the same
dynamics as (2), and we want them to stay in a circular
region centered at the origin, without incurring any colli-
sions. The stay-in-a-circle constraints are described by the
following equations:

f t,i
bnd(ui)

△
= x1,i(t, ui)2+x2,i(t, ui)2 ≤ r2bnd, t ∈ [0, 1], (23)

where i ∈ {1, 2, . . . , Na} denotes the UAV index. The
collision avoidance constraints are given by

f t,(i,j)
ca (ui, uj)

△
= (x1,i(t, ui) − x1,j(t, uj))2

+ (x2,i(t, ui) − x2,j(t, uj))2 ≥ r2ca,

t ∈ [0, 1],
(24)

where (i, j) is an element of the set of all 2-combinations
of the index set {1, 2, . . . , Na}. After discretization, as in
the previous example, the constraints become

f̄k,i
bnd(ūi)

△
= x̄1,i(t, ūi)2+x̄2,i(t, ūi)2 ≤ r2bnd, k ∈ {1, . . . , N},

(25)
and

fk,(i,j)
ca (ūi, ūj)

△
= (x̄1,i(k, ūi) − x̄1,j(k, ūj))2

+ (x̄2,i(k, ūi) − x̄2,j(k, ūj))2 ≥ r2ca,

k ∈ {1, . . . , N}.
(26)

Finally, we obtain the following discretized optimal control
problem for the multi-UAV example:

min
ūi∈RN , i∈{1,...,Na}

f̄0(ū)
△
=

Na
∑

i=1

x̄4,i(1, ūi) (27)

Table 5. External Active-Set Strategy with
Schittkowski SQP Algorithm, Eight-UAV ex-
ample. ‘*’ indicates that no meaningful data is
available since the algorithm returns without
obtaining a solution after i = 100 iterations.

ǫ Niter iT f0
Ngrad |Q| tCP U %Raw

1 10 74 10.635 1.1E6 1196 16573 55.1
1 20 22 2.0452 102133 258 1841.3 6.12
1 30 19 3.0388 112905 299 2192.4 7.28

0.1 10 71 3.2144 223197 334 3932.0 13.2
0.1 20 53 3.4327 221146 244 4212.3 14.0
0.1 30 42 2.9046 171308 190 3695.9 12.3

0.01 10 64 2.8008 51016 91 1429.5 4.75
0.01 20 82 4.2251 266843 144 5687.7 18.9
0.01 30 100 * * * * *

Raw 4.1973 2.6E6 2304 30105 100

subject to the dynamics of each UAV and the constraints
(25) and (26). The total number of inequality constraints
in this problem is NNa(Na − 1)/2 +NNa.

The dynamics of the UAV’s are nonlinear and the non-
collision constraints are non-convex. Hence this problem
has many local minima. Consequently, the solution trajec-
tory may depend on the initial control and on the evolution
of the active sets during computation.

For numerical experiments, we set rbnd = 4, rca = 1,
T = 25, N = 64 and Na = 8, resulting in 2304 nonlinear
inequality constraints. The initial conditions and initial
controls for each agent are set as

x1
0 = (2.5, 2.5, π, 0), ū1

0 = −1.25 × 10−111×N

x2
0 = (−2.5, 2,−π/2, 0), ū2

0 = 1.25 × 10−111×N

x3
0 = (−2.5,−2.5,−π/4, 0), ū3

0 = 1.25 × 10−111×N

x4
0 = (2,−2.5, π/2, 0), ū4

0 = 2.50 × 10−111×N

x5
0 = (2.5, 0, π/2, 0), ū5

0 = 2.50 × 10−111×N

x6
0 = (−2.5, 0,−π/2, 0), ū6

0 = 1.25 × 10−111×N

x7
0 = (0, 3,−3π/4, 0), ū7

0 = 1.25 × 10−111×N

x8
0 = (0,−3, π/4, 0), ū8

0 = −2.50 × 10−111×N .
(28)

Fig. 2 shows a locally optimal solution for this problem.
There are only 16 active constraints at the end. These
are all associated with staying in the circle; there are
no active non-collision constraints. When properly ad-
justed, Algorithm 2 accumulates fewer than 16 constraints.
Consequently, the reduction in the number of gradient
computations is huge, and the savings in CPU time is
more dramatic than in the single UAV case. There exist
parameter pairs with conSolve and KNITRO that achieve
more than 95% savings in computation time. As can be
seen from our tables, in several cases using NPSOL and
SNOPT, our algorithm used less than 1/400 of the CPU
time required by NPSOL or SNOPT to solve the example
problem directly, i.e., using the full set of constraints.

5. CONCLUSION

We have presented an external active-set strategy for
solving discrete-time optimal control problems with state-
space constraints, using nonlinear programming solvers.
Our numerical results show that this strategy results in
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Fig. 2. Initial trajectory (dashed red) and an optimal tra-
jectory (solid blue). Bounding circular region is rep-
resented by the dotted blue circle. Active constraints
(constraints within feasibility tolerance) are marked
as ‘*’ and initial positions are marked as ‘o’.

Table 6. External Active-Set Strategy with
NPSOL, Eight-UAV example

ǫ Niter iT f0
Ngrad |Q| tCP U %Raw

1 10 17 2.1366 28392 214 397.3 0.50
1 20 14 2.1601 46012 229 716.68 0.90
1 30 12 2.1256 66952 239 1072.2 1.34

0.1 10 21 1.7028 11549 64 223.24 0.28
0.1 20 17 1.7028 18001 64 335.97 0.42
0.1 30 14 1.7028 19698 60 374.66 0.47

0.01 10 20 1.7028 5654 31 137.25 0.17
0.01 20 19 1.7028 11888 34 268.34 0.34
0.01 30 19 1.7028 15199 34 339.93 0.43

Raw 2.6809 7.1E6 2304 79817.2 100

Table 7. External Active-Set Strategy with
SNOPT, Eight-UAV example

ǫ Niter iT f0
Ngrad |Q| tCP U %Raw

1 10 10 2.0874 10840 177 156.81 0.48
1 20 10 2.0897 12503 162 179.88 0.55
1 30 10 2.0840 14923 165 211.98 0.65

0.1 10 20 2.0838 12165 81 205.04 0.63
0.1 20 19 2.0838 13458 81 228.25 0.70
0.1 30 20 2.0838 14471 81 239.79 0.74

0.01 10 18 1.7028 3142 34 70.043 0.22
0.01 20 18 1.7028 3189 34 70.680 0.22
0.01 30 18 1.7028 3189 34 70.744 0.22

Raw 4.1381 3.2E6 2304 32425.7 100

considerable savings in computer time. In our examples,
the savings ranged from a factor ranging from 6 to 9, on
a problem with 64 constraints, to a factor ranging from
around 20 to a factor around of 400 on a problem with
2304 constraints. The results depend on the nonlinear
programming solver. There is reason to believe that the
larger the number of inequalities in the discrete-time
optimal control problem, the larger the computational
savings will be. This observation is consistent with the
two examples presented in this paper. Finally, it should
be obvious that one can add refinements to our algorithm,
such as restarting it after a certain number of iterations,

Table 8. External Active-Set Strategy with
KNITRO, Eight-UAV Example.

ǫ Niter iT f0
Ngrad |Q| tCP U %Raw

1 100 100 * * * * *
1 200 100 * * * * *
1 300 100 * * * * *

0.1 100 100 * * * * *
0.1 200 23 1.7028 183058 71 3495 7.8
0.1 300 15 1.7028 74569 67 1636 3.7

0.01 100 100 * * * * *
0.01 200 17 1.7028 32389 34 893.8 2.0
0.01 300 17 1.7028 32389 34 898.8 2.0

Raw 3.7896 4343040 2304 44728 100

so as to avoid accumulating constraints that are not close
to being active at the solution.
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