
Model Based Predictive
Networked Control Systems

Ahmet Onat, A Teoman Naskali, ∗ Emrah Parlakay ∗∗

∗ Sabanci University, Faculty of Engineering and Natural Sciences,
Istanbul 34956, Turkey; e-mail: onat@sabanciuniv.edu,

naskali@su.sabanciuniv.edu
∗∗Alcatel-Lucent, 2280 GG Rijswijk-Zh, The Netherlands,

e-mail:emrah.parlakay@alcatel-lucent.com.tr

Abstract:
Networked control systems where the sensors, controller and actuators of a digital control system
reside on different computer nodes linked by a network, aim to overcome the disadvantages of
conventional digital control systems at the application level, such as difficulty of modification,
vulnerability to electrical noise, difficulty in maintenance and upgrades. However random
communication delay and loss on the network may jeopardize stability since the communication
delay decreases the phase margin of the control system and data loss can be considered as noise.
In this project, we propose a novel networked control method where satisfactory control is
possible even under random delay and data loss. We keep a model of the plant inside the
controller node and use it to predict the plant states into the future to generate corresponding
control outputs. At every sampling period the states of the model are reset to the actual or
predicted states of the plant. The ambiguity of plant state during periods of total communication
loss are also addressed.
The proposed model based predictive networked control system architecture is first verified
by simulation on the model of a DC motor under conditions of data loss and noise. Then
experiments are repeated on a dedicated test platform using a physical DC motor. Results show
that significant amounts of data loss and delay can be tolerated in the system before performance
starts to degrade.

1. INTRODUCTION

A Networked Control System (NCS) is a feedback control
system where the control loop is closed over a commu-
nication network consisting of actuators, sensors and con-
trollers, each of which are computer nodes on the network.
Actuators and sensors generally also have some compu-
tational capability. This distributed structure is advanta-
geous because of its inherent flexibility, reconfigurability
and reduced vulnerability to noise and calibration errors.

In a NCS, sensor nodes have the task of measuring one
or multiple plant outputs and transmitting the measured
values over the network. Actuator nodes have the task of
applying commanded values received over the network to
the plant by means of suitable actuators. Controller nodes
use the plant outputs that they receive from sensor nodes
to calculate control outputs by a control algorithm and
send them to the actuator nodes to be applied to the plant.
The data that travels over the network is encapsulated in
packets.

The complexity of design and the communication delays
are drawbacks of NCS’s. With the addition of a commu-
nication network in the feedback control loop, the com-
plexity of analysis and design for a NCS increases because
delay in the control loop has to be accounted for. There are
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essentially three kinds of delays in a NCS which are depen-
dent on the network scheduling policy and are generally
not constant or bounded in common network protocols:
Communication delay between the sensor node and the
controller node that has occurred during sampling instant
tk : τsc(tk), computation delay in the controller node
that has occurred during sampling instant tk : τc(tk), and
communication delay between the controller node and the
actuator node that has occurred during sampling instant
tk : τca(tk). The length of the transfer delay depends on
network load, priorities of the ongoing communications,
electrical disturbances and various other factors. Sensor
and actuator nodes also have some computational load and
therefore some delays that can be expressed respectively
as τs(tk) and τa(tk), but these delays can be considered as
fixed and the sensor node calculation delay can be included
in τsc(tk) and the computation delay at the actuator node
can be included in τca(tk). The total delay from sensing to
actuation is the sum of the above delays:

τ(tk) = τsc(tk) + τc(tk) + τca(tk) (1)

The computational delay τc is variable, not only because
of the time the control algorithm takes, but because of the
scheduling algorithm used [Toerngren, 1998].

In case data is lost over the network, rather than resending
to compensate for the lost data, it is more beneficial
to send freshly acquired or calculated data, be it plant
information, or control output. In this work, we utilize
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this idea, and propose a networked control system where
reception acknowledgment of network data is not required
as will be explained in Section 3.

2. BACKGROUND

The separation of concerns between the control and com-
puter communities is one of the reasons for the difficulty
in implementing control methods for complex plants. As a
solution, NCS’s have been studied and several methods
have previously been proposed to improve stability of
NCS [Branicky et al., 2002, 2003, Ling and Lemmon, 2002,
Toerngren, 1998]. Dead bands proposed by Otanez et al.
[2000] aim to reduce the amount of communication [Yook
et al., 2001] by eliminating repetitive transmissions of
similar data, thus improving network conditions. However
the network is assumed to be lossless. Gain adaptation
by Mo-Yuen and Tipsuwan [2003] and network observers
by Natori and Onishi [2006] observe the condition of the
network and compensate for the effect of delay in the
control algorithm by adjusting the gain or adding a nega-
tive feedback term. However they consider the changes in
network to be relatively slow or the network delay times to
be symmetric (sensor node to controller node delay is same
as controller node to actuator node delay). Some a-priori
knowledge of the delay is assumed.

General predictive control methodology is relevant to
NCS’s [Clarke et al., 1987a,b, Clarke and Mohtadi, 1989]
and Model predictive controllers are used in similar scenar-
ios as in Rawlings [2000], Liu et al. [2004] but they either
do not take into account the synchronization between the
nodes or they are not set up to be networked control
systems, because they rely on a direct link between the
sensor node and controller node. This means that both
controller and sensor tasks reside within the same node
of the network or they do not communicate at all over a
network. The reason is that if the sensor node to controller
node transmission fails then the basis for predictions is
lost. Also a-priori knowledge of the reference signal is
assumed in the model predictive control.

To address these problems, we propose a method that
improves the performance of a basic NCS under variable
time delays and packet loss. Standard NCS architecture
is assumed and no direct links are required, therefore
the method can be applied to existing NCS’s. A-priori
knowledge of the reference signal is not assumed as this
is not possible with most systems.

3. MODEL BASED PREDICTIVE NETWORKED
CONTROL SYSTEMS

We propose a novel NCS architecture that will improve
the robustness and stability of networked control systems
to data loss. We achieve this by holding a model of the
plant within the controller and calculating the current and
predicted control output to the plant for several time steps
into the future at every sampling instant. All of these
outputs are then sent to the actuator node at once. If
there was no data loss in the controller to actuator link,
the actuator applies the first control output to the plant.
In case of data loss, a previously sent prediction is applied
to the plant at each successive sampling instant, hence the

name Model Based Predictive Networked Control System
(MBPNCS).

Fig. 1. Model Based Predictive Networked Control System
Setup

The proposed control system is composed of five parts:
a communication network, where we assume that packet
loss and delay occurs completely randomly (despite the
fact that noise in networks is generally more correlated, a
complete random behavior was preferred for simulations
for simplicity), one sensor node, one controller node and
one actuator node, and finally a model of the plant P̂
residing inside the controller node.

The sensor node samples the plant states x(tk) with period
h and sends them to the controller at every sampling
instant tk. The rate terms of the control algorithm pertain-
ing to the plant states are calculated at the sensor node
since continuity of plant states cannot be assured at the
controller node because of interruption of communication.
The plant states and the rate terms are encapsulated in a
network packet and sent to the controller node.

The controller node not only calculates the control output
for the current plant state u(tk, 0) (notation will be clar-
ified shortly) using a control algorithm, but also uses the
plant states just received x(tk), to initialize the internal
model and through an iterative process, generates a se-
ries of future control outputs, û(tk, i) and state estimates
x̂(tk+i|tk) where i; i = 1, 2, ..n is the index of control
output signal estimate that is expected to be applied at
time tk + ih in the future if communications were to fail.
If x(tk) was not available at the time of computation
because of data loss or communication delay, its estimate
x̂(tk|tk−1) obtained using the model P̂ from x(tk−1) or
if that is not available, x̂(tk−1|.) from previous estimates.
For this estimation to be valid, it must be assumed that
the previous control output was transmitted properly and
applied to the plant. How this restriction can be relaxed
will be addressed shortly.

The fact that a state estimate has been used is important
along the control decision line. Therefore this information
is stored in a sensor flag (SF ), which is set to high if
current control output is based on actual plant sates from
the sensor node, and low if state estimates were used. The
control outputs are collected in a control packet Pt(tk)
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consisting of n + 1 control outputs and a sensor flag:
[u(tk, 0), û(tk, 1), · · · , û(tk, n), SF ]. Figure 1 depicts the
contents of data packets and their relations in MBPNCS.

The number of predictions n is chosen based on factors
such as the accuracy of the plant model P̂ , the packet
size compared to the network bandwidth, and available
processing power.

Finally the actuator node receives packet Pt(tk) and
applies the control output u(tk) to the plant at every
sampling instant. If a new packet does not arrive on
time because of data loss or communication delay, a
predicted control output û(tk−i, i) received previously is
applied. This could cause the above mentioned problem
of predicted plant states deviating from the actual plant
states since if a sensor to controller communication loss
also occurred simultaneously, the controller assumes that
u(tk) was last applied to the plant when calculating its
state predictions. In our method, this is called the loss
of synchronization (slightly abusing the term), and our
method is designed so that the actuator node is responsible
for coping with the situation.

The synchronization or loss thereof is sensed by the ac-
tuator using the SF flag in the control packet and the
information of actual packet loss. The actuator node has
two modes, the synchronized mode and the interrupted
mode.
Synchronized mode: The synchronized mode indicates
that the states of the plant model are synchronized with
the plant states. If the actuator node receives a control
packet from the controller node when it is in the synchro-
nized mode then it applies the first control output from
that packet to the plant, which would be u(tk, 0). If a
transition of SF from high to low occurs in consecutive
control packets indicating that the controller is not re-
ceiving actual plant states, but there is no controller to
actuator data loss, then the actuator keeps applying the
first control output from the received packets u(tk+j , 0),
since this does not violate the assumption made by the
controller that these control outputs are being applied to
the plant, and the actuator node stays in synchronized
mode. If data is lost due to network delay or packet loss,
the actuator node enters the interrupted mode.
Interrupted mode: In this mode, the actuator applies
û(tk, i) of the last control packet received in synchronized
mode at every sampling instant tk+i, i = 1, 2, · · · , n until
the last sample is reached or communication is restored.
However, if the first control packet received in this mode
has a low SF indicating that the controller is using
state estimates based on the wrong assumption of applied
control signal, then the packet is rejected. If the last
prediction û(tk, n) is reached without the communication
being restored, the output is kept constant at that value
thereafter. The actuator node enters synchronized mode
when a control packet with a high SF is received.

All computer nodes run periodic tasks as a computational
model. Packet loss between the sensor node and the
actuator node is compensated at the controller node by
prediction and packet loss between the controller node and
the actuator node is compensated at the actuator node
by usage of a selection algorithm and predicted control
outputs. Late arriving packets are discarded in this work.

A time synchronizing method is assumed to be used among
the computer nodes. This is not a strong assumption
because the network is generally physically small and the
amount of synchronization accuracy is comparable to the
sampling time.

4. RESULTS

The proposed method was tested using computer simu-
lations using TrueTime by Henriksson et al. [2003] and
experiments with actual computers and communication
network.

4.1 Simulations

TrueTime is a Matlab toolbox developed by Henriksson
et al. [2002] is designed to simulate real-time computer
networks at a low level of abstraction where it simulates
computer systems at instruction execution level and com-
munication network at data transport level. Therefore, we
can say our results are close to actual implementation. A
DC servo motor described by the following transfer func-
tion is used as the system plant [Astrom and Wittenmark,
1997].

G(s) =
1000

s(s + 1)
(2)

A PD controller is implemented according to the following
equations;

KP (tk) = K(r(tk) − y(tk)) (3)

KD(tk) = αdKD(tk − 1) + βd(y(tk − 1) − y(tk)) (4)

αd =
Td

Nh + Td
(5)

βd =
NKTd

Nh + Td
(6)

u(tk) = KP (tk) + KD(tk) (7)

Where r(tk), y(tk), u(tk) are reference, plant output, con-
trol output and KP (tk), KD(tk) are proportional and
derivative components of control output, K is the propor-
tional gain and tk, is the sampling instant, N , Nh, αd and
βd are constants. The value y(tk) is obtained by H ∗ x(tk)
where H is the output matrix of the plant and x(tk) are
the plant states at time tk. The proposed control system is
compared with a basic Networked Control System (bNCS)
where only the sensor node runs a periodic task and
the controller and actuator nodes run event driven tasks
that function only when they receive a message from the
network to calculate control output and apply it to the
plant respectively. As performance metric the root mean
square of the error between the reference and plant output
is used.

The sampling time of the system is 0.001s, and there is
a phase delay of 0.0001s between sensor, controller and
actuator node periods to ensure that the network has
time to deliver the data packets between the nodes. Such
a phasing was not used for the experiments. Simulations
are made with a perfect model of the plant to prove that
the concept is functional. Further simulations examining
imperfect models will be performed in the future.
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Under ideal network condition of no packet loss both the
MBPNCS and bNCS display identical results, Figures 2
and 3.

Fig. 2. Basic NCS, ideal conditions RMS Error: 0.2324

Fig. 3. MBPNCS, ideal conditions RMS Error: 0.23252

As packet loss increases, degradation in performance is
observable with the increasing RMS errors. However the
reason for the degradation in control quality is different
in both systems. The cause of increased RMS error in the
bNCS is loss of stability because of increasing loop delay.
The bNCS system becomes unstable after around 20% of
packets lost or delayed(Figure 4). On the other hand the
increase in RMS of the MBPNCS is because even if packets
are late, a calculated control output is applied to the
plant. However after the calculation of this control output
the reference may have changed. Therefore the plant is
controlled towards an old reference. The retardation of
the reference can be seen clearly on Figure 6 where the
reference and plant output are shown together with the
control output signal estimate i(offset by -4 for clarity)
used from the control packet. It can be seen that the
plant is able to catch the reference once the actuator
reenters a synchronized mode and the actuator node does
not have to remain in synchronized mode to be able to
go to the reference. Note that our system does not have a-
priori knowledge of the reference signal in contrast to other
research such as in Liu et al. [2004]. MBPNCS remains
stable, even for extreme rates of packet loss such as 90%
(Fig. 6).

Fig. 4. Basic NCS %20 Packet Loss RMS Error: 0.66509

Fig. 5. MBPNCS %50 Packet Loss RMS Error: 0.22644

Fig. 6. MBPNCS %90 Packet Loss RMS Error: 0.65153

To observe the performance of the method under noise,
band limited additive white noise is added to the control
output that the actuator node applies to the plant. This
has another destabilizing effect on the system: Since the
actual control signal applied to the plant is different from
the computed one, plant and model state synchronization
will be jeopardized. The power of the noise to be added
to the signal is related to the dynamic range of the
signal. To have a relation between the noise power and
the signal, noise power will be expressed as a fraction of
the RMS value of the control output u generated under
ideal network conditions given by:

un(tk) = u(tk) + n(tk) (8)

Where u(tk) is the control output generated by the control
algorithm, n(tk) is noise and un(tk) is the control output
with noise. n(tk) = f(uRMS ∗ Cn) is a function that
generates band limited white noise with noise power as
parameter. Cn is a fixed coefficient showing the amount
of noise and uRMS is the RMS value of u determined sta-
tistically. Note that this noise is pseudo-random; however
in this paper the same initialization seed value has been
used in all simulations in order for various systems to be
compared under the same noise conditions.

The performance of the bNCS is also almost identical
under lossless network conditions. However, error due to
packet loss almost immediately dominates error due to
noise and the system becomes unstable.

The effect of low noise is not destabilizing up to %60 packet
loss. The performance in Figure 7 where the MBPNCS is
running in a network where there is no packet loss and
Figure 8 where there is %70 packet loss may be compared.
After %70 packet loss the effect of noise becomes signifi-
cant in control quality. Effects of noise are reduced through
the feedback loop. High rate of packet losses mean that
the feedback loop cannot be closed until controller node
to actuator node synchronization is regained as explained.
Therefore losing the advantage of the closed loop system
makes the system vulnerable to noise and control quality
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Fig. 7. MBPNCS subject to 0.001 Noise,%0 Packet Loss
RMS Error: 0.22726

Fig. 8. MBPNCS subject to 0.001 Noise,%70 Packet Loss
RMS Error: 0.27542

diminishes, as packet loss increases. This is illustrated in
the figure between 0.7 and 0.8s where there is a long
network blackout of 0.06s. This means that the actuator
node has not received consecutive 60 acceptable packets
from the controller, yet the system remains stable despite
noise. Therefore we can say that the proposed method
increases resilience to data loss under noise, compared to
bNCS which is not shown because it cannot tolerate such
high packet losses.

The effect of jitter is analyzed on Naskali and Onat [2006].

4.2 Experiments

A physical setup comprising of three industrial comput-
ers running Real-Time Linux operating system for the
computer nodes, a dedicated Ethernet network with a
non-switching hub to allow packet collisions, and a DC
motor with encoder and drive electronics was prepared for
experiments. The computers were using NS Geode micro-
processor running at 300MHz, and a maximum jitter for
periodic task timing of around 100µs was measured. The
sampling time was set at 1ms. Again speed control of DC
motor using PID method was targeted. Motor parameters
were measured and used as plant model.

Since Ethernet is stochastic, controlled amounts of delay
and data loss on the network were implemented by ran-
domly accepting or rejecting incoming data packets on the
computer nodes at a specified rate.

Tests performed on the experimental platform are similar
to those for the simulations. The first test was for a
practically no data loss or delay scenario of 0.33% for
MBPNCS, to see performance under ideal conditions. The
small amount of data loss is caused by the Ethernet hub.
The results are given in Figure 9. It can be seen that the
system can control the speed with little error. The noise at
the 50rad/s reference level is also present if a completely

centralized conventional controller is used and is believed
to happen because of sensor noise which is not filtered.

Fig. 9. MBPNCS experiment with 0.33% Packet Loss

As data delay and loss rate over the network is increased,
the proposed method holds up well. As an intermediate
value, Figure 10 shows the case where 70% of the packets
are discarded for being late or dropped. Here, we assume
a more realistic scenario where the network is completely
down for the given rate, and functioning for the rest.

Fig. 10. MBPNCS experiment with 70% Packet Loss

Finally, if the data delay and loss rate is increased further,
system becomes unstable, as shown in Figure 11, at around
98% of the packets being delayed or lost. Performance
begins to degrade around 90%, and deteriorates steadily.

As a comparison, we also tested the case where the network
is not completely down, but sensor to controller node
packets and controller to actuator node packets are delayed
or lost without any correlation. The result of that case can
be seen in Figure 12 with performance similar to the case
in Fig. 10

These results show that the performance in simulations
and experiments are similar.

5. CONCLUSION

In this work, a novel networked control system, model
based predictive network control system method (MBP-
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Fig. 11. MBPNCS experiment with 98% Packet Loss

Fig. 12. MBPNCS experiment with 70% Packet Loss (not
correlated)

NCS) that is robust as a networked control system (NCS)
using non real-time networks is presented. A plant model
within the controller node is used to make future con-
trol output predictions, and a state machine within the
actuator is used to select the proper output to reduce
the discrepancy between the actual plant states and those
predicted by the model.

This new architecture is applied to a DC servo motor sim-
ulation and experimental setup with real-time computers,
and various aspects of the MBPNCS have been examined.
It has been observed that the architecture is robust against
network packet loss. The destabilizing effect of packet loss
is reduced to unresponsiveness to the reference command
which is an inevitable consequence of communication loss.
Although less noticeable with a step reference, this effect
may become significant with a constantly changing ref-
erence signal. The effect of noise on the control output
is small when packet losses are also low, however since
the feedback is interrupted, the systems performance is
effected by noise when packet loss increases.
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