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Abstract: This paper deals with methods and experiences of incorporating a priori knowledge into 
mathematical models of industrial processes and systems. Grey box modelling has been developed in 
several directions and can be grouped into branches depending on the way a priori knowledge is handled. 
In this paper we divide grey box modelling into the following branches; constrained black box 
identification, semi-physical modelling, mechanistic modelling, hybrid modelling and distributed 
parameter modelling. Experiences from case studies demonstrate the different branches of grey box 
modelling procedures. In the applications, the grey box models have been used for model based control, 
soft sensors, process supervision and failure detection. Further, distributed parameter modelling presents a 
specific challenge in that it is difficult to distinguish model reduction errors from model-data 
discrepancies. By estimating the model reduction error and forming hypothesis tests based on the 
estimate, the problem can be dealt with effectively. Copyright © 2008 IFAC 
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1. INTRODUCTION 

Modelling of industrial processes is traditionally based on 
white box modelling or black box identification. White 
box modelling implies that the model is constructed using 
scientific relations that completely describe the process. 
Black box identification employs a parametric model, 
which is adapted to measured data obtained from 
experiments on the process.  

For many industrial processes, there exists some, but 
incomplete knowledge concerning the system. This 
implies that between the white box models and the black 
box models, there is a grey zone which gives a third way 
of making models of engineering systems, (Bohlin, 1991). 
In this approach a priori knowledge concerning the process 
is used and unknown parts of  the model are estimated 
from measured data. The idea behind grey box modelling 
can be formulated as “don’t estimate what you already 
know but test your knowledge against experimental data”. 

The choice of modelling method depends on several 
factors. Besides the type of a priori process knowledge 
available, the purpose of the model decides what kind of 
modelling approach that should be used. For example, the 
objective of the model can be model based control, 
simulation, supervision or failure detection. Further, the 
possibility to make designed experiments may also 

influence the choice of modelling approach, since black 
box identification needs more “informative” measurement 
data than the grey box modelling method.  

This paper focus on in what way a priori knowledge can be 
incorporated into a grey box model and is divided into five 
main branches. The first branch, constrained black box 

identification, emanates from the black box identification 
frame, where a priori knowledge is incorporated as 
constraints on the model parameters. A second approach, 
semi physical modelling, makes use of case specific 
nonlinear transformations of measured input/output 
process signals. These new transformed signals are then 
used to estimate unknown parameters of a conventional 
black box model.  

A third branch, mechanistic modelling, starts with a basic 
model originating from mathematical relations, given by 
first principles equations. The model is expanded to a 
wider structure mainly by hypothesis testing and using 
information about the residuals. A fourth branch, hybrid 

modelling, separates the model into a white box part, 
modelled by means of first principles equations, and a 
black box part modelled using neuro-fuzzy or other 
methods. A fifth branch considers distributed parameter 

systems. A specific challenge in calibrating and validating 
PDEs is that of distinguishing between model reduction 
errors and model-data discrepancies. 
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2. GREY BOX MODELLING BRANCHES 

The distinction between the grey box modelling branches, 
in terms of the way a priori knowledge is included in the 
model, is not crisp. The branches defined here are 
considered to cover the main directions using a priori 
knowledge to form model structures of physical systems. 
 
2.1 Constrained Black Box Identification 

Constrained black box identification uses a black box 
model where specific parameters are constrained based on 
physical relations. The reason is that a linear black box 
model may give inconsistent parameter estimation due to 
noisy and few measurements.  

A basis for this approach is that a simple continuous model 
can be transformed into a corresponding discrete time 
model. Known restrictions of the continuous model such 
as process stability and step response can be used to define 
limits on the static gain and the time constants, which are 
imposed on the parameters of the discrete model, 
(Tulleken, 1991) and (Murakemi and Seborg, 2000).  This 
grey box approach allows a relatively straightforward 
extension to also include stochastic aspects. 

For nonlinear processes, neuro-fuzzy models can be used 
to model nonlinearities. Lindskog and Ljung (2000) 
incorporate a priori knowledge as static monotonic gain 
curves where the model is given by fuzzy model 
structures. The authors show how a fuzzy model can be 
parameterized by using triangular membership functions. 
Aguirre et al. (2004) present a procedure that permits the 
use of steady state information to constrain the 
identification procedure of nonlinear dynamic black box 
models. The procedure includes a general framework that 
relates the steady state function to the corresponding 
model terms and parameters. It is shown that the resulting 
model always will have the specified static nonlinearity. 

 
2.2 Semi Physical Modelling 

When the process exhibits significant nonlinear behaviour, 
linear black box models give poor correspondence 
between the process and the model behaviour. For cases 
where first principle modelling is not feasible, it can be 
possible to make use of physical insight to transform the 
input and outputs variables to new variables which are 
used as regressor to develop a linear black box model. 

The name semi physical modelling is in some papers 
referred as a modelling procedure based on first order 
principles, but we follow the definition given by Lindskog 
and Ljung (1994), where physical insight is used for 
nonlinear transformation of measured data. 

For cases when the nonlinear steady state characteristic is 
known it is possible to use Hammerstein models, Wiener 
models or feedback block oriented models. For such cases, 
simple identification procedures have been developed by 
Pearson and Pottman (2000). 

 

2.3 Mechanistic Modelling 

For cases where a fundamental insight into the 
mechanisms that underlie the behavior of a process exists, 
relevant balance equations can be formulated as a set of 
first order equations (Stephanopolus, 1984). In the 
simplest case only some parameters in the model are 
unknown and have to be estimated from measured data. In 
the general case, the initial model structure formulated 
based on physical insight must be refined to match the 
experimental data.  

A systematic approach to grey box mechanistic modelling 
is given in Sohlberg (1998). The activity to develop a 
mechanistic grey box model is considered as an object 
oriented procedure, which consists of basic modelling, 
experiments, estimation, expanded modelling and model 
appraisal. 

An approach to derive a designer’s guide for iterative 
development of grey box models is given in Bohlin (1994). 
The guide focuses on the situation when the uncertainty of 
a priori knowledge and the quality of the measured data 
are such that a model contains other stochastic elements 
than measurement errors. 

 
2.4 Hybrid Modelling 

Hybrid modelling separates the model into a white or a 
grey box part, which is modelled by means of first 
principles equations, and a completely black box part, to 
be identified using measured data. The black box part is 
entered either as a serial or parallel part. The serial method 
typically aims at modelling a specific physical part of the 
process model, see Fig. 1. 

The parallel approach is used to extend an approximate 
first principle model with a general black box part, which 
compensate for the simplifications in the approximated 
model, see Fig. 2. 

 

Fig. 1 Serial approach 

 

Fig. 2 Parallel approach 
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Thompson and Kramer (1994) employ neural networks to 
model the black box part. They conclude that the a priori 
knowledge is important when the white/grey box part is 
formulated. If this part of the model misfits, the hybrid 
model will perform poorly. 

In addition, Lith et al. (2002) make use of first principles 
relations where unknown black box parts are described by 
fuzzy logic models. Wang et al. (2002) incorporate 
spoken/written information from experts or operators, 
local linear models and measured data into a modelling 
framework, which they describe as fuzzy hybrid 
modelling.  

 

2.5 Distributed Parameter Modelling 

Spatially distributed phenomena are important in many 
chemical and biochemical processes, and include for 
instance any process involving mass or energy transport by 
convection or diffusion. For such processes, a priori 
knowledge will result in a model structure involving 
partial differential equations (PDE).  

A common approach to calibrate and validate PDE models 
is to perform an a priori spatial discretization so as to 
obtain an ODE model, (Funkquist, 1997) and (Liu, 2005). 
However, as pointed out in Liu (2005) and (Liu and 
Jacobsen, 2004) there are several potential pitfalls with 
this approach. First, if the physically derived PDE model 
structure is completely replaced by an approximate ODE 
model, then important information about the underlying 
process has been discarded. On the other hand, if the ODE 
model is used only for calibration and validation, then the 
model error introduced by spatial discretization can easily 
lead to falsely validated PDE models. As a simple example 
of the latter, (Liu and Jacobsen, 2004) show how finite 
difference discretization introduces artificial diffusion 
effects in the ODE model, artefacts that can not be 
distinguished from the physical diffusion modelled in the 
PDE structure.  

Liu (2005) propose a grey-box identification scheme for 
distributed parameter systems based on integrating the 
spatial discretization with calibration and validation of the 
ODE model. The integration is made feasible by 
estimating the model error imposed by discretization and 
formulating simple hypothesis tests relating the parameters 
of the discretization mesh to the estimated error. The 
method ensures that there is no interference between 
model reduction errors and model-data discrepancies.  

 
3. APPLICATIONS 

Four different applications are presented to illustrate the 
different branches of grey box modelling. A more 
comprehensive and detailed presentation of grey box 
modelling for the corresponding systems is given in the 
references.  The purpose of this chapter is to exemplify the 
stipulated branches. 

 

3.1 Pickling Process 

3.1.1 Process Description 

After hot rolling in the steel industry, the oxide scale on 
the surface of the steel strip has to be removed before 
further processing of the steel strip, for instance cold 
rolling. Removal of oxide is carried out within the pickling 
process, where the steel strip passes through a bath of 
hydrochloric acid. Ferrous salt and water is formed when 
the oxide is dissolved in the acid. This means that 
hydrochloric acid is consumed. 

The pickling process consists of four pickling tanks and 
there is a cascade flow of pickling solution counter-current 
to the direction of strip movement, see Fig. 3. The 
consumption of hydrochloric acid to dissolve the oxide is 
unknown but depends on the concentration of acid, strip 
velocity, strip width and strip thickness. 

 

Fig. 3 Pickling process 

 

3.1.2 Grey Box Modelling 

The process consists of flow dynamics, mixing of liquids 
with different concentrations and chemical reactions where 
hydrochloric acid is consumed.  

Application of the principle of mass balance for the liquid 
gives a mechanistic grey box model of the volume in each 
tank. Further, according to the principle of mass balance, 
the hydrochloric acid in each tank is modelled as mixing of 
different flows and consumption of hydrochloric acid. This 
model will be a hybrid grey box model where the 
consumption of hydrochloric acid is modelled as a black 
box part given by general continuous functions s(x,u,θ). 
The grey box model is presented in (Sohlberg, 2005). 

w)u,x(gy

v)),u,x(s,u,x(f
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(1) 

where x is the state vector consisting of the concentrations 
and volumes of the tanks. The input vector u consists of 
the input flow of fresh acid, strip velocity, strip width and 
strip thickness. The vector θ consists of unknown 
parameters and y is the output vector consisting of the 
measured concentration in the tanks and the volume of the 
reservoir. The variables v and w are process and 
measurement noise. 
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The unknown parts s(x,u,θ) is approximated by means of 
Taylor series, where the series consist of the constant 
s(x0,u0) and the partial derivatives calculated at the 
stationary point, (x0, u0). Note that x and u are vectors and 
that the series includes higher order terms to make the 
parts valid within a wider range than a linear 
approximation. In equation (2) below the unknown partial 
derivatives are represented by θ. 
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(2) 

To find the relevant parameters of the Taylor series, a 
model which consists of only the constant terms is used to 
form a basic model. The Taylor series is then expanded by 
one parameter separately. The parameter which decreases 
the loss function most during parameter estimation is 
included in the model, provided that the decrease is 
significant according to the Likelihood test, (Rao, 1973).  

 

3.1.3 Outcome of the Grey Box Model 

The main advantages of using the Taylor series expansion 
method compared to other nonlinear black box models, for 
example neural networks, is the possibility to keep the 
number of estimated parameters low. The model is also 
expanded to incorporate stochastic parts besides 
conventional noise acting on the states and measurements. 

The pickling line is a bottle neck in the production line. 
The system is simulated using a model predictive 
controller where both the flow of fresh acid and strip 
velocity are used as control variables, (Sohlberg, 2007). 
The simulation using a grey box model shows that it is 
possible to increase the production by approximately 15% 
and still keep the concentrations in the tanks within 
acceptable limits. The simulation also shows the 
importance of using the strip velocity as a control variable 
in addition to the currently used fresh acid. 

Further, the relevant parts of the Taylor series can be used 
to explain the behaviour of the process and provide ideas 
for further investigations concerning design and control of 
the pickling process, (Sohlberg, 2005).  

 

3.2 Rinsing Process 

3.2.1 Process Description 

The rinsing process is also a part of a steel strip pickling 
line. After the pickling process, the strip passes a rinsing 
process to rinse the strip from hydrochloric acid. Via the 
steel strip, the acid is transferred from the pickling process 
into the first rinse tank, see Fig. 4. Within the rinsing 
process, the strip is rinsed by a circulated flow of rinse 
water.  

After each rinse tank, the steel strip passes between a pair 
of squeezer rolls. They are there to reduce the amount of 
liquid transferred via the strip. The rolls are rubber-
surfaced iron rolls and are the parts that are liable to wear 
out. If the rolls become worn out, the risk of an 
insufficiently clean strip is impending. Clean water is fed 
into the last rinsing tank to dilute the rinse liquid in this 
tank; otherwise the concentration of hydrochloric acid 
would become too high. An equivalent amount of rinse 
liquid flows to the next tank. 

 

Fig. 4 Rinsing process 

 

3.2.2 Grey Box Modelling 

The grey box mechanistic modelling procedure is applied 
and is based on the principle of mass balance where flows 
with different concentration are mixed in each rinsing 
tanks. The unknown parts of the system consist of the flow 
via the strip after passing the squeezer rolls.  A systematic 
way of finding a model describing the flow via the strip is 
presented in Sohlberg (1998). To find the model, we make 
use of the knowledge that the steel strip makes an imprint 
on the squeezer rolls surface of rubber.  This gives a 
feasible model of the flows as: 

α−⋅+⋅= )iBtofftu(vuiKtwuvuiKbiFb                     (3) 

 α=1 if Bt > Btoffi else α=0 

Where uv, uw and ut are the strip velocity, strip width, strip 
thickness and Kbi, Kti, Btoffi are unknown estimated 
parameters for the flow after squeezer roll No i.  Equation 
(3) says that there is a considerable flow besides the strip 
which is dependent on the strip thickness. 

 

3.2.3 Outcome of the Grey Box Model 

An Extended Kalman Filter based on the mechanistic grey 
box model is used to estimate both the process states and 
the unknown parameters describing the flow passing the 
squeezer rolls. The flow is a measure of the condition of 
the squeezer rolls and is used to advice the process 
operators which rolls are worn and should be exchanged at 
the next planned stop for maintenance. 

Besides of using the grey box model for supervision of 
wearing parts, the grey box model shows that the process 
depends on another variable, strip thickness, which was 
not known before the project started. 
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3.3 River Flow System 

3.3.1 Process Description 

The system is a part of a river between two power stations 
with a distance about 12 km, see Fig. 5. The water flows 
through the turbines are not measured but is a result of 
generation of electrical energy, which depends on the 
demands for energy during day and night. The water level 
is measured at five places along the route. The river flow is 
also influenced by inflow from small rivers along the river, 
rainfall, evaporation and melting snow. 

One of the difficulties in controlling the water levels is that 
there is no basin between the two power stations. Another 
difficulty is the backwater effect due to the slope of the 
river being less than 0.01 percent, (Chow et al., 1988). 
Consequently, upstream propagation must be considered 
when the river is controlled and the water levels 
considered along the river cannot be controlled 
independently of each other; a change in the water flow 
will influence all levels considered in a complex way. 
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Fig. 5 Schematic outline of the river section 

 

3.3.2 Grey Box Modelling 

There is a nonlinear relationship between the produced 
energy, P(k), height of fall, ∆y(k) and water flow the 
turbines, u(k).  
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Applying the principle of mass balance gives an 
approximate linear relation between the water flows and 
water levels. This model is transformed to a discrete 
version, which corresponds to a linear ARMAX model 
given by equation (5) below. Restrictions on time constant 
and steady state gain on the continuous model are imposed 
on the discrete version. The grey box model is presented in 
(Sohlberg and Sernfält, 2002). 

)k(e)q(C)k(u)q(B)k(y)q(A
111 −−−

+=                        (5) 

In eq. (5), y(k) is a vector of the measured water levels at 
three locations along the river. The input u(k) is a vector 
consisting of the water flows trough the turbines at the 
corresponding water power stations, calculated from eq 
(4). The variable e(k) represents white noise. 

Hence, the grey box modelling procedure for the river 
system is based on both the semi physical modelling 
procedure and restricted black box identification. 

3.3.3 Outcome of the Grey Box Model 

The river system is characterised by constraints on the 
water levels and water flows, time delays and measurable 
disturbances. Simulation based on grey box model shows 
that it is possible to control the river so the water levels 
vary less than during manual control. Further; the water 
level at the power stations be can be maintained at a higher 
level than during manual control, which means that about 
5% more electric power can be produced with the same 
amount of water flow. 
 
3.4 Chromatography 

3.4.1 Process Description 

Chromatography is a separation method widely used for 
analysis and product purification in the chemical and 
biochemical industry. A chromatography column consists 
of a column packed with solid material. A liquid 
containing the components to be separated is injected at 
one end of the column, and as the liquid moves through the 
column the components get adsorbed and diffuse into the 
packing material. Since different molecules are adsorbed 
differently, the effective speed through the column will 
differ significantly between the different components, 
resulting in a separation at the outlet.  
 

3.4.2 Grey Box Modelling 

A mechanistic dynamic model for a component in the 
liquid can be derived from a mass balance in the axial 
direction. 
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Standard Robin and Neuman conditions are employed at 
the boundaries. The adsorption to the stationary phase is 
described by so-called Langmuir sorption kinetics 

qk)qq(ck
t

)t,z(q
desmLads −−=

∂

∂
                                   (7) 

Model (6) - (7) is known as a kinetic dispersive model in 
the chromatography literature. A more frequently 
employed model structure, the equilibrium dispersive 

model, is obtained by assuming that the adsorption process 
is in equilibrium at all times. The assumption is that the 
effect of the sorption dynamics is essentially identical to 
that of diffusion, and hence can be modelled by the 
diffusion term in (6).  

The grey-box modelling in Liu (2005) employs a finite 
element discretization of (6) and the mesh density is used 
to ensure that the model reduction errors do not to interfere 
with possible model-data discrepancies. Since the model 
reduction error depends on the parameter fit, the mesh 
selection is integrated with the calibration and performed 
in an iterative manner.  
 
 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

11419



3.4.3 Outcome of the Grey-Box Model 

The grey-box modelling reveals that the commonly 
employed equilibrium dispersive model can not be used to 
describe the effects of the sorption dynamics in 
chromatography. Thus, the common assumption that the 
impact of sorption dynamics on the component separation 
is similar to that of diffusion is incorrect. This has 
important consequences both for modelling and design of 
chromatography processes. 
 

4. CONCLUSIONS 

Grey box modelling is based on a priori knowledge about 
the process. The type of process knowledge available is 
case dependent and it is therefore difficult to generalize. 
This paper divides the grey box methodology into five 
branches.   

Constrained black box identification uses physical insight 
to constrain the model parameters which are estimated 
using measured data.  

Semi-physical modelling makes use of physical insight to 
transform the input and outputs variables to new variables 
which are used as regressor in a linear black box model. 

For cases when there exists a fundamental insight into the 
mechanisms of the underlying behaviour of a process, a 
mechanistic grey-box modelling procedure consists of 
basic modelling, experiments, estimation, expanded 
modelling and model appraisal. 

Hybrid modelling separates the model into a white or a 
grey box part, modelled by means of first principles 
equations, and a completely black box part, to be identified 
using measured data. 

Distributed parameter modelling presents a specific 
challenge in that it is difficult to distinguish model 
reduction errors from model-data discrepancies. By 
estimating the model reduction error and forming 
hypothesis tests based on the estimate, the problem can be 
dealt with effectively. 
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