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Abstract: The partial loss of actuator effectiveness is considered for the control of a class of nonlinear 
processes in the presence of a fault. Not only unmatched uncertainties, but also matched uncertainties are 
discussed in Lyapunov stability sense. The partial loss of actuator effectiveness is approximated by high 
order neural networks. Application of the proposed design indicates that the fault compensation control 
law is effective for a nonlinear fermentation system. 

 

1. INTRODUCTION 

The study of fault diagnosis and fault-tolerant control has 
attracted much attention (Patton et al. (2000) and Zhang  et al. 
(2004)), due to the industrial demands for safety and 
efficiency. For certain processes, it is important not only to 
detect (and identify) but also to accommodate any faults 
quickly. Fault-tolerant controls have been developed to keep 
such processes in control, in spite of the occurrence of a fault. 
For most control systems the faults can be seen in their 
actuators, sensors, and systems themselves. The purpose of 
fault detection and diagnosis (FDD) is to use available inputs, 
outputs, and operating points of the systems to detect faults. 
Once the faults are detected, fault diagnosis should be 
performed so as to locate the fault and also give a good 
estimation of fault sizes. (Zhang  et al. (2002)).  
 
In terms of fault-tolerant control, various techniques have 
been developed which can be roughly classified into passive 
and active fault-tolerant control schemes. The former is 
‘similar’ to robust control while the latter can be regarded as 
a reinforced nonlinear control in the sense that control 
structures and parameters are improved so as to realize a 
reliable operation of concerned closed-loop systems before a 
scheduled repair is made. (El-Farra et al. (2005)). 
 
In an active fault-tolerant control, faults are accommodated, 
typically by a reconfiguration of the feedback control law. 
Faults are typically associated with sensors and actuators 
failures; accordingly, respective compensation strategies can  
be designed. For example, sensor fault compensations for 
MIMO systems have been discussed by Tortora et al. (2002).  
 
Adaptive approaches  have  also  been  used  in  fault  tolerant 
 

control. For example,  an adaptive compensation  method for  
actuator faults with known plant dynamics has been 
formulated by Zhang et al. (2004) and Sastry and Isidori 
(1989); Idan (2001) presents an intelligent fault tolerant flight 
control system design method that blends aerodynamic and 
propulsion actuation for safe flight operation in the presence 
of actuator failures by utilizing redundancy. The actuator and 
component faults are combined and denoted as a nonlinear 
function (Zhang and Qin (2007)). The partial loss of actuator 
effectiveness are considered and represented as ( )I u−Γ  
with the fault parameter Γ  in this paper. Specially, not only 
unmatched uncertainties, but also matched uncertainties are 
discussed. 
  
Based on neural networks which are capable of 
approximating, with arbitrary accuracy, any real continuous 
function on a compact set, the partial loss of actuator 
effectiveness is approximated by the neural networks. Then 
an adaptive compensation control law is formulated to ensure 
the system stability. 
 
The remainder of the paper is organized as follows. The 
problem statement and its assumptions are given in section 2, 
followed by the formulation of our controller and its relevant 
proofs in section 3. An illustrative example is given in 
section 4 to demonstrate the effectiveness of the proposed 
method. Finally, conclusions are drawn in section 5. 

2. PROBLEM STATEMENT 

The following actuator fault model is adopted in this paper 
(Veillette 1995): 1, ,i m= ， 1, ,j L=  
        (1 ) ( ), 0 1C j j j j

ij i i i i iu u t= − Γ ≤ Γ ≤ Γ ≤ Γ ≤              (1) 
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where j
iΓ  is an unknown constant. Here, the index j  denotes 

the j th fault mode and L  is the total fault modes. Let C
iju  

represent the signal from the i th actuator that has failed in 
the j th fault mode. For every fault mode, j

iΓ  and j

iΓ  

represent the lower and upper bounds of j
iΓ , respectively. 

Note that, when j

iΓ = j

iΓ =0, there is no fault for the i th 

actuator iu  in the j th fault mode. When j

iΓ = j

iΓ =0=1, the 

i th actuator iu  is outage in the j th fault mode. When 

0 1j j j

i i iρ≤ Γ ≤ ≤ Γ ≤ , in the j th fault mode the type of 
actuator faults is loss of effectiveness. Denote 
 
            1 2[ , , , ] ( ) ( )C C C C j

ij j j mju u u u I u t= = − Γ  
 
where 1 2[ , , , ]j j j j

mdiagΓ = Γ Γ Γ , 1, 2, ,j L= . 

Considering the lower and upper bounds ( , )j j

i iΓ Γ , the 
following set can be defined  
 

1 2{ [ , , , ],j

j j j j j
mN diag

ρ
= Γ Γ = Γ Γ Γ  

}j j j j
i i i iorΓ = Γ Γ = Γ  

 
For all fault modes L , the uniform actuator fault model 
 

1 2( ) , { , , , }L
Fu I u= − Γ Γ∈ Γ Γ Γ  

 
where Γ  can be described by  
 

         1 2[ , , , ]mdiagΓ = Γ Γ Γ .                             (2) 
 
Consider a system described as: 
 

( ) ( ) ( )[( ( ) ) ( )]x x x G x I t T u g xζ ζ β= + Δ + − − Γ + Δ         
(3) 

where ,n mx R u R∈ ∈ are the state and input of the system, 
respectively, ( )xζΔ  and ( )g xΔ  are the  model uncertainty in 
the normal operation. The normal system, in the absence of 
any faults, is described by    
 
              ( ) ( ) ( )[ ( )]x x x G x u g xζ ζ= + Δ + + Δ             (4) 
 
The fault matrix Γ  is multiplied by a switching function 

( )t Tβ − , 
 

1 2( ) ( ( ), ( ), , ( ))mt T diag t T t T t Tβ β β β− = − − −                        
                                               

where  
 

0
( ) ,   1, 2, ,  

1i

if t T
t T i m

if t T
β

<
− = =

≥
⎧
⎨
⎩

, 

 
where T  is the fault occurrence time. The problem 
considered is as follows: 
Fault compensation (FC) problem: Given system (1), design 
a control Nu  for the normal system, and an additional control 

Fu  for fault compensation, so that N Fu u u= +  as the new 
control after the occurrence of a fault can guarantee the 
resulted closed-loop nonlinear system to be stable.  
 
The following assumptions are used.  
Assumption 1: There exists ( )au u x=  and Lyapunov 

function ( )V x , such that 
 

2 2

1 2( ) ,k x V x k x≤ ≤                                             

( )
2

3

4

( ) ( )
( ) ( ) ( )

                                          ( )

aV x V x
x G x u x k

x x
k V x

ζ
∂ ∂

+ ≤ −
∂ ∂

≤ −

                (5) 

 
where 1 2 3 4,  ,  ,  k k k k  are positive constants. 
 
Assumption 2:  For system (1) 
 

( ) ( )g x xξΔ ≤                                                     (6) 
 

( )
( ) ( )

TV x
x x

x
ζ ρ

∂
Δ ≤

∂
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 

where 

( )
( )

( )
( )T

x

V x
G x

x

ρ

∂

∂

 is continuous,  ( )ξ •  and ( )ρ •  are 

known and continuous. 
 
Remark 1: From Assumption 2, we have ( ) 0xρ = , if  
 

( )
( ) 0T V x

G x
x

∂
=

∂
⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

 

3. FAULT COMPENSATION 

The partial loss of actuator effectiveness can be approximated 
by the neural networks. Then system (3) can be rewritten as: 
 

*( ) ( ) ( )[ ( ) ( ) ( )]x x x G x u W S x x g xζ ζ ε= + Δ + + + + Δ    (7) 
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where, *( ) ( ) ( )x f x W S xε ε= − ≤  is the estimation  error. If  
we denote W  as the estimate of the uncertain weight matrix 

*W , then 

   
( ) ( ) ( )[ ( ) ( )

      ( ) ( )]
x x x G x u WS x WS x

x g x
ζ ζ

ε

= + Δ + − + +

+ Δ
 

                                                                                               (8) 
where *W W W= −  and it has the appropriate dimension. 

( )S x  is a vector with ( )iS x , 1, 2, ,i L= . Here, 
( )

( ) [ ( )] j

i

l i

i jj J
S x s x

∈
=∏  with iJ , 1, 2, ,i L=  and ( )jl i  is 

nonnegative integers. Because *W  is bounded, we assume 
*

WW M< . 
 
Theorem 1: Under Assumptions 1 and 2, we can design a 
controller in the form of the following: 
 

N Fu u u= +                                       (9) 
a b c

Nu u u u= + +   

where Nu  is the control law of “healthy” systems (4) and 

Fu  is the fault compensation. And  au  is given by 
Assumption 1, and let   

  
( )

( ) 0T V x
E x G x

x
∂

= =
∂

⎧ ⎫
⎨ ⎬
⎩ ⎭

, 

   
( )

( )
( )

,
( )

( )

0,

T

b
T

V x
G x

x x x E
V xu G x

x

x E

ξ

∂

∂− ∉
∂=
∂

∈

⎧
⎪
⎪
⎨
⎪
⎪
⎩

,                (10) 

  

( )2

( )
( )

,
( )

( )

0,

T

c
T

V x
G x

x x x E
V xu G x

x
x E

ρ

∂
∂− ∉

∂=
∂

∈

⎧
⎪
⎪
⎨
⎪
⎪
⎩

 ,                (11) 

 

2 2

1

( )

[1 ( ) ] [1 ( ) ]
N N

F

WS x u u
u

G x G xλ λ

Θ
= +

+ +
                    (12).                     

                                                                              
Where n LR ×Θ∈  and [ , 0, , 0]TθΘ = . Then, the state x  is 
ultimately consistently bounded by the set: 
 

( ) 2
0 0

0 1

: , 1n k
D x R v x k

k k
μ
α

= ∈ ≤ ≤ ≤
⎧ ⎫
⎨ ⎬
⎩ ⎭

,                (13) 

 
 

with the following adaptive weight update law  
 

            
( )

( )

0
0

0
0

2

2

T
W

T
W

v
k S x if W M

xW
v

W k S x if W M
x

β

∂
<

∂=
∂

− + ≥
∂

⎧
⎪⎪
⎨
⎪
⎪⎩

         (14) 

           0
1 0

v
k

x
θ γ θ

∂
= − +

∂
                       (15) 

 
The parameters of 1 1 2, , , , ,k kλ λ α μ  can be determined 

as in the proof. The novelty of this paper is that fault 
compensation controller is clearly given after faults occur. 
The main contributions of this paper are the design of the 
corrective control law of nonlinear system with unmatched 
and matched uncertainties, and the stability analysis of the 
closed-loop system in the presence of the fault modeling 
errors is proposed. 
 
Proof: step 1  
Substituting the controller Eqs. (9-12) into system (1), we 
have: 

 
( ) ( ) ( )[ ( )]a b cx x x G x u u u g xζ ζ= + Δ + + + + Δ  

 
Define a positive function 0 ( ) ( )v x V x= , then we have: 

 

0

( )
( ) ( ) ( ( ) ( ) )

( )
( ) ( )( ( ))

( )
( ) ( ( ) ( ) )

T a

T b

T c

V x
v x x G x u

x
V x

G x u g x
x

V x
x G x u

x

ζ

ζ

∂
= + +

∂
∂

+ Δ +
∂

∂
Δ +

∂

 

 
From Assumption 1, we have 
 

        
2

3

( ) ( )
( ) ( ( ) ( ) )T aV x V x

x G x u k
x x

ζ
∂ ∂

+ ≤ −
∂ ∂

        (16) 

 
From Assumption 2 and the structure of )(xu b , we 
have 
 

( )
( ) ( )( ( ))T bV x

G x u g x
x

∂
+ Δ =

∂
 

( )
( ( ) ) ( ( )) 0T T b

i

V x
G x u g x

x
∂

+ Δ =
∂

    

when x E∈ , and 
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( )

( )

( )

( )
( ) ( )( ( ))

( )
( )( )

( ) ( )( ( ))
( )

( )

( ) ( )
( )( ) ( ) ( ) ( )

( ) ( )
( )( ) ( ) ( ) ( )

0 ,

T b

T

T

T

T T T

T T T

V x
G x u g x

x
V x

G xV x xG x x g x
V xx G x

x

V x V x
G x x G x g x

x x

V x V x
G x x G x g x

x x

ξ

ξ

ξ

∂
+ Δ

∂
∂

∂ ∂= − + Δ
∂∂
∂

∂ ∂
= − + Δ

∂ ∂

∂ ∂
≤ − + Δ

∂ ∂

≤

 

 
when x E∉ . Hence  
 

        
( )

( ) ( )( ( )) 0T bV x
G x u g x

x

∂
+ Δ ≤

∂
                 (17) 

 
From Assumption 2 and structure of )(xu c , we have 
 

( )
( ) ( ( ) ( ) )

( )( )
( ) ( ) ( ( ) )

( )
( ) ( ) ( ) 0 ,

T c

T T T c

i

T

V x
x G x u

x
V xV x

x G x u
x x

V x
x x

x

ζ

ζ

ζ ρ

∂
Δ +

∂

∂∂
= Δ +

∂ ∂

∂
≤ Δ ≤ =

∂

 

 
 when x E∈ , and 
 

( )
( ) ( ( ) ( ) )

( )
( ) ( )

T c

T

V x
x G x u

x
V x

x
x

ζ

ζ

∂
Δ +

∂

∂
= Δ

∂

 

2 2

1

( )

[1 ( ) ] [1 ( ) ]
F

WS x
u

G x G xλ λ

Θ
= +

+ +
 

  
where nRΘ∈  and [ , 0, , 0]TθΘ = . When x E∉ . Hence  
 

   
( )

( ) ( ( ) ( ) ) 0T cV x
x G x u

x
ζ

∂
Δ + ≤

∂
              (18) 

 
Thus, we obtain  

 

              
2

0 3

( )
( )

V x
v x k

x

∂
≤ −

∂
                             (19) 

From (19), the stability of the normal system is proven. 
 

 
 

Proof: step 2:  
 
Define a Lyapunov function for system (1) of the following 
form: 

 

        ( ) ( ) { } 2
0 0

1 1
, ,

2 2
TV x W k v x tr W Wθ θ= + +          (20) 

 

with θ θ ε= − , then the derivatives of V  is  

     
( )

( ) ( )

{ }

0
0

0 0
0 0

0 0
0

{ ( ) ( ) ( )[

( )]} ( ) ( )

( ) ( )

a b c

F

T

v
V k f x f x G x u u u

x
v v

g x k G x u k G x WS x
x x

v v
k G x WS x k G x x

x x

tr W W

ε

θθ

∂
= + Δ + + + +

∂
∂ ∂

Δ + − +
∂ ∂

∂ ∂
+ +

∂ ∂

+

 

 
 (21) 

Using (14), we obtain 
 

( )0 0
0 0 0 0( ) ( )Fv v

V k v k G x u k G x WS x
x x

∂ ∂
= + +

∂ ∂
 

( ) { }0
0 ( ) T

W

v
k G x x I tr W W

x
ε β θθ

∂
+ − +

∂
 

 
where WI  is the indicator function of W , and it satisfies 

 
1

0
W

W
W

if W M
I

if W M

≥
=

<

⎧
⎨
⎩

                            (22) 

 
Choosing 

                              0

2 02

k s

k sk
λ

β
≥

−
,                            (23) 

 

0
1

0 2 1 02

k

k k k
λ

γ
≥

−
 ,                       (24) 

                                  

  
2 2

0

22
s k

k
β > ,                                          (25) 

 

  0
1

22
k
k

γ >                                       (26) 

 
By using Eq.  (5) from Zhang and Qin (2007) we have 
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               ( )
2 2 2 20 3 4 1

0
3

2 2 21

2 2

2
2W

k k kV v x W
k

M

β γξ θ ξ

γβ ε ξ

≤ − − − +

+

    (27) 

therefore  V Vα μ≤ − + ,  with 3 4
1

3

min , ,
k k

k
α β γ=

⎧ ⎫
⎨ ⎬
⎩ ⎭

, 

                   2 212
2WM
γ

μ β ε= +                               (28) 

 
Integrating both sides of (36) yields 
 

              ( ) ( )0 , 0tV t V e tαμ μ

α α
−≤ + − ∀ ≥⎡ ⎤

⎢ ⎥⎣ ⎦
              (29) 

 
Due to (27), it can be deduced that ( ) ( ),, W x xx θ  are 
bounded consistently. From (20), we have 
 

                      ( )0 0k v x V≤                                        (30) 
 

Therefore,  
 

 ( ) ( )0

0 0

1
0 ,tv x V e

k k
αμ μ

α α
−≤ + −⎡ ⎤

⎢ ⎥⎣ ⎦
0.t∀ ≥               (31) 

 
The above completes the proof that x  is ultimately 
consistently bounded by the set D . 
 

4. ILLUSTRATION EXAMPLE 

The fermentation process is assumed to operate at a constant 
volumeV , with the dynamics of biomass X , substrate S , and 
toxin concentration tC , described by the follows (Zhang and 
Qin (2007)): 
Defining the state as [ ]T

t
x X S C= , and the input 

/u F V= , the state equations become: 
 

               
1/ 3

( / )

t
t

dX

dt X X
dS

M y X S u
dt

qX C
dC

dt

μ

μ

−

= − + + −

−

⎡ ⎤
⎢ ⎥

⎡ ⎤ ⎡ ⎤⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦

⎢ ⎥
⎣ ⎦

           (32) 

 
Using the data in Table 1, we can find:  

    
1

1
1/ 3
1

0.5
( ) 1.4

0.6

x
x x

x
ζ = −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, 
1

2

3

( )
x

G x x
x

−

= −

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                 (33) 

. The parameters of , ,y q M  and V are given in Table 1 for 
the process. 
 

Table 1: Fermentation model parameters 
 

Volume                                 V           200[l] 
Constant                                y           0.417 
Constant                                M          0.0196 
Toxin production constant     q            0.0296[l/h(g/l)2/3 

 
 
The possible fault modes considered are once one of the 
actuator is outage, the maximum loss of effectiveness of the 
actuator is 80%. The fault case here is that at the beginning, 
the first actuator becomes loss of effectiveness of 70%. 
The main contribution of the paper is theoretical in nature. In 

the fermentation example, let 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=Δ
1

2

2

13

2
2
2

211
sin2)(
x

x

x

ex

ex
exx

xg

θ

θ
θ

, 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=Δ
2
13

2
2
1

1
2
12
sin
cos

)(

x

x
x

x

θ

θ
θθ

ζ , )2,2(1 −∈θ  and )1,1(, 32 −∈θθ  are the 

uncertainty parameters. In this example, a radial basis 
function (RBF) network is chosen to represent the dynamic 
changes after the fault occurrence, with 10 hidden nodes and 
10 centers that are distributed uniformly in region [-1,1].  
Choose xexx 22)( =ξ , 2

12)( xx =ρ , 2
0 xxxv T == . Then the 

control input is:  
 

2 / 3
1 20.4 0.9au x x= − +  

2

1 2 3

2
1

1 22 2 2 1/ 2
1 2 3

3

2 0 0 0

0

2
0 0

( )

0

0

x
b

c

x e x and x and x
u

otherwise

x
x and x

x x x

u and x

otherwise

− ≠ ≠ ≠
=

− ≠ ≠
+ +

= ≠

⎧⎪
⎨
⎪⎩
⎧
⎪
⎪⎪
⎨
⎪
⎪
⎪⎩

          

0( )
0.005 0.005

F WS x
u

θ

= +

⎡ ⎤
⎢ ⎥
⎣ ⎦ , 

 
In the simulation, taking the weight adaptive law: 

0
02 ( )Tv

W k S x
x

∂
=

∂
,  

0
00.0025

v
k

x
θ θ

∂
= − +

∂
, 
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and the set ( )
⎭
⎬
⎫

⎩
⎨
⎧

≤≤≤∈= 15.0,6.1: 0
0

0 k
k

xvRxD n  

We choose 0 0.7k = , the control result is shown in Fig 1. 
From Fig. 1, the three states of systems converge to zero, 
which indicates that the fault compensation control law is 
effective. 
 

0 1 2 3 4 5 6 7 8 9 10
-1

-0.5

0

0.5

1

1.5

2

 
 

Fig. 1  State responses of systems  

 

5. CONCLUSION 

This paper presents a fault compensation scheme for a class 
of uncertain nonlinear systems with actuator faults. The 
proposed scheme combines an adaptive estimator with an 
adaptive feedback control law that provides corrective action 
following faults. An active fault-compensation control law 
has been developed to ensure the closed-loop stability for a 
class of nonlinear systems. The partial loss of actuator 
effectiveness are considered and represented as ( )I u−Γ  
with the fault parameter. Lyapunov techniques are used to 
analyze closed-loop stability, and the results are applied to a 
bioreactor example. 
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