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Abstract: Nonlinearities degrade considerably performances in motion control systems. Nonlinear friction is a major 
source of many serious problems such as wear, tracking errors and limit cycles. There has been an extensive research 
activity dealing with the design of compensating techniques. The approaches cited in the litterature can be divided 
into: free model compensation or model based compensation strategy.  In the present work, a dynamic fuzzy 
modeling approach of a servo system with friction is developed. The main idea is to take advantage of the linear form 
of the resulting dynamics to design: 1- a friction observer used as a compensating term of friction effects, 2- a stable 
tracking controller that allows the system to achieve a trajectory involving slow motions and velocity reversal. The 
proposed control method is relatively simple to design and efficient for the compensation of friction induced errors. 
The experimental tests on a robot joint control have demonstrated precise motion control and smoother velocity 
reversal in the presence of significant level of friction. 

 

1. INTRODUCTION 

In general, mechanical nonlinearities have a negative impact 
on performances of servo systems; for this reason, modelling 
and compensating nonlinearities have been a topic of  
special interest in motion control systems.  Friction is one of 
these hard nonlinearities that are unavoidable, undesirable 
and challenging for control engineers (Armstrong-Helouvry 
et al., 2004). Special care has been made for modelling, and 
several approaches have been adopted to deal with their 
effects such as: variable structure and high stiff gains control 
techniques (Li et al., 2004) and other depending on models 
and their ability to reproduce the nonlinearity. Adaptive 
control techniques were also used to cope with the varying 
nature of these nonlinearities due to various effects such as: 
temperature, load and even wear (Lischinsky et al., 1999).  

Friction is usually modelled as a discontinuous static map of 
velocity. Static models are often restricted to Coulomb and 
viscous friction components or described by the Stribeck 
curve (Stribeck et al., 1902). Many other models have been 
developed to describe better friction phenomenon (Swevers et 
al., 2000). Mainly based on experimental observations, there 
are several dynamic models that provide a reliable 
description of the phenomenon (Canudas de Wit et al., 1995); 
they include many interesting characteristics such as: 
frictional lag, Dahl effect (Dahl et al., 1968). However, their 
good capability to describe friction makes them at the same 
time very complicated, and even showing a hybrid nature that 
have been treated in (Choi et al., 2006), this results in a more 
complex model of the system and has negative impact on the 
identification effort, parameters estimation and the control 
design itself.  One can also note that other models giving less 
precise description of friction can have serious problems in 

compensating friction induced errors especially at low 
velocities. 

In the following work, we first start by adopting a local 
approach a dynamic fuzzy model of the robot joint with 
friction is developed (Mostefai et al., 2007). After that, 
conventional experiments to identify the parameters of local 
models are conducted on a robot joint. The proposed control 
strategy is basically divided into two actions based on: first, a 
linear tracking controller; then, a nonlinear friction estimator-
compensator based on local modelling approach in section 2. 
Local stability of the overall system is verified for the 
designed controller. Finally, experimental results allowed us 
to verify the efficiency of the proposed control method.     

2. SYSTEM DESCRIPTION: LOCAL MODELING 

Since this work focuses on friction compensation, all other 
nonlinearities acting on the robot joint are assumed to have 
no effects on the dynamics.  We consider a single joint robot 
with the mathematical model given by: 

 
τ=+ FqJ &&   (1) 

 
where J denotes a constant inertia, F the nonlinear dynamic 
friction. q, q&  and q&&  are the acceleration, velocity and 
position, respectively.  

Friction is locally modelled as dynamical linear state space 
system changing with velocity of the joint; it has two main 
actions: a part related to velocity characterized by a damping 
nature, and a second part related to the displacement 
characterized by a stiff nature. 
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i indicates the local velocity range. iσ : is a local stiff 
coefficient of friction torque. id : local damping coefficient. 

iσ and id  are kept constant for low velocity for simplifying 

the design of the proposed control. 
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σα is a 

very important parameter that characterizes the model 
dynamics and stability.  

minF : is a positive value of the lower identified level of 
friction for 0>q& , we will use a symmetric values of friction. 

The influence of this parameter on the overall controlled 
system will be evaluated later in section 3.  The linear time 
invariant resulting model allows local analysis and design of 
the compensator of friction and its effects. We should note 
that the introduced internal state z is a non-measurable 
quantity, though it has an important role in the system 
description and the overall compensator design. The 
equivalent model of friction can be formulated using fuzzy 
inferences (Takagi et al., 1995) 
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And since the stiffness and the damping coefficient will be 
fixed, then we have: 

qdzF 00 += σ   (4) 

 

Assuming that only friction parameters are varying with 
velocity, the state space local model of the robot joint with 
friction 
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One of the most sensitive steps is the identification of local 
parameters. Common experiments are conducted to 
determine each parameter (Lantos et al., 2007); the process 
can be summarized in the following steps: 

1- For the presliding regime, where the input torque level is 
lower than the break-away torque, the Dahl curve can be 
plotted and the parameter 0σ is then deduced (Fig. 1). 

2- For slow motions regime, and specially at low velocities 
where friction is characterized by the Stribeck effect and 
the torque has neither a pure stiff nature nor a pure 
damping nature but a mix of both effects, the position of 
the robot joint is controlled by low gains PD 
compensator under constant velocities (Fig. 2). 

3- For higher velocities, friction has a linear damping 
nature: the viscous friction. 

In this work, we are more concerned with the first two cases, 
where friction is highly nonlinear, and can be source of stick-
slip motions and performance degradation. The parameters 
identified on the robot joint are given in appendix A.  

By applying a standard fuzzy inference method to the 
identified local parameters, i.e. using a singleton fuzzifier, 
product fuzzy inference and center average defuzzifier, the 
robot joint model with friction can be written across the 
overall operating domain 
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Fig. 1.  Micro-displacement regime identified in the robot 
joint in the sticking mode  
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Fig. 2. Friction levels in the velocity reversal area, showing a 
high nonlinearity and asymmetry. 
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The number of the local models used in the proposed 
structure has to increase to give a precise description (Wang 
et al., 1992). In that case, we should note that all parameters 
in (4) would vary for different velocities. This model will be 
used in the design of a stable friction compensator  
 

3. COMBINED COMPENSATOR-CONTROLLER 
DESIGN 

First, let us define the filtered tracking error as 

 
eeeQr λ+== &)(  (7) 

 
where qqe r −=  is the position error, qqe r &&& −=  the position 
error variation, 0>λ  is a positive gain characterizing the 
controller dynamics. 

The structure of the servo system model in (4) and (5) allows 
us to propose a control algorithm based on two actions: first a 
compensating input based on local estimated friction 

 
rlqzz ii .ˆˆ −+= && α   (8) 

 
 and second a Proportional Derivative action for achieving 
tracking control of the overall system, giving the following 
local control input,  

 
IF iqq && =  

 THEN 

qdzKrqJ r &&& 00 ˆ +++= στ    (9) 

  
The tracking performance can be verified by substituting the 
control signal (8) and (9) into the robot joint model (5).  

 

 

 

 

 

 

 

 

 

 

 

 

The error model is then obtained 

 
EAE i=&   (10) 

 
with [ ]TeezE &~=   as the error vector and, 

 
and the matrix characterizing its stability 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−

=

m
K

m
K

m

ll
A

iii

i
λσ

λα

.
100

.

0

     for     iqq ≈   (11) 

 
In case of perfect friction compensation, the model is 
linearied and the tracking control problem can be converted 
to a classical PID tracking of a linear servo system. Since it is 
not true for real plants, we have to consider error dynamics 
by introducing the compensation term plus the tracking 
controller, and choose the gains K and il of the controller that 
make the error dynamics stable and ensure its convergence to 
zero. That means gains that yield eigen values of iA with 
negative damping. 

The analysis of the effect of the controller on local stability 
starts from the model at very low velocities where 0≈iα  
(fig. 4), once the gain of the controller K is fixed first to a 
certain value that stabilize the system with li= 0 for the entire 
operating domain. The observer gains li can be then chosen in 
the stable regions according to the equivalent velocity of the 
model of friction, the goal is to ensure good performances 
without compromising the stability of the system. The 
observer gains will be tuned during experiments in order to 
improve the tracking performances. 

The local stability is guaranteed by the design method. In the 
region of mixed dynamics, where two different models are 
interacting, we can see the problem as two weighted stable 
systems interconnected to each other.  

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3. Proposed control scheme for tracking enhancement for servo system using local modelling approach of friction. 
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Fig. 4.a Map of damping values variations of one real pole in 
(10), at very low velocities, the darkest region in blue has 
value of -0.04 using the parameter identified in the robot 
joint.  
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Fig. 4.b Map for damping values of the 2 complex poles in 
(10), at low velocities. The dark blue is equivalent to 
negative damping. 

The interpolation process is linear, thus the dynamics of the 
state matrix characterizing the stability inside the mixed 
region can be written by  
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Using the properties of the weighting functions and the 
design parameters to ensure local stability, the eigen values 
of (12) can be calculated and local stability between two 
successive regions can be checked. Compared to some 
methods using one fixed gain for all the operating range of 
the system with friction (Canudas de Wit et al., 1995), the 
gain scheduling used in the compensator (9) combined with 
the estimation mechanism (8), allow flexibility in the design, 
enhanced tracking performances, and avoiding a high control 
input specially at very low velocities. 

The parameters used in the compensator design were 
identified in robot joint. The model used for the friction 
compensation is tuned during experiments. We should note 
that the reference trajectory make the system going into a 
severe regime of slow motions and reversal velocities. 
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Fig. 5.a Map of damping of one real pole in (10) at higher 
velocities. The darkest region in blue has the same value as 
in the model for very low velocities. 
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Fig. 5.b Map for damping of the 2 complex poles of (10) at 
very low velocities. The regions in dark blue give negative 
damping. 

4. EXPERIMENTAL RESULTS AND EVALUATION 

Experiments were performed on a joint of FANUC robot in 
order to evaluate the proposed control strategy. The 
experimental setup as shown in (fig. 6) consisted of: a PC 
700 MHz operating system RT-LINUX. The PC connected 
by an optical cable to a digital servo adapter that ensures 
signals interfacing between the PC and a servo amplifier 
module.  The control algorithm is implemented in C language.   
The reference trajectory makes the robot joint go through the 
low velocities region and velocity reversal. 

 

 

 

 

 

 

Fig. 6 Experimental setup for the robot joint control. 
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The robot joint will be operating at low velocities region and 
performing reversal many reversal velocities during the 
experiments (f = 0.1Hz).  
The results in (fig. 7), (fig. 8) and (fig. 9) shows the tracking 
error and the joint position with reference (13). After 
compensation, it is clear that, the RMS tracking error is 
reduced more than 10 times. This confirms the effectiveness 
of the use of the combined action of the observer -controller.  
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Fig. 7.a tracking error without friction compensation. 
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Fig. 7.b without friction compensation: position of the robot 
(in black) joint tracking a reference trajectory (12) (in dotted 
grey). 
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Fig. 8.a tracking error under proposed friction compensation 
scheme without compensating gains 
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Fig. 8.b with fuzzy model as compensor: position of the robot 
joint (in black) tracking a reference trajectory (12) (in dotted 
grey).  
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Fig. 9.a tracking error under proposed friction compensation 
scheme with compensating gains 
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Fig. 9.b position of the robot joint (in black) tracking a 
reference trajectory (12) (in dotted grey).  

In case only the fuzzy model is used (fig.8), better results can 
be reached by using more local models, this require more 
parameters to identify which give the advantage to the use of 
compensating gains for the observer to reduce the estimation 
error between two known local models. 

5. CONCLUSIONS 

This paper proposes a local design approach applied to a 
robot joint tracking control for friction compensation. The 
control is based on a fuzzy model of nonlinear friction. 

eRMS =0.0142 rad 

eRMS = 0.0020 rad 

eRMS =0.0233 rad 
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Stability analysis of the overall controlled system was used 
for choosing local observer gains. Experiments on robot joint 
show the effectiveness of the proposed method. Further 
developments are to be done in the parameters modelling and 
a design of a robust compensation scheme, and the extension 
to other applications such us disk drive control and traction 
control systems.  
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Appendix A. Identified and designed parameters 

iF (N.m) -0.02,-0.08,0,0.06,0.015 

0σ  980 

0d  0.05 

J (kg.m2) 0.001 
K  0.1 

λ  25.0 

iq& (rad/s) -1,-0.2,-0.002,0,0.002,0.2,1 

iK  0,0.1,0.05,0.01,0.05,0.1,0 
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