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Abstract: Uncertainty issues associated with a multi-site, multi-product supply chain planning problem 
has been analyzed in this paper using the chance constraint programming approach. In literature, such 
problems have been addressed using the two stage stochastic programming approach. While this approach 
has merits in terms of decomposition, computational complexity even for small size planning problem is 
large. This problem is overcome in our paper by adopting the chance constraint programming approach for 
solving the mid term planning problem. It is seen that this approach is generic, relatively simple to use, and 
can be adapted for bigger size planning problems as well. We demonstrate the proposed approach on a 
relatively moderate size planning problem taken from the work of McDonald and Karimi (1997) and 
discuss various aspects of uncertainty in context of this problem. 

 

1. INTRODUCTION 

The primary objective of any supply chain planning is 
effective coordination and integration of the key business 
activities undertaken by an enterprise, starting from the 
procurement of raw materials to the distribution of the final 
products to the customers. The competitive pressures of the 
global economy motivate manufacturing and service 
enterprises to focus on supply chain planning on a priority 
basis (Shapiro, 2001). In the volatile market situations where 
enterprises have to meet customer satisfaction under 
changing market conditions, it is more realistic to consider 
the effect of uncertainties on supply chain planning so as to 
minimize their impact; deterministic models are unable to 
capture the demands and trade-off between various cost 
components such as inventory costs and demand satisfaction 
realistically in the presence of uncertainty.  
Based on representation of the uncertain parameters three 
prevailing methods of handling uncertainties are Stochastic 
programming (programming with recourse), Fuzzy 
mathematical programming (flexible and possibilistic 
programming) and Probabilistic programming are the three 
most popular approaches of handling uncertainties (Prekopa, 
1995; Birge and Louveaux, 1994).  
Programming with recourse under stochastic programming 
uses the standard two-stage approach: first stage variables are 
to be decided before the realization of uncertain parameters 
(“here and now” decisions) whereas the second stage 
variables are chosen as a corrective measure against any 
infeasibility arising due to a particular realization of 
uncertainty. The objective here is to choose the first stage 
variables in such a way that the sum of the first stage costs 
and the expected value of the random second stage costs is 
minimized. The main challenge in solving the two-stage 
stochastic problem is the calculation of expectation term for 

the inner recourse problem. Whether the uncertainty be 
expressed in scenario-based or distribution based 
methodologies, these methods have drawbacks like (i) 
number of scenarios to be analyzed increases exponentially 
with increase in number of uncertain parameters which 
requires Dantzig-Wolfe or Benders decomposition based 
approaches to solve a large scale formulation, (ii) making the 
problem nonlinear to make the problem size in control etc.  
The recourse based approach to stochastic programming 
requires the decision maker to assign a cost to recourse 
activities that are taken to ensure feasibility of the second 
stage problem. But these compensating second stage actions 
often either lead to impracticality (actions difficult to carry 
out practically) or the cost associated with the decision is 
hard to specify. In such circumstances, emphasis is shifted 
towards the reliability of a system by requiring a decision to 
be feasible with high probability. In the probabilistic 
programming or chance-constraint programming approach 
(Charnes and Cooper, 1958), the focus is on the system’s 
ability to meet feasibility in an uncertain environment. The 
system reliability is expressed in terms of probability of 
satisfying the constraints.  

In this paper, the uncertainty issues associated with a multi-
site, multi-product supply chain mid term planning problem, 
using chance constrained programming approach, has been 
analyzed in details which is not reported in the literature so 
far to the best of our knowledge. While the two-stage 
stochastic programming approach has merits in terms of 
decomposition, the associated computational complexity 
even for small size planning problem is large. This problem is 
overcome by adopting the chance constraint programming 
approach for solving the mid term planning problem. The 
mid term planning model of McDonald and Karimi (1997) 
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forms the basis of this work on which various impacts of 
uncertainty have been shown in this work.  

The rest of the paper is organized as follows. In the next 
section, a brief overview of chance constrained programming 
is presented. Section 3 contains the adaptation of the 
McDonald and Karimi (1997) model into the chance 
constrained programming framework. Results are presented 
in section 4 for the first case study of the work of McDonald 
and Karimi (1997). Finally the work is summarized and 
concluding remarks are provided in section 5. 

2. CHANCE CONSTRAINED PROGRAMMING 

In chance constrained programming, constraints that are 
associated with random parameters are expressed in terms of 
certain probability of getting satisfied. In this framework, a 
standard optimization formulation with uncertainty  

  ( ) ( ){ }0, ≥ξxhxfMin         (1) 

can be expressed as   

 ( ) ( )( ){ } ( )ukpxhPxfMin k ,...,10, =≥≥ξ        (2) 

where f(x) is the objective function, x is the set of decision 
variables, ξ is the set of random parameters, P is the 
probability measure of the given probability space of the 
uncertain parameter and p∈(0,1] is the probability level with 
which each of the u constraints hk(x, ξ) ≥ 0 of the entire 
constraint set h(x, ξ) ≥ 0 needs to be satisfied. The higher the 
value of p, the more reliable is the modelled system. On the 
other hand, the set of feasible x is more and more shrunk with 
value of p close to unity. Assuming (i) a normal distribution 
for the random parameter, ξ and (ii) random parameters are 
separable from the decision variables, the constraints in 
Equation 2 can be transformed into an equivalent 
deterministic form:  
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where ξk is the random parameter associated with kth 
constraint, 

kξ  and 
kξ

σ  are the mean and standard deviation 
values of the corresponding random parameters and qp is the 
p-quantile of the standard normal distribution with zero mean 
and unit standard deviation (e.g. 97% probability corresponds 
to qp = q0.97 = 2.0). In case the random parameters are not 
separable, similar treatment has to be done with the decision 
variable terms in the Equation 3. The term quantile times 
standard deviation corrects the nominal requirement and 
provides robustness of the generated optimal operating 
conditions under uncertain situations.  

Based on the requirements of several constraints getting 
satisfied either individually or together, the methodology is 
called individual or joint chance constraint programming 
respectively. These two different concepts can be represented 
as Equation (2) and (4) respectively. 

( ) ( )( ) ( )[ ]{ }pukxhPxfMin k ≥=≥ ,...,10,ξ            (4) 

It is seen that feasibility in the joint chance constraint case 
entails feasibility in the individual chance constraint case but 
the reverse is not true. In the joint chance constraint case, the 
deterministic equivalent form incorporates the quantile form 
on the multivariate probability distribution considering all the 
random parameters under consideration. Passing from joint to 
individual chance constraints may appear as a complication 
as that transforms single inequality into a multiple number 
(u) of inequalities. As the numerical treatment of probability 
functions involving high dimensional random vectors is 
much more difficult than in one dimension, the increase in 
number of inequalities is more than compensated by a much 
simpler implementation. Unlike the two stage stochastic 
programming approach, the advantage of these methods is 
that they are relatively easy to formulate and the problem size 
of the resultant deterministic equivalent does not blow up 
even for large number of random parameters.  

3. MID TERM PLANNING MODEL 

There are several entities in the supply chain namely, raw 
material supplier, production unit, retailer and customer. 
Given the topology of these entities, the purpose of the 
planning model is to determine (i) the amount to be procured 
as raw material at production sites, (ii) amount to be 
produced at the production units, (iii) the amount to be 
shipped from production unit to suppliers, suppliers to 
markets or among various production units (for production of 
interdependent products), (iv) amount of inventory to be kept 
at various locations (safety stock) to meet the stochastic 
demand prevailing in the market for the optimal operation of 
the supply chain over a relatively moderate time period (1-2 
years). The generic (MILP) midterm planning model of 
McDonald and Karimi (1997) is adapted here for the 
discussion related to the demand uncertainty.  
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where tsjiP ,,, , tsjiRL ,,, , 
tsjfRL ,,,
,

tsiC ,,
 , 

tcsiS ,,,
, 

tsiI ,,
, −

tciI ,, , 

tssi ,,, ′σ , Δ
tsiI ,,  represents the production, run length for each 

product, run length for each product family, consumption, 
supply to the market, inventory at production site, missing 
demand at market, intermediate product, inventory below 
safety level for product i or family f of several products to be 
produced at facility j at site s or customer c or market m at 
time period t respectively. Here tsjfY ,,, represents the binary 
variable to decide a product family f to be produced at 
machine j, site s and time period t or not. Few other important 
parameters are demand (di,c,t), machine uptime (Hj,s,t), 
minimum run length for the product family f (MRLf,j,,s,t), 
Safety stock target for product ( L

tsiI ,, ), effective rate of 
production (Rijst) whereas various unit cost parameters are 
inventory holding cost (hist), revenue (μic), raw material price 
(pis), penalty for dipping below safety level (ζis), fixed 
production cost (FCf,j,s,t) and variable production cost(νijs) and 
transportation costs (tss′, tsc). 

The set of products in the system is denoted by the index set I 
≡ {i}. This set can be classified into three categories, (1) raw 
materials (IRM), (2) intermediate products (IIP) (3) Finished 
products (IFP), so that I = {IRM∪IIP∪IFP}. An intermediate 
product can also belong to the set of finished products. The 
set of machines is denoted as J ≡ {j} and the set facilities 
where these machines are located as S ≡ {s}. The set of 
customers is denoted as C ≡ {c}, while the set of time period 
is denoted as T ≡ {t}. F≡{f} represents the set of families, 
and Φi,f is defined as the cross-set indicating that product i is 

a member of family f. The readers are referred to the work of 
McDonald and Karimi (1997) for further modeling details. 

In the above planning model, uncertain demands appear as 
terms independent of the decision variables and equations 12, 
13, 20 and 21 are, therefore, modified accordingly (into 
equations 22 - 25). All four demand related constraints are 
solved with probability “p” and therefore a corresponding 
quantile value of qd is used, assuming normal distribution for 
all product demands. Equations having uncertain demand 
terms are modified to the following form where 
different tcid ,, values are the nominal values of different 
product i and 

tcid ,,
σ are their corresponding standard deviation 

figures. Similarly the equations concerning uncertainty 
related to machine uptime (7, 16, 17) are also accordingly 
modified into equations 26 – 28 where tsjH ,, and 

tsjm ,,
σ , qm 

are their corresponding nominal, standard deviation and 
quantile value figures assuming normal distribution for this 
case as well.   
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Max Reliability: qk (k = d or m)              (29) 

As reliability of the model (equation 29) has an inherent 
Pareto trade-off with the total cost of the model, we finally 
obtain the formulation for the bi-objective optimization using 
the planning model. Equations 5 – 29 (except equations 7, 12, 
13, 16, 17, 20 and 21) form the complete set of equations 
describing the multi-objective planning model under demand 
as well as machine uptime uncertainty which is solved here 
by ε-constraint approach.  

4. RESULTS AND DISCUSSION 

The motivating example considered here is taken from the 
first case study of McDonald and Karimi (1997).  There are 
two production locations (S1 and S2) having one unit in each 
of them. Each of this production unit has a single raw 
material supplier. Production units S1 and S2 are connected 
to market M1 and M2 respectively. There are 34 products 
that are circulated in this supply chain. Unit S1 manufactures 
products P1-P23 whereas the products P24-P34 are 
manufactured at S2. Products at S2 are produced from a set 
of products that are produced at S1 e.g. product P24 is 
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produced from product P1 and so on (see McDonald and 
Karimi, 1997). There are eleven product families F1 – F11 
that are composed by taking the products of the production 
site S1 e.g. products P1, P2, P3 form product family F1, 
product P4, P5 form product family F2 and so on (see 
McDonald and Karimi, 1997). Market M1 has a set of 
customers who have demands for products P1-P23 and 
market M2 has customers having demands for products P24-
P34. We assume that the demand uncertainty for all 34 
products can be reasonably modeled by the normal 
distribution. Nominal demands for all these products are 
taken as the deterministic demand values given in the original 
problem for a 1 year planning horizon (each time period of 
duration 1 month and therefore 12 such time periods are 
considered). To see the effect of sudden demands, the 
demand values of the original problem for time periods 6 and 
12 are changed to 300% of the demand values given in the 
original work while all other demand values for the rest of the 
10 time periods are considered to be 20% of the demand 
values reported in the original problem and the nominal 
demands for the uncertain case are updated accordingly. 
Based on whether we solve the multi-objective midterm 
planning product formulation without any minimum run 
length (Model 1 consisting of equations 5-29, expect 
7,8,12,13,17,18,20,21,26-28, fixed charge terms in objective 
function and binary variables) or the multi-objective midterm 
planning product family formulation with minimum run 
length (Model 2 consisting of equations 5-29, expect 
12,13,20,21,26-28), our results change accordingly. The first 
problem results in an LP formulation whereas the second 
problem is an MILP problem. The complete formulation has 
been coded in the modeling environment of GAMS® (Brooke 
et al., 1998) and solved using BDMLP solver. A typical 
optimization run for model 1 (LP) includes 4379 single 
equations, 2723 single variables and is solved in 0.5 CPU 
seconds (on an average) where similar formulation in model 
2 (MILP) includes 4788 single equations, 2988 single 
variables, 132 binary variables and is solved on an average in 
300 CPU seconds (a maximum limit on node to be checked is 
kept as 5000) on a Pentium 4, 512 MB RAM IBM PC. Model 
2 converges to 4% of the best possible value with an average 
absolute gap of 300 spanning over 25 different runs.  

Pareto Optimal (PO) points for model 1 and model 2 with 
demand variations of 10% and 15% of the nominal values 
respectively are presented in Fig 1. Different instantiations of 
reliability for demand uncertainty model, henceforth called as 
demand reliability index, Dr, can be obtained by changing the 
quantile value, qd, of the standard normal distribution curve 
of demands for different products A value of Dr closer to  1 
represents demand reliability of 84.1345%; this would imply 
that the demands would lie within the first quantile 84.13 % 
of the time and therefore inclusion of such a description in 
the demand satisfaction constraint would represent the 
demand uncertainty to the above extent. Likewise, Dr values 
of 2 and 5 represent demand reliability of 97.725% and 
99.9999% respectively. On each of these PO fronts, one 
extreme point gives the most demand-reliable system (higher 
Dr value side e.g. 6) whereas the other extreme point gives 
the least expensive solution (low Dr value side e.g. 1). The 
value of Dr is not restricted to any integer value. A decision 

maker needs to make a single choice amongst all PO points 
as the operating point based on the demand satisfaction 
requirement. As uncertainty increases (more variation and 
thereby standard deviation), it is seen from Fig 1 that the 
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Fig. 1. Total cost vs. demand reliability index (Dr) Pareto 
fronts for different standard deviation values of uncertain 
demands for model 1 and model 2 respectively 

same value of  demand reliability (Dr) is obtained at higher 
cost; hence the PO front of higher standard deviation case lies 
above the relatively smaller standard deviation case. PO front 
of model 2 (MILP), being a more restrictive case of model 1 
(LP) and hence leading to more cost, therefore, lies 
marginally above the PO front of model 1. As the total cost 
increases with increase in Dr, the penalty cost for inability to 
maintain safety level and cost for missing customer demands 
also increase proportionately. With increase in reliability of 
the model, the model tends to meet more demands, if 
required, at the cost of safety stocks as the unit cost value of 
the product revenue is more than that of the penalty values. 
So, the safety stocks are allowed to deplete first in those 
cases followed by demand miss, if the productions are at their 
respective full capacities. However, similar trends are not 
obvious for other cost components in the objective function.  

Next, we focus on a few points of the model 2 PO front (Fig 
1): specifically we focus on the two points corresponding to 
Dr = 2, one for the 10% demand variation case and the other 
for the 15% demand variation case. These two cases are 
compared with the results of planning model run in a 
deterministic fashion for the nominal values of the demands 
(deterministic benchmark case). The demand, production and 
inventory storage patterns for product P1 can be seen from 
the results presented in Fig 2. As compared to the nominal 
case, the plan for the uncertainty cases shows a trend of 
higher production to handle uncertainty in future. The starting 
of production only around the sixth time period can be 
attributed to the demand till that time period being met by the 
already existing initial inventory at the production site. 

More accumulation of inventory for future uncertainty is not 
visible as there is a cost associated with it. Actually, the unit 
cost component of the McDonald and Karimi (1997) model is 
defined in such a way that the model gives higher preference 
for maintaining inventory at the safety level as long as there 
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is no demand miss and that happens during the time periods 
of 6 - 11. At the time period 12, the model allows its safety 
level to get depleted because the missing demand at market is 
more expensive than keeping the inventory at safety level. 

 Demand Patterns

0
20
40
60
80

1 2 3 4 5 6 7 8 9 10 11 12
Month

A
m

ou
nt

Dmd Nominal Dmd Sdv 10% Dmd Sdv 15%

 Production Patterns

0
20
40
60
80

1 2 3 4 5 6 7 8 9 10 11 12
Month

A
m

ou
nt

Dmd Nominal Dmd Sdv 10% Dmd Sdv 15%

 Inventory Patterns

0
50

100
150

1 2 3 4 5 6 7 8 9 10 11 12
Month

A
m

ou
nt

Dmd Nominal Dmd Sdv 10% Dmd Sdv 15%
 

Fig. 2.  Demand, Production and Inventory patterns for 
product P1 under different demand variations over the entire 
planning horizon for model 2 

The case is more aggravated when the variance of the product 
uncertainty is even higher (15%). As all the 34 products are 
to be produced over 12 time periods with interdependence 
between various products (with finite production capacity), a 
straight forward correlation among the patterns and the 
variance is not obvious. But in general, as the uncertainty 
grows, the equivalent deterministic demand increases leading 
to higher production rates as compared to nominal conditions. 
Similar plots for other 33 products have been generated but 
are not presented here for the sake of brevity. The nominal 
case presented here shows why uncertainty can not be 
handled using the mean values of the demands and leads to 
either misses of potential opportunity or unnecessary and 
untimely accumulation of inventory leading to very high 
inventory cost. The corresponding model 1 production results 
are presented in Fig 3. The significant difference in these two 
cases is because of the absence of the minimum run length 
constraint in the case of model 1; products are made at all 
possible time nodes, if required. This ensures that no demand 
is missed unless machines are operated at their maximum 
capacity. But in case of model 2, even for the deterministic 
benchmark case where machines are not operated at their 

maximum capacity, there is a marginal demand miss (0.824% 
on an average - 0.676% for site S1 and 1.47% for site S2).   
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Fig. 3.  Production patterns for product P1 under different 
demand variations over the planning horizon for model 1 

This happens due to the presence of minimum run length 
constraint and fixed charge component in the objective 
function.  

As one increases the value of Dr, for a fixed value of demand 
standard deviation, the model becomes more reliable and 
there is an increased emphasis on meeting higher demands. 
Three scenarios have been investigated: first when demands 
are exactly known (deterministic benchmark case, Dr= 0) 
while the other two cases are when demands have to be 
satisfied with 97% (Dr = 2) and 99.9999% (Dr = 5) 
probability. As this probability value increases, more 
demands for the products appear and products are made in 
higher amounts to combat uncertainty associated with 
demand (not shown here for the sake of brevity). 
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Fig. 4.  Machine uptime for machine at site S1 and S2 under 
different demand variation cases over the entire planning 
horizon for model 2 

Machine utilization for machine 1 at production site 1 
improves from an average value of 77% for the nominal case 
to an average value of 95% for the case of 10% standard 
deviation case and 100% for the case of 15% standard 
deviation for Dr = 2 (model 2). During the study, machine 2 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

10574
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Fig. 5.  Total cost vs. machine uptime reliability index (Ur) 
Pareto front for different values of machine uptime reliability 
index for model 2 (Dr = 2 and standard deviation values of 
uncertain demands kept fixed at 15% but the same for 
machine uptime kept at 10% and 15% of their nominal 
values) 

was never observed as a resource limiting one and was, 
therefore, having average uptime values of 20%, 24% and 
24% for the nominal, 10% standard deviation and 15% 
standard deviation case for the same value of Dr (Fig 4). As 
the site S2 machine is not capacity limiting, we analyze the 
site S1 machine further. When site S1 machine is fully 
utilized (e.g. Dr = 2 and 15% demand standard deviation), we 
introduce an upstream uncertainty in the machine availability.  
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Fig. 6.  Total cost vs. machine uptime reliability index (Ur) 
Pareto fronts for different standard deviation values of 
uncertain machine uptime for model 2 

So far we have seen that the demands sought from the market 
are met with reasonable degree of demand satisfaction. But 
practically there may be various instances of uncertain 
situations that can lead to uncertainty in the upstream 
processes for which demands are difficult to meet to the 

fullest extent. Machine stoppage due to power failures or 
some maintenance problem in machines etc. can be some 
examples for such upstream uncertainties. If machine uptime 
reliability index (Ur) is defined in the same way as was 
defined for demand reliability index (Dr), a similar Pareto 
trade off (Fig 5) can be shown between the total cost and 
machine uptime reliability index for a fixed value of Dr. This 
total cost versus machine uptime reliability Pareto has been 
generated for different instances of Ur values, keeping Dr = 2 
and demand and machine uptime standard deviation 15% of 
the corresponding nominal values. As we go for more reliable 
uptime model for a fixed value of Dr, we tend to incur a 
higher cost. In this case, the reliability considers both demand 
and machine uptime uncertainty and therefore incurs a higher 
cost. Hence the Ur Pareto front lies above the corresponding 
Dr Pareto front (Fig 1). As there is an increase in the value of 
Ur, less effective machine time is available for production 
leading to deteriorating demand satisfaction relationship as 
shown in Fig 6. Total cost, reliability index (demand or 
machine uptime) and demand satisfaction form a triangular 
Pareto trade-off combination whose boundaries are presented 
by lines joining the corresponding PO points in Figs 5 and 6. 

5. CONCLUSION 

In this paper, the multi-objective mid term supply chain 
planning problem is solved using chance constrained 
programming approach. The slot based planning model of 
McDonald and Karimi (1997) is adopted under chance 
constrained programming paradigm and solved for various 
uncertain scenarios to see the effect of variation in 
uncertainty on planning model. The problem solved here is 
relatively difficult to solve using the popular conventional 
scenario based two-stage recourse based programming 
approach as considering five scenarios for each of the thirty 
four products in that approach leads to a very large problem  
(534×12×12 scenarios) to solve. In our approach, the problem 
formulation is quite generic and easy to model, and the time 
involved in solving the problem is relatively small. Due to 
these strong points, the chance constrained optimization 
promises a great potential in handling problems under 
uncertainty. 
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