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Abstract:
In this paper a novel hybrid adaptive observer for Brushless DC Motors (BLDCM) is presented.
It uses two current measurements of BLDCM phases to estimate the angle and the speed of the
rotor. The observer is designed on the basis of a hybrid model, which is also presented in this
paper. The parameters of the observer are found using an off-line optimization approach. The
observer is practically implementable and verified off-line against real measurements.

1. INTRODUCTION

A Brushless DC Motor (BLDCM) is a Permanent Mag-
net Synchronous Machine (PMSM) with trapezoidal back-
EMF. In brushless motors the windings are fixed while
the permanent magnet is placed on the rotor. A BLDCM
is used when high efficiency and reliability are required,
e.g., hard drives, PC cooling fans, electric vehicles. It has a
robust and compact design due to the lack of commutator,
however, an external controller is required to generate
a rotating magnetic field which is followed by the PM.
The control generates torque ripples and noise as it is
performed by discrete phase switches.

Back-EMF sensing is generally used to estimate the
angle of the rotor, which is required to control a BLDCM
properly (know when the switches should occur). Although
this is a simple and efficient way to estimate the angle,
it only gives information at discrete instances. Therefore
this paper investigates the possibility of building a dynam-
ical observer to provide better angle resolution, allowing
advanced control methods to be used in order to reduce
torque ripples.

A BLDCM is driven by an inverter (Fig. 1) which
switches the phases depending on the position of the
rotor. Such behaviour can be considered as a hybrid
system due to the existence of both discrete dynamics
(a phase can be activated or deactivated) and continuous
dynamics (currents, angle, and angular velocity change
smoothly with time). A hybrid model of such a system was
presented in Hansen et al. [2007]. However, in this paper
a slightly different model structure is used. This is done
to improve computation demands of the observer and to
enable real time implementation. In the new hybrid model
the dynamic equations are described in ab-frame, whereas
qd-frame is generally used to model a three phase PMSM
(Krause et al. [1995], Hansen et al. [2007]).

A hybrid adaptive observer is built on basis of the
hybrid model. The adaptive approach used in this work
is based on Urbański and Zawirski [2004]; compared to
that work, the novelty in this paper is that the observer
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Fig. 1. Electrical schematic of an inverter and a BLDCM,
with magnetic fields created by activating each pair
of the phases.

is hybrid and modified to fit presented model description.
The parameters for the observer are found using an opti-
mization procedure based on a modified form of evolution-
ary algorithm (Beyer and Schwefel [2002], Pedersen [2005],
Ursem and Vadstrup [2003]).

The paper presents a step on the way to a fully closed-
loop control based on observed feedback for BLDCM. In
this work, the observer for a water pump drive is consid-
ered. This allows some simplifications while studying the
performance.

1.1 BLDCM design

Voltages at the terminals of a BLDCM are generated
by switching transistors in the inverter (Fig. 1) according
to a commutation scheme. One such scheme, which is
commonly used in BLDCM applications is referred to as
the 120◦ voltage source inverter. Fig. 2 shows the control
voltages and the corresponding back-EMF of the three
phases. The scheme is referred to as a 120◦ inverter because
each phase draws current for approximately 120◦ of a
revolution and is subsequently tristated for 60◦, i.e. both
transistors of the corresponding inverter leg are closed.
The magnitude of the terminal voltage Vcc (shown in Fig.
1) is controlled by PWM modulation.

The commutation scheme described above has the
drawback that torque ripples are generated if the back-
EMF of the BLDCM is not perfectly trapezoidal. Those
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Fig. 2. Idealized voltages applied to the three phases
and generated back-EMF over time when using the
BLDCM with a 120◦ inverter.

ripples could be eliminated using more advanced commu-
tation schemes, however, they require reliable and precise
information about angle of the rotor. This information
could be provided by a tachometer or by the proposed
observer.

In the following sections the hybrid model of a BLDCM
with an inverter is presented first. Then the hybrid adap-
tive observer for the rotor angle is derived. Finally, a test
scenario is presented in which the observer is running in
parallel with a real motor. The paper ends with concluding
remarks.

2. HYBRID MODEL OF THE BLDCM

The concept of hybrid modelling of a BLDCM was
proposed in Hansen et al. [2007]. The system encounters
abrupt changes in dynamical behaviour hence the model
consists of continuous equations switched by a Finite State
Automaton (FSA). Fig. 3 presents the relations between
the continuous and discrete parts of the system.

Switched Continuous System

Finate State Automaton

Continuous Input (u)

Cont. State (x)
Cont. Input (u)

Continuous Output (y)

Events (e)

Location (q)

Fig. 3. Relations between the continuous and the discrete
part of a hybrid system.

The definition of a hybrid system used in this paper
was introduced in Alminde et al. [2006].

Definition 1.
A hybrid system is defined as an 8-tuple:

H = (Q, X, U, Y, E,F ,G, T ) (1)

where
• Q = {1, 2, . . . , s} ⊂ Z

+
is the set of location indexes

with cardinal number s,
• X =

{
x|x ∈ Xq : q ∈ Q,Xq ⊆ R

nq
}

is the continuous

state-space with dimension nq∈Q ∈ Z
+
,

• U =
{
u|u ∈ Uq : q ∈ Q,Uq ⊆ R

mq
}

is the continuous

input-space with dimension mq∈Q ∈ Z
+
,

• Y =
{
y|y ∈ Yq : q ∈ Q,Yq ⊆ R

pq
}

is the continuous

output-space with dimension pq∈Q ∈ Z
+
,

• E ⊆ 2Σ is the set of possible input/output event
labels, where Σ is an appropriate set of labels,

• F : Q × X × U → Ẋ is the forcing function on the
continuous state-space,

• G : Q× X × U → Y is a continuous output map,
• T : Q×X ×U ×E → Q×X ×E is a transition map.

The continuous forcing function F , the output map-
ping G, and the discrete transition map T all depend on
the discrete location, continuous states and inputs; events
e affect only the discrete dynamics.

2.1 Finite State Automaton

A hybrid automaton (HA) for the model is composed
knowing the control strategy of the BLDCM and assuming
only one direction of rotation, ωe > 0. This is due to the
pump application, which allows simplification of the study
(ωe < 0 follows by symmetry, but note that the model does
not allow for standstill, ωe = 0).
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Fig. 4. Finite state automaton of a BLDCM considering
ωe > 0 and given control strategy.

From Fig. 2 it can be seen that when a BLDCM drive
is running two stator phases are always active, while the
third one is deactivated. After a phase switch, the coil
corresponding to the deactivated phase contains energy
stored as current. This current has to be drained through
the corresponding diodes. In the hybrid automaton (Fig.
4), proper drain states (q = {2, 3, 5, 6, 8, 9}) are activated
before entering another control configuration of phases.
This implies that the hybrid automaton consists of three
locations where two phases are active q = {1, 4, 7}, and six
locations, where one of the phases is draining. The drain
states are distinguished because the input voltage to the
tristated phase depends on the sign of the drain current
according to (2), where x is the tristated phase.

Vx ≈
{

Vcc+ if ix < 0
Vcc− if ix > 0

(2)

The transitions are triggered by events which are
generated by the control sequence and detection of zero
crossing in the estimate of the draining current. For
instance, event nactive neg a means that the phase a
is deactivated and the draining current is negative, and
nactive pos a means phase a deactivated and positive
current. In the model, the draining stage is finished when a
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zero-crossing is detected in the current estimate (changes
from nactive neg a to nactive pos a and vice versa).

In an extreme situation, it may occur that there is not
enough time for draining the current in deactivated coil,
and the hybrid automaton switches only between drain
phases. This is also included in the automaton by adding
transitions between the states q = {2, 3, 5, 6, 8, 9}.
2.2 Continuous Equations

The electrical dynamics of the BLDCM are derived on
basis of Fig. 1, which shows that a phase can be considered
as a serial connection of an inductance, a resistance, and
a back-EMF (Krause et al. [1995]):

Vabc − VN = L
d

dt
iabc

︸ ︷︷ ︸

Inductance

+ r iabc
︸ ︷︷ ︸

Resistance

+ (
d

dθe

λ
′

m)ωe

︸ ︷︷ ︸

Back−EMF

(3)

where Vabc = [Va Vb Vc]
T

is the vector of input voltages,
VN is a vector containing the neutral node voltage as the

elements, and iabc = [ia ib ic]
T

is the vector of currents
through the phases. r is the resistance of a phase and the
inductance matrix L is defined as follows (Ll is the leakage
inductance, and Lm is the magnetizing inductance):

L =









Ll + Lm −1

2
Lm −1

2
Lm

−1

2
Lm Ll + Lm −1

2
Lm

−1

2
Lm −1

2
Lm Ll + Lm









(4)

λ
′

m is the vector of the stator flux linkages created by
the PM and is a periodic function of the rotor position. The
BLDCM being designed to have a symmetric trapezoidal
back-EMF, λ

′

m can be decomposed in a series of odd har-
monics. It is assumed that the third order decomposition
is sufficient. With λ′1

m the magnitude of the first harmonic
and N3 the magnitude of the third harmonic relative to the
fundamental, the derivative of the vector of flux linkages
is expressed as follows

d

dθe

λ
′

m = λ′1
m







cos(θe) + 3N3 cos(3θe)

cos(θe −
2π

3
) + 3N3 cos(3θe)

cos(θe +
2π

3
) + 3N3 cos(3θe)







(5)

In the drain stage all three phases are active. Applying
Kirchoff’s current law defines a constraint on the currents:
ic = −ia − ib. Incorporating this constraint in (3) and
eliminating the neutral node voltage VN, the following
model is obtained:

d

dt
iab =− r

L
iab −

λ′1
m

L





1 0

−1

2

√
3

2





[
eα

eβ

]

+
1

L






2

3
−1

3
−1

3

−1

3

2

3
−1

3




Vabc , (6)

where iab = [ ia ib ]
T
, L = Ll + 3

2Lm is the equivalent
inductance of a phase, and eα = ωe cos θe, eβ = ωe sin θe

correspond to the back-EMF. This equation describes the
electrical dynamics in all drain stages of the BLDCM.
The only differences between these stages are the supply

voltages, generated by the control, and the sign of the
drain current. The voltage in the deactivated phase is given
by (2).

In case there is no current in the draining phase (two
phases active), the description changes. When phase a and
b is active, ic = 0 and the constraint becomes ia = −ib.
The following model is obtained:

d

dt
ia =− r

Ls

ia − λ′1
m

Ls

[

3

4
−
√

3

4

] [
eα

eβ

]

+
1

Ls

[
1

2
−1

2
0

]

Vabc (7)

Similar equations can be determined for the remaining
locations of the hybrid automaton.

2.3 Formal description

Hybrid system according to Definition 1 is expressed
as follows:

• There are 9 discrete locations.

Q = {1, 2, 3, 4, 5, 6, 7, 8, 9}
• The state vector x and the input vector u are the

same in all the locations, in order to keep a uniform
representation. The state vector consists of two stator
currents ia and ib, and the two values corresponding
to the back-EMF eα and eβ . The input vector u
consists of three phase input voltages Va, Vb and Vc.

Xq =
{

x = [ ia ib eα eβ ]
T
}

⊂ R
4
,∀q ∈ Q

Uq =
{

u = Vabc = [ Va Vb Vc ]
T
}

⊂ R
3
,∀q ∈ Q

• The continuous outputs of the system are the two
measured currents ia and ib.

Yq =
{

y = iab = [ ia ib ]
T
}

⊂ R
2
,∀q ∈ Q

• There are six events that trigger the transitions.

E = {nactive neg x, nactive pos x | x ∈ {a, b, c}}
• The forcing function on the continuous state-space is

presented in (8), with J =

[
0 −1
1 0

]

. F is found by

applying (6) with the particular properties of each
location of the automaton and knowing that:

ėα =
d

dt
ωe cos θe =

ω̇e

ωe

eα − ωeeβ

ėβ =
d

dt
ωe sin θe =

ω̇e

ωe

eβ + ωeeα

• The continuous output map is not dependent on the
discrete state as the continuous state and output
remain the same.

G : y =
[
I2×2 0

]
x,∀q ∈ Q

• The transition map T is defined using the value of
the current discrete state and an event to determine
what is the next discrete state. There are no reset
functions and no events generated during a transition.
Therefore T is defined as T : Q× E → Q. To define
T the following notation is used: (qcurrent, ereceived) →
qnew, where qcurrent is the current value of the discrete
state, ereceived is the event that triggers the transition,
and qnew is the new value of the discrete state.
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F :







ẋq =










− r

L
I2×2 −λ′1

m

L





1 0
1

2

√
3

2





0 Jωe +
ω̇e

ωe

I2×2










xq +
1

L







2

3
−1

3
−1

3

−1

3

2

3
−1

3
0







uq if q ∈ {2, 3, 5, 6, 8, 9}

ẋq =












− r

L
I2×2 −λ′1

m

L






3

4
−
√

3

4

−3

4

√
3

4






0 Jωe +
ω̇e

ωe

I2×2












xq +
1

L







1

2
−1

2
0

−1

2

1

2
0

0







uq if q = 1

ẋq =










− r

L
I2×2 −λ′1

m

L




3

4
−
√

3

4
0 0





0 Jωe +
ω̇e

ωe

I2×2










xq +
1

L

[
1

2
0 −1

2
0

]

uq if q = 4

ẋq =










− r

L
I2×2 −λ′1

m

L





0 0

0

√
3

2





0 Jωe +
ω̇e

ωe

I2×2










xq +
1

L






0 0 0

0
1

2
−1

2
0




uq if q = 7

(8)

T :







(1,nactive neg b) → 2 (1,nactive pos b) → 3
(2,nactive pos b) → 4 (2,nactive pos a) → 6
(3,nactive neg b) → 4 (3,nactive neg a) → 5
(4,nactive neg a) → 5 (4,nactive pos a) → 6
(5,nactive pos a) → 7 (5,nactive pos c) → 9
(6,nactive neg a) → 7 (6,nactive neg c) → 8
(7,nactive pos c) → 9 (7,nactive neg c) → 8
(8,nactive pos c) → 1 (8,nactive pos b) → 3
(9,nactive neg c) → 1 (9,nactive neg b) → 2

3. HYBRID OBSERVER

The derived observer is hybrid and adaptive. The idea
of an adaptive observer for a BLDCM was introduced in
Urbański and Zawirski [2004]. In this paper its structure
is changed to fit the model description presented above,
which has a hybrid form. The location automaton for
the observer is the same as the hybrid automaton for
the hybrid model. This is because it is assumed that
a startup procedure has already been executed, aligning
the rotor to a known position, thus the initial state is
known. The electrical angular velocity ωe is considered a
time-varying parameter, therefore equations representing
the mechanical dynamics of BLDCM are not used. The
observer is proposed for a water pump application drive,
where the rotational speed is not varying very rapidly
and thus it is assumed that ω̇e = 0. Furthermore, pumps
usually operate at more than half of the full speed (in this
case ωr ∈ [500; 1000] [rpm]), which allows to neglect the
influence of stiction.

3.1 Structure

The structure of the observer is shown in Fig. 5, where
the estimates of θe and ωe are computed using the states

eα = ωe cos θe and eβ = ωe sin θe:

ωe =
√

e2
α + e2

β

θe =







arccos (
eα

ωe

) for
eβ

ωe

≥ 0

2π − arccos (
eα

ωe

) for
eβ

ωe

< 0

The estimation of ωe is fed back to the state estimation as
it is the time-varying parameter.

BLDCM Current
sensors + +–

qK

∫qB

qA

C++
+

+

u

x 

∆i

Calculate
angle and speedθe

ωe

ias, ibs

ias, ibs

x

Filterωfilt

Correctionωc,θc

Fig. 5. Structure of the hybrid adaptive observer.

3.2 Continuous time equations of the observer

From the values of the measurements (ia and ib) and

the estimated states (̂ia and îb), an error vector is defined:

ĩ =

[
îa − ia
îb − ib

]
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The designed observer has a only proportional feed-
back correction and is defined as follows:

˙̂x = F(q, x̂,Vabc)
︸ ︷︷ ︸

Prediction (Model)

+ qK · ĩ
︸ ︷︷ ︸

Correction

= qAx̂ + qBû + qKĩ

where qK is the proportional feedback matrix for the
location q and qA, qB are given in (8). The elements of qK
map the error in a current estimation ix to the derivative
of a state x̂j . They are set to zero if the current ix has no
influence on the state. The set of observer coefficients (k1

to k14) in the following form has to be determined:

for q ∈ {2, 3, 5, 6, 8, 9} for q = 1

qK =






k1 0
0 k2

k3 k4

0 k5






qK =






k6 0
0 k7

k8 0
k9 0






for q = 4 for q = 7

qK =






k10 0
0 0

k11 0
k12 0






qK =






0 0
0 k13

0 0
0 k14






This is a non-trivial problem and therefore it is useful
to employ optimization techniques to determine qK.

3.3 Optimization

Determination of observer’s feedback parameters using
optimization method was used in Urbański and Zawirski
[2004]. It is desired to find the coefficients that minimize a
cost function Q, which represents the performance of the
observer. The function is defined as follows:

Q =

∣
∣
∣
∣

∫ t+τ

t

eθ(t)dt

∣
∣
∣
∣

︸ ︷︷ ︸

Mean

+

∫ t+τ

t

e2
θ(t)dt

︸ ︷︷ ︸

V ariance

where eθ is the error of estimation in the angle θe and
[t; t + τ ] is the time range for which the cost function
is calculated (should include transient and steady state
part of a response, and not include zero for which the
system is not observable). This cost function is chosen as
it represents the sum of the mean value of the error and
its variance.

Value of Q is calculated for a set of parameters k.
The observer estimates the electrical angle θe for the
time period [t; t + τ ] and compares it with actual plant
response. The data used for the optimization correspond
to a speed step to 500 [rpm]. The feedback coefficients are
therefore optimized for this speed. Since there is noise
in the measured signals used for the optimization, the
value of cost function Q will not converge to zero. The
optimization should be finished when the observer reflects
the dynamical behaviour of the system. Zero cost function
would mean that the observer is optimized for the noise
which is not desired.

Random Weight Change (RWC) (Urbański and Za-
wirski [2004]), Nonlinear Simplex Search (NSS) (Wang and
Qiu), and three different Evolutionary Algorithms (EA)
(Beyer and Schwefel [2002], Pedersen [2005], and Ursem
and Vadstrup [2003]) have been applied to the problem of
finding the k parameters. The result of this study is that
a good strategy for finding the feedback parameters of the
observer is to use RWC to find a region of a minimum, and
from there use the Differential Evolution (DE) algorithm

(Ursem and Vadstrup [2003]) to find the local minimum.
It may sometimes be necessary to run the algorithm a few
times as it could converge to a local minimum that is not
good enough for the observer.

Table 1 lists the feedback parameters found after
optimization.

k1 to k5 -1217 -8.79 1101 -5187 8236

k6 to k10 -18.34 18.93 20627 -64480 -583.7

k11 to k14 89890 2060 -74.8 24389 -

Table 1. Table of feedback coefficients.

3.4 Improvement of the estimates

Having the feedback coefficients found by the opti-
mization, the precision of the estimation can be improved.
First, the estimate ωe is filtered by a first order low-pass
filter with a cut-off frequency ωcut = 20 [rad/s] (Fig. 7).

From Fig. 6 and 7 is seen that the mean values of the
estimation errors are strongly correlated with the value of
the angular velocity. At ωfilt = 160 [rad · s−1], the mean
value of the error is zero as the optimization was realized
for this speed. When the speed increases, the mean value
of the error also increases (proportionally). To compensate
for this, an offset correction is introduced, yielding new
estimates ωc and θc:

ωc = ωfilt − α(ωfilt − 160)
θc = θe − β(ωfilt − 160)

The parameters α = 0.24 and β = 0.0015 are determined
from the estimation error as a function of angular velocity.

Fig. 6. Error of θe angle estimation (before the correction).
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Fig. 7. Error of speed estimation ωfilt (after low-pass
filtering, but before the correction).
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4. TEST RESULTS

The observer was tested using a BLDCM with the
following parameters: r = 3.8 [Ω], L = 13.5 [mH],
λ′1

m = 0.2225 [V·s
rad ], J = 0.002 [kg · m2] and Bm = 5 ×

10−4 [kg · m2 · s−1] and with motor load on the motor.
Measurements were acquired using the dSpace R© platform
while operating the motor in closed loop. The inputs and
the two stator currents ia and ib were recorded and fed off-
line to the observer to examine the tracking performance
of the estimation. The measured speed of the motor during
the test scenario can be seen in Fig. 9. It includes step in-
put, increase and decrease of the velocity and steady state
performance at the maximum and minimum considered
velocities.

The results of the verification are depicted in Fig. 8
and 9. The mean value of the estimation error converges
quickly to zero and the observer is able to track changes
in the whole speed region. The precision of angle estima-
tion remains ±10 [◦], while speed estimation precision is
±12 [rad · s−1]. It is noticed that the precision decreases
when the speed varies. This is due to the fact, that the
derivative of the speed was assumed to be zero in the
equations. When the speed is steady the estimates become
more accurate. It can be noticed that the precision at
1000 [rpm] is particularly good and is in range of ±3 [◦]
electrical degrees.

Fig. 8. Error of θc angle estimation.
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Fig. 9. Comparison between real and estimated (ωc) speed.
Note the different error axis scale.

5. CONCLUSION

In this paper a new hybrid model for a BLDCM was
derived. This model is based on continuous time equations
and does not require a qd transformation. The continuous
time equations were subsequently embedded in a hybrid
automaton to accommodate the discrete behaviour of the

actual system. Tests of the model showed good perfor-
mance, close to that of a real motor.

Furthermore, it was shown that the model can be used
for design of an accurate hybrid observer for estimating
the rotation angle and speed of a BLDCM. This means
that the position sensor can be omitted using the pro-
posed observer and only the use of two current sensors is
required. The observer also provides an estimate of the
angular velocity with a precision of ±12 [rad/s], which can
be used as a feedback in a speed controller.

Future work should concentrate on a real time im-
plementation and closed loop application of the observer.
It should be verified if it is possible to replace motor’s
tachometer by the observer. The effects of load changes
on the motor should also be investigated.

REFERENCES

Lars Alminde, Karl Kaas Laursen, and Jan Dimon Bendt-
sen. A Reusable Software Architecture for Small Satel-
lite AOCS Systems. Small Satellite Systems and Services
Conference, Greece, 2006.

Hans-Georg Beyer and Hans-Paul Schwefel. Evolution
strategies - A comprehensive introduction. Natural
Computing, 1(1), 2002. ISSN 1572-9796.

Hans Brink Hansen, Carsten Skovmose Kallesøe, and
Jan Dimon Bendtsen. A hybrid model of a Brushless
DC Motor. IEEE International Conference on Control
Applications, 2007.

Paul C. Krause, Oleg Wasynczuk, and Scott D. Sudhoff.
Analysis of Electric Machinery. IEEE PRESS, 1995.
ISBN 0-7803-1101-9.

Gerulf K. M. Pedersen. Towards Automatic Controller
Design using Multi-Objective Evolutionary Algorithms.
PhD thesis, Department of Control Engineering - Aal-
borg University, 2005.
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