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Abstract: This paper will deal with the filtering problem for uncertain stochastic systems
subject to sensor nonlinearities. There exist time-varying parameter uncertainties, and state
and external-disturbance-dependent noise. The robust filters are constructed for Itd stochastic
systems, and sufficient conditions are obtained such that the filtering error systems are robustly
stochastically stable with a prescribed disturbance attenuation level despite sensor nonlinearities
and all admissible uncertainties. A simulation example illustrating the proposed method is given.
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1. INTRODUCTION

In many industrial and commercial applications, mea-
surements are often made under harsh environments that
include both uncontrollable elements (e.g., variations in
flow rates, temperatures, etc.) and aggressive conditions
(e.g., corrosion, erosion, and fouling) [1]. These factors may
yield significant limitations on various aspects of sensor
performance, e.g., the range limitation that will result in
the nonlinear characteristic of sensors. Besides, for some
sensors, e.g., some accelerometers, temperature sensors
and strain gauge, nonlinearity is also an inevitable feature.
Moreover, it is known that in the image restoration, a prac-
tical image sensor usually has a nonlinear characteristic
and has attracted a lot of attentions [2]. Hence, the study
on the systems with sensor nonlinearities carries a great
deal of interest and practical importance [3, 4, 5]. In this
work, it will be shown (see Figure 5) that the filtering
problem of systems with sensor nonlinearities cannot be
effectively solved by the filter without considering the
nonlinear characteristic of sensor.

On the other hand, the filtering problem for the Ito
stochastic systems have been recently attracting an in-
creasing attention, e.g., in [6, 7, 8, 9, 10], since the stochas-
tic system design governed by Itd differential equations
has extensive applications in practice [11]. However, it
is worth noting that most of the aforementioned works
are discussed only for the case of linear sensors. To the
authors’ best knowledge, up to now, the filtering problem
for the It6 stochastic system subject to sensor nonlinear-
ities is not well addressed. Especially, these results in the
aforementioned works cannot be directly utilized to deal
with the stochastic systems with sensor nonlinearities.
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Motivated by the above discussions, this paper will be
concerned with the filtering problem for uncertain Ito
stochastic systems subject to sensor nonlinearities. In the
systems under consideration, there exist time-varying pa-
rameter uncertainties, and state and external-disturbance-
dependent noise. The robust filters are designed. By means
of stochastic Lyapunov method, and sufficient conditions
are obtained such that the resultant filtering error sys-
tems are robustly stochastically stable with a prescribed
H-disturbance attenuation performance despite sensor
nonlinear and all admissible uncertainties. Very often, the
external disturbance in real engineering systems may come
from a deterministic source or a stochastic one (e.g., Brow-
nian motion). Hence, both deterministic and stochastic
disturbance signals are considered, respectively, in this
simulation.

Notations: Throughout the paper, | - | is the standard
Euclidean vector norm. For symmetric matrix, the nota-
tion M > 0 (< 0) is used to denote a positive definite
(negative definite, respectively). Amax(+) denotes the max-
imum eigenvalue of the corresponding matrix. Matrices,
if not explicitly stated, are assumed to have compatible
dimensions.

2. THE DESIGN OF ROBUST FILTERING

In this section, we consider the uncertain stochastic sys-
tems modeled by the following It6 stochastic differential
equation:

(3¢) 1 dz(t) =[(A+ AA(®))z(t) + (B + AB(t))

— —

xv(t)] dt + [(E + AE(t))z(t)
+(G+ AG(t))v(t)] dw(t), (1)
y(t) = ¢(Cx(t)) + (D + AD(1))v(?), (2)
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z(t) = Lx(t), (3)
where x(t) € R™ is the state; y(t) € R? is the output;
z(t) € RT is the state combination to be estimated;
w(t) is a standard one-dimensional Brownian motion on a
probability space (2, F, P) relative to an increasing family
(Fi)t>o of o-algebras F; C F, where 2 is the sample
space, F is the o-algebra of subsets of the sample space,
and P is the probability measure on F; v(t) € RP is
an unknown exogenous stochastic disturbance signal. It
is assumed that v(t) is adapted and measurable processes
with respect to F, and belongs to Lg, ([0, 00); RP), where
Lg, ([0,00); RP) denotes the space of nonanticipatory
square-integrable stochastic process f(-) = (f(t))te[0,00)
on RP with respect to (Fs)se[0,00) satisfying

1f132 = € /If(t)Ith <
0

with £{-} the mathematical expectation.

In (1)-(3), 4, B, E, G, C, D, L are known real constant
matrices of appropriate dimensions; AA(t), AB(t), AE(t),
AG(t) and AD(t) are unknown matrices representing
time-varying parameter uncertainties with the following
form,

[AA(t), AE(t)] = [ Ma, Mg ] F1(t) Ny, (4)
[AB(t), AG(t), AD(t)] = [ Mp, Mg, Mp | Fs(t)Ns  (5)

where My, Mp, Mg, Mg, Mp, N; and Ny are known
real constant matrices, and Fj(t) (i = 1,2) are unknown
matrix functions with Lebesgue-measurable elements and
satisfy

EF(t)Fy(t) < I,Vt. (6)
The parameter uncertainties AA(t), AB(t), AE(t), AG(t)
and AD(t) are said to be admissible if expressions (4)—(6)
hold.

As pointed out in Introduction, many actual applications
will inevitably result in the nonlinear characteristic of
sensors. Hence, the function ¢(-) in system (X..) is assumed
to belong to [Ky, Ks], for some given diagonal matrices
Ki > 0 and Ko > 0 with K5 > Ky, and satisfies the
following sector condition:

(6(u) — Kru) T (¢(u) — Kau) < 0,Yu € R (7)
Remark 2.1. Tt should be pointed out that the class of
nonlinear functions satisfying (7) is general in practical
application [12]. Moreover, the characteristics of the sensor
directly depend on the function ¢(u). As a special case,

when ¢,(u) is a linear function, the sensor will reduce to
a linear one.

For the stochastic system (X.), we are concerned with
obtaining the estimation 2(t) of z(¢). To this end, we
construct the following filter of order n

(Fe) : di(t) = Apa(t)dt + Byy(t)dt, (8)
2(t) = La(t), )

where #(t) € R™ and 2(t) € R", the matrices Ay and By
are to be determined. And then, the above robust filtering
problem can be stated as follows:

Robust Filtering (RF): Given a disturbance attenuation
level v > 0, the parameters Ay and By of filter (8)—(9) are
designed such that the resultant filtering error system is
asymptotically stable in probability for v(t) = 0 and any
¢ € [K1, Ko, and satisfies ||z — 2||g, < 7||v|| g, under zero
initial conditions for all v(t) € Lg, ([0, 00); RP).

Remark 2.2. In the conventional design of filtering, the
filtering error dynamics need firstly be constructed. How-
ever, the existence of nonlinear sensor (2) complicates the
derivation of the error systems. In order to deal with the
difficulty, a decomposition (10) of the nonlinear function
¢(u) will be introduced. Moreover, it will be observed that
this decomposition (10) plays an important role for the
development of filter design later.

Now, we decompose the nonlinear function ¢(u) as follows:
P(u) = ds(u) + Kyu, (10)

where the nonlinearity ¢,(u) belongs to the set @, given
by

o, = {(bs : (bS(u)T((bS(u) — Ku) < 0}
with K = Ky — K7 > 0.
Thus, it follows from the system (X.) and filter (F.) that:

(11)

dz(t) ={Asz(t) + [A+ AA(t) — Ay — By KC)|
xx(t) — Byos(u)
+[B+ AB(t) — Bf(D + AD(t))v(t)]} dt
+[(E+AE(@)x(t) + (G + AG(t))v(t)]

xdw(t), (12)

where Z(t) = z(t) — 2(t), and v = Cx(t).
Define e(t) = [«(t)” (1) ]", and Z(t) = 2(t) — 2(t), then
we obtain the filtering error dynamics as follows
(See) : de(t) = [(A+ AA(t))e(t) + Bros(Cx(t))
+(B+ AB(t))v(t)] dt
+ [(E+AE®))et) + (G + AG())

xo(t)] dw(t), (13)
2(t) = Le(t), (14)
where
= [ A 0
A=lA-a;-ByKiC Af] ’
_ [E0] 5 0
B=|Eo] b= | 5]
_— B = G
B= _B—BfD] G = {G} )
AA(t) = MaF,(t)N1, AB(t) = MpFy(t)No,
AE(t)=MgFi(t)N1, AG(t) = MgF»(t)No,
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=[N, 0],L=[0L].

Next, we shall provide a solution to RF problem.

Theorem 2.1. Consider the uncertain stochastic systems
(3¢). For given disturbance attenuation level v > 0, if
there exist matrices X > 0, Y > 0, W, and S, and scalars
€1 > 0, and €2 > 0 satisfying the following LMI:

[ O * * *
@Z;, O * *
BTX BTY -DTST 0, =«
KC ST 0 —2I
XE 0 XG 0
YE 0 YG 0
MIx MYy 0 0
| MEX MEY —MAEST 0 0
* * * * ]
* * * *
* * * *
* * * *
X o« « . | <0 (15)
0 -Y * *
MEX MEY —e1I %
MEX MEY 0 —eof |
with
O =XA+ ATX + NI Ny, (16)
Ouy = -7 + e NI Ny, (17)
O3 =ATY —WT - CTK] ST, (18)
Ou=W+W"r 4+ 7L, (19)

then, the robust H, filtering problem is solved by the
filter (F.). In this case, the parameters of the desired filter
(F.) are given as

A=Y 'W,B; =Y"'S. (20)
Proof: Firstly, we establish the robustly stochastic stabil-
ity of the filtering error system (X..) under the condition
of Theorem 2.1. It can be shown that the LMI (15) implies

Oc * * * * *
G)CT3 O % * * *
KC —-ST —2r « * *
XE 0 0 -X o« o« |0 (U
YE 0 0 0 =Y %

MIX MY O MEIX MLY —e I

with O.5 = W + WT.

Now, for the filtering error system (13) with v(¢) = 0,
select the stochastic Lyapunov functional candidate as

V(e(t),t) = e(t)" Pe(t) (22)
with
P= {g( ﬂ , (23)

where X > 0 and Y > 0 satisfy (21).

By utilizing It6’s formula, we obtain the infinitesimal
generator of V(e(t),t) as

LV (e(t),t)
=2e(t)" P [(A+ ))e(t) + By
x5 (Cu(t))] + e( )T( +AE()"

xP(E + AE(t))e(t)
<[e®)” ¢s(Cax(t)] O,

x [e)T pa(Cax(t)T]", (24)
where
P(A+ AA(t) + (A+ AA@)T P
.= | +(E+AE@)"P(E+AE(t)) (25)
BiP+KC —21
and C' =[C 0].

It is seen that if ©. < 0 holds, one has LV (e(t),t) < 0.
Thus, it follows by [13] that the filtering error system
(13) with v(¢) = 0 is asymptotically stable in probability.
Further, by means of Schur’s complement, it can be shown
that if there exist matrices X > 0, Y > 0, W, and S, and
scalar €1 > 0 satisfying LMI (21), one has ©, < 0.

Next, we shall further show that the filtering error system
(Xee) satisfies

2. <Allv(®)]e, (26)
00); RP) .

It is known by It0’s formula that under zero initial condi-

tions,
0y = / Lv(e ,

2)—(23) and the infinitesimal
Yee) for v(t) # 0.

for all nonzero v(t) € Lg, ([0,

E{V(e(t

where V(e(t),t) is given in (2
generator LV (e(t),t) is associated with (

Now, define
J(T) = & / E6)T5(0) — o) o(®)] dt b, (27)
0

for any T' > 0, and v(t) # 0.

It can be shown that

T
J(T) =€ / 26T 5(0) — 2Po(t) ()
0
FLV (e(t), )] dt} — E{V(e(t), 1)}
T
<& /[e(t)T v(t)" ¢ (Ca(t)" ] Ee
% [e(t)” v(t)" ou(Ca()"]" dt}  (28)
where
Ea  Ee PByp+CTKT
g, = gL Ees 0
BfP+KC 0 —2I
with
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S =LTL+ P(A+ AA(t )) + (A+ AA®1L)TP
+(E+ AE(t ))TP( AE(t)),
Ee2=P(B+AB(t)) + (E+ AE(t)T

xP(G + AG(1)),
=71+ (G+AG®1)TP(G + AG(1)).

By utilizing Schur’s complement, and following a similar
derivation, it can be shown that =, < 0 holds, if there exist
matrices X > 0, Y > 0, W, and S, and scalars ¢; > 0,
€2 > 0, and €3 > 0 satisfying LMI (15). Hence, from (27)
and (28), one has that J(T') < 0, which implies that (26)
holds for any nonzero v(t) € Lg, ([0, 00); RP). O

As a special case, when the sensor in (3,.) is linear, i.e.,
d(Cx(t)) = Cx(t), the following corollary can be obtained
from Theorem 2.1.

Corollary 1. For the uncertain stochastic systems (1)
(3) with ¢(Cz(t)) = Cx(t) and a given disturbance
attenuation level v > 0, if there exist matrices X > 0,
Y >0, W, and S, and scalars 1 > 0, and €5 > 0 satisfying
the following LMI:

B @cl * *
62;3 6(14 *
BTX BTy - DTST 0.

XE 0 XG
YE 0 YG
MIx MY 0
| MEY MEY — MEST 0
* * * x|
* * * *
* * * 0
-X * * * <0 (29)
0 -Y * *
MEX MLY —eiI
MEX MEY 0 —eof |
with
O = ATY —WT - CTST,

and O.1, O and O, as in (16)—(19), then the robust
filtering problem is solved by the filter (F.) with the
desired parameters given as

A=Y 'W,B; =Y"'S.
3. SIMULATION EXAMPLE

In this simulation, two different kinds of external distur-
bances, i.e., deterministic and stochastic, will be consid-
ered.

Consider the It6 stochastic systems (1)—(3) with parame-
ters as follows:

~1.8 06 0.2
A=|-25-38 01 ]
—23 1.0 -36
0202 0208 —03
0.4 0.3 003 0.

0.3 1.0 0.6
p=[8204] b= 1305 _0_2]
o 2.30.2 —0.4
0-204 0.5 0.2 0.2
G=]1205|,L=103 0309
0.6 0.3 e
My=[020201]",Mp =03 02]"
Mp=1[010402]" F(t) = 05sin(t),
Mg =[030.103]", Fyt) =0.2sin(t),
Mg=[030201]",
Ny =[0.20201], Ny=[020.1],
K, =diag[0.6 0.5], Ky =diag[1 0.8],
Ki+K, Ky—K
o(u) = 1—; 2w 2 Lsin(u).

By Theorem 2.1, we solve LMI (15) for v = 0.8 and obtain
the filter in (8)—(9) with

—183.7871 —146.4546 —36.0467
Ap=|—236.9819 —177.8053 59.1438]
—264.1377 —177.2443 —81.1756
31.7819 188.5886
By = 35.3266 246.4703]
29.4426 279.5673

In real engineering systems, the external disturbance may
come from a deterministic source or a stochastic one.
Hence, in the following simulations, two different kinds of
disturbance signal v(t) will be considered, respectively:

1 1 r

Case I: v(t) is deterministic with v(t) = | —— ——
1+t2 1412

Case II: v(t) is stochastic and is chosen as the truncated

Brownian motion, i.e., v(t) = [w(t) w(t)]T for t < 3 or

v(t) =10 O]T for t > 3.

In this work, the simulation is undertaken by using the
discretized approach as in [16, 17] with the simulation time
t € [0,5], the normally distributed variance §t = 5/N with
N = 212, step size At = R -0t with R = 2, the number
of discretized Brownian paths M = 10, the initial state
2(0) = [1 0.5 —1]"and £(0) = z(0).

Figures 1-2 show the simulation results for case I, and
Figures 3-4 show the simulation results for case II. It
is seen that the proposed filter in this work can ensure
a satisfying performance for the resultant filtering error
systems.

4. CONCLUSIONS
In this paper, we have discussed the filtering problem in

the presence of sensor nonlinearities for uncertain stochas-
tic systems,and a desired robust filter has been provided.
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0 1 2 3 4 5

Figure 1. The trajectories of state z(¢t) for case I.

. . . .
0 1 2 3 4 5

Figure 2. The trajectories of error Z(¢t) for case I.

. . . .
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Figure 3. the trajectories of state z(t) for case II.
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Figure 4. The trajectories of error Z(t) for case II.
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