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Abstract: This paper discusses the fault tolerant control problem for discrete event systems
modeled by Petri nets. The fault is represented by the unobservable transitions. Firstly, an
observer-based fault diagnosis method is proposed to estimate the marking with unknown initial
markings and meanwhile, to diagnose the faulty behavior. Then, an adaptive fault tolerant
controller is designed to maintain the general mutual exclusion constraints (GMEC) property
of the system. The proposed method is applied to the control of traffic lights.

1. INTRODUCTION

Petri nets (PNs) are widely used for modeling discrete
event systems, e.g., autonomous manufacturing, traffic
control, chemical process. Such model can capture sys-
tem’s behaviors including concurrency, synchronization
and conflicts, see Murata (1989).

Faults may lead to abnormal system behaviors. Fault di-
agnosis includes detecting, isolating and estimating the
faults, while Fault tolerant control (FTC) is aimed at
achieving the system goal in spite of faults ( see Blanke
et al. (2003), Jiang et al. (2006)). To the best of our knowl-
edge, until now, only a few literatures have been devoted
to FTC for discrete event systems modeled by PNs such
as Balduzzi and Febbraro (2001), Hsieh (2004), where the
FTC goal is to prevent the system from deadlock. However,
fruitful results of diagnosis methods for PNs can be used as
the basis of the further FTC research. In Benveniste et al.
(2003), an unfolding based diagnosis approach is provided
for asynchronous discrete-event systems. A diagnoser is
given based on the concept of basis markings in Giua
and Seatzu (2005). Ramirez-Trevino et al. (2007) proposes
an on-line diagnosis method based on interpreted PN,
where the output information of markings has to be used.
The method derived in Lefebvre and Delherm (2007) is
based on marking variation and causality relationships. In
Wu and Hadjicostis (2005), the parity space method is
extended to Petri net. In most of these literatures, the
partial marking is measurable or the initial marking is
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known, such that the current marking just before faults
occur can be calculated. Giua et al. (2004) considers the
marking estimation from event observations with unknown
initial marking, but no fault is considered.

The faulty behavior in this paper is represented as un-
observable and uncontrollable transitions as in Giua and
Seatzu (2005),Lefebvre and Delherm (2007), which may
violate the general mutual exclusion constraints (GMEC)
of PN that is the basic requirement for system’s stability.
We propose an observer-based FTC scheme to maintain
the GMEC property of the system. The main contributions
of this work are as follows:

1. An observer-based fault diagnosis method is proposed
for PN with unknown initial marking, which esti-
mates the unmeasurable markings and meanwhile,
diagnoses the fault.

2. Based on the marking estimates, an adaptive FTC
scheme is designed to maintain the GMEC, which
is updated according to fault behavior. The general
condition for controller design that the GMEC is not
affected by unobservable transitions is relaxed.

3. The proposed method is effectively applied to the
control of traffic lights.

The rest of the paper is organized as follows: Section
2 gives some preliminaries and problem formulation. In
Section 3, fault diagnosis and observer design is discussed.
FTC is analyzed in Section 4. The application is described
in section 5, and simulation results are given. Some con-
cluding remarks end the paper.

2. PRELIMINARIES

2.1 Background on Petri nets

This section recalls the PNs formalism used in this paper.
The reader can find a more detailed presentation of PNs
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in Murata (1989). A PN structure is the 4-tuple N =
(P, T, Pre, Post), where P is a set of m places, T is a set
of n transitions. Prei,j : P × T → N that assigns a weight
to any arc between a transition tj and its input place pi,
where N the field of natural numbers. Posti,j : P ×T → N
that assigns a weight to any arc between a transition tj
and its output place pi. The preset and postset of a node
X ∈ P ∪ T are denoted •X and X•.

The marking of a PN is the function M : P → N which
assigns a nonnegative integer number of tokens to each
place.

A transition t ∈ T is enabled, if M ≥ Pre(·, t) and may fire
yielding M ′ = M + C(·, t), where C(p, t) = Post(p, t) −
Pre(p, t). Firing of tj lasts dj time units, where dj is a
nonnegative deterministic number. Denote M [ω〉M ′ such
that the enabled sequence of transitions ω may fire at M
yielding M ′.

The set of faults is denoted as Tf , where T = TN ∪ Tf

with TN the set of normal transition, Tf the set of faults.

From a graphical point of view, places are represented by
circles, transitions are represented by thick bars ( thin bars
denote the immediate discrete transitions i.e., d = 0). The
marking are represented by the dot in places.

2.2 Control of traffic lights

The application in this work is the control of traffic lights
at the terminator of the bridge as shown in Fig.1, where six
roads are interconnected with the bridge. The roads rout

1 ,
rout
2 and rout

3 are the output roads to which the vehicles
go from bridge, whereas the roads rin

1 , rin
2 and rin

3 are the
input roads from which vehicles go to the bridge.

Supervising 

lights

Bridge
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r2

in
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out
r3 the first part the second part

Fig. 1. One terminator of the bridge

The control specification can be described as P1 : the
vehicles from different input roads never get into the bridge
simultaneously. This is the basic requirement on the initial
performance, which must be guaranteed, otherwise the
vehicles may crash. The fault considered in this system
represents the abnormal behavior of the traffic lights, i.e.
the lights do not work as prescribed.

The PN model of the traffic lights system related to Fig.1
is shown in Fig.2, a detailed description of places is given in
Table 1. Compared with the PN model in Febbraro et al.
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Fig. 2. PN model of traffic lights system

(2004), red lights are considered in ours, which is more
suitable for fault modeling and FTC design.

Tablel 1 : Places of the PN in Fig.2
Place Meaning

gi green period of i th input road
yi yellow period of i th input road
ri red period of i th input road

From Fig. 2, it is more clear that the FTC objective is to
reconfigure the PN such that at each time, only one green
light is activated in spite of faults.

We impose the following hypothesis which always hold
throughout the paper.

H1. All t ∈ TN is controllable and observable. All t ∈ Tf

is uncontrollable and unobservable.
H2. ∀p ∈ P , t ∈ T , Pre(p, t) = Post(p, t). If ∃t1, t2 ∈ Tf

and •t1 = •t2, t•1 = t•2, then t1 = t2.
H3. ∀p ∈ P , M(p) is unmeasurable. The initial marking

is unknown while the initial macromarking (defined
in Section 3) is known.

3. FAULT DIAGNOSIS AND MARKING
ESTIMATION

In this section, we consider the problem of fault diagnosis
and observer design.

3.1 Fault diagnosability

The diagnosability definition of finite state machine in
Sampath et al. (1998) is extended to PN as follows:

Definition 1: A PN is diagnosable with respect to t ∈ Tf , if
∃n ∈ N, and an observable transition sequence ω, such that
‖ω‖ ≥ n ⇒ t ∈ ψ(t)ω, where ψ(t) denotes the sequence
that ends in t, ‖ω‖ is the length of the sequence ω. 2

The above definition of diagnosability means the following:
Let ψ(t) be any transition sequence that ends in a fault
t ∈ Tf , and let ω be any sufficiently long continuation of
ψ(t). t ∈ ψ(t)ω means that every transition sequence, that
produces the same record of observable transitions as the
sequence ψ(t)ω, should contain a fault in it. This implies
that along every continuation ω of ψ(t), one can detect the
occurrence of a fault t with a finite delay (n steps).

Before giving the diagnosability result of PN, the following
definitions are introduced.

Definition 2: Given a PN N , and a subset T ′ ⊆ T of its
transitions, we define the T ′-induced subnet of N as the
new net N ′ = (P, T ′, P re′, Post′) where Pre′ Post′ are
the restriction of Pre, Post to T ′. 2

The net N ′ can also be thought as obtained from N by
removing all transitions in T \ T ′.
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Definition 3: An unobservable transitions subset of PN is
acyclic if no oriented cycle of sequence occurs that contains
only unobservable transitions in this subset. 2

Definition 4: A PN is forward conflict (FC) if there exist
two transitions which have at least one common input
place. A PN is backward conflict (BC) if there exist two
transitions which have at least common output place. A
PN is absolutely conflict (AC) if it is both FC and BC. 2

We also say that a PN is forward (resp. backward) conflict
free (FCF (resp. BCF)) if it is not forward (resp. back-
ward) conflict.

Lemma 1: A PN is diagnosable with respect to t ∈ Tf , if
1) Tf -induced subnet is acyclic. 2) Tf -induced subnet Nf

is not AC. 3) the initial marking M0(pb) = M0(pa) = 0,
where pb ∈• t, pa ∈ t•. 4) •pa \ t do not fire before p•b \ t or
p•a fire. 5) After one transition from •pb fired, •pb do not
fire again before p•b fire.

Proof: From the graph point of view, there exist two
transition sets •pb and p•a before and after t. Condition
3) implies that a transition tb ∈• pb must fire before t
since M0(pb) = 0. Condition 1) means that the occurrence
of fault must be interconnected with the firing of normal
transitions. Under the condition 2), three cases are con-
sidered as follows:

Case 1: The Nf is FCF and BCF. Since Pre(p, ) =
Post(p, ) from H1 and M0(pb) = 0, Condition 5) implies
that if ∃% ∈ p•b \ t fires, then t must not occur. On the
other hand, M0(pa) = 0, Condition 4) means that before
we determined whether the fault occurs or not, •pa \ t do
not fire, i.e., M0(pa) do not change due to the firing of
•pa \ t. Thus t can be diagnosed once ta ∈ p•a fires.

Case 2: The Nf is FC and BCF. Several faults share one
same input place. The fault t may not be identified from tb,
while a smaller region than Tf in which the fault belongs
to can be determined. The property of BCF ensures that
t can still be diagnosed once ta fires.

Case 3: The Nf is BC and FCF. Since each fault has
one different input place, the fault that may occur can be
distinguished from tb. Although several faults share one
same output place, t can be diagnosed once ta fires. 2

3.2 Observer design

The purpose of the observer design for PN is to provide the
marking estimates in the presence of faults. The following
definition describes consistent markings as in Giua et al.
(2004)

Definition 5: After the transition sequence ω has been ob-
served, we define the set of ω-consistent markings C(ω) =
{M |∃M ∈ Nmd

,M ′[ω〉M} as the set of all markings in
which the system may be given the observed behavior and
the initial marking. 2

Similarly to Giua et al. (2004), the partial information of
the initial marking in discrete places is available in the
form of macromarking defined as follows.

Definition 6: Assume that the set of places PD can be
written as the union of r + 1 subsets: PD = P0 ∪ P1 ∪
. . . ∪ Pr such that P0 ∩ Pj = ∅, ∀j > 0. The number of

tokens contained in Pj(j > 0) is known to be bj , while
the number of tokens in P0 is unknown. For each Pj , let
vj be its characteristic vector, i.e., vj(p) = 1 if p ∈ Pj ,
else vj(p) = 0. Let V = [v1, . . . , vr] and b = [b1, . . . , br].
The macromarking is defined as the set V(V, b) = {M ∈
Nmd |V T M = b}. 2

Denote ψ(−→t ) as the set of all transition sequences that −→t
may follow, with −→t = {t1, . . .} the set of faults (F1) that
may fire after ψ(−→t ).

Assumption 1: If ωi ∈ ψ(−→t ), then all the faults in −→t share
the same input place. 2

Assumption 1 means that after we determine whether a
fault from an input place occurs or not, the fault from
another input place may fire. Otherwise, we just take into
account the possible faults from one input place.

Based on the conditions in Lemma 1 and Assumption 1,
the following algorithm provides the marking estimates
in the form of consistent markings iteratively in spite of
faults.

Algorithm 1: Marking estimation with event observa-
tion, initial macromarking and faults

1. Let the initial estimates Me
ω0

(p) = 0, the initial
complementary estimates M c

ω0
= Me

ω0
.

2. Let the initial bound Bω0 = b − V T Me
ω0

, the initial
complementary bound Bc

ω0
= Bω0 .

3. Let i = 1.
4. Wait until tαi fires.

If for i ≥ 2, tαi ∈ t••j , then
Me

ωi−1
= M cj

ωi
, Bωi−1 = Bcj

ωi
, go to 6.

end if.
5. If for i ≥ 2, ωi ∈ ψ(−→t ) then

Let M ′
ωi

(p) = max{Me
ωi−1

(p), P re(p, tαi)},
Let Me

ωi
= M ′

ωi
+C(·, tαi), Bωi = Bωi−1−V T ·(M ′

ωi
−

Me
ωi−1

).
Let M cj′

ωi+1
(p) = max{M cj

ωi
(p), P re(p, tαi)},

Let M cj
ωi+1

= M cj′
ωi+1

+ C(·, tαi), Bcj
ωi+1

= Bcj
ωi
− V T ·

(M cj′
ωi+1

−M cj
ωi

), go to 9.
end if.

6. Let M ′
ωi

(p) = max{Me
ωi−1

(p), P re(p, tαi)}.
7. Let Me

ωi
= M c

ωi
= M ′

ωi
+ C(·, tαi), Bωi = Bcj

ωi
=

Bωi−1 − V T · (M ′
ωi
−Me

ωi−1
).

8. If ∃p̄ ∈ t•αi, and t1, . . . , tq ∈ Tf , such that p̄ ∈• tj , (1 ≤
j ≤ q) then
Let M cj′

ωi+1
(p̄) = max{Me

ωi
(p̄), P re(p̄, tj)}.

Let M cj
ωi+1

= M ci′
ωi+1

+ C(·, tj), Bcj
ωi+1

= Bcj
ωi
− V T ·

(M ci′
ωi+1

−M cj
ωi

)
Let M c

ωi
=

⋃
M cj

ωi
, Bc

ωi
=

⋃
Bcj

ωi
.

end if.
9. Let i = i + 1, go to 4. ¥

Algorithm 1 is an extension of the algorithm in Giua et al.
(2004) to the faulty case.The main idea behind Algorithm
1 is that, when we predicate that a fault may occur at
next transition (steps 8 and 5), we consider all the possible
markings that may be reached under this fault, which are
recorded in the complementary marking estimates M c

ω.
When we determine the fault has occured (Step 4), M c

ω will
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be used to update the marking estimates Me
ω. Otherwise,

keep Me
ω not changed (steps 6 and 7).

Remark 1: Algorithm 1 can also be extended to the case
that the fault from m input places may occur. 2m − 1
complementary markings estimates need to be designed in
this case. ♦
The set of consistent markings provided by Algorithm 1 is
as follows.

Theorem 1: Suppose that Assumption 1 and all the con-
ditions in Lemma 1 hold. Consider a PN with initial
macromarking V(V, b), an observed transition sequence
ωi, the fault transition t ∈ Tf , and Me

ωi
, Bωi

M c
ωi+1

,
Bc

ωi+1
computed by Algorithm 1. The set of ωi-consistent

markings is

C(ωi|V, b) =
{ C1 if ωi 6∈ ψ(−→t )
C1 ∪ C2, if ωi ∈ ψ(−→t )

(1)

where C1 ,
{

M ∈ Nmd |V T M = V T Me
ωi

+ Bωi
,M ≥

Me
ωi

}
, C2 ,

{
M ∈ Nmd |V T M = V T M cj

ωi+1
+ Bcj

ωi+1
,M ≥

minj{M cj
ωi+1

}
}

.

Proof: For the case ωi 6∈ ψ(−→t ), i.e., no fault occurs. The
proof is similar to Giua et al. (2004), which is omitted.

For the case ωi ∈ ψ(−→t ), we first consider that the Tf -
subnet is FCF, i.e., only one possible fault t may occur
after ωi. In this case, ωi-consistent markings C(ωi|V, b)
should include the marking that may be reached under
ωit, This can be provided by M c

ωi
and Bc

ωi
as follows.

Steps 6 and 7 in Algorithm 1 ensure Me
ωi

= M c
ωi

and
Bωi = Bc

ωi
before t occurs. Let us show that C(ωi|V, b) =

{M ∈ Nmd |V T M = V T M c
ωi

+ Bc
ωi

,M ≥ Me
ωi
} ⇒

C(ωit|V, b) = {M ∈ Nmd |V T M = V T M c
ωi+1

+ Bc
ωi+1

,M ≥
Me

ωi+1
}. In fact, C(ωit|V, b) = {M ∈ Nmd |∃M ′ ∈

C(ωi|V, b),M ′ ≥ Pre(·, t),M = M ′ + C(·, t)} = {M ∈
Nmd |∃M ′, V T M ′ = V T M c

ωi
+ Bc

ωi
,M ′ ≥ Me

ωi
,M ′ ≥

Pre(·, t),M = M ′ + C(·, t)}, which together with the
step 8 of Algorithm 1, leads to M ′ ≥ M c′

ωi
. We further

have from the step 8 that V T M c
ωi

+ Bc
ωi

= V T M c′
ωi+1

+

Bc
ωi+1

. Therefore, C(ωit|V, b) = {M ∈ Nmd |∃M ′, V T M ′ =
V T M c′

ωi+1
+ Bc

ωi+1
,M ′ ≥ Me

ωi
,M = M ′ + C(·, t)} = {M ∈

Nmd |V T M = V T M c
ωi+1

+ Bc
ωi+1

,M ≥ Me
ωi+1

}.
For the case that the Tf -subnet is FC, it can be seen from
the analysis above that C(ω|V, b) defined in (1) includes all
markings that may be reached by any fault tj . Once we
determined whether the fault occurs or not from Lemma 1,
C(ω|V, b) will be updated as in Algorithm 1, which always
gives the set of all markings in which the system may be
given the observed behavior. This completes the proof. 2

Some properties about the observer of Algorithm 1 can
also be discussed similar to Giua et al. (2004). We give the
following two properties without proving them.

Proposition 1: Let ωi be an observed transition sequence.
The estimates computed by Algorithm 1 is a lower bound
of actual marking. i.e., ∀i,Me

ωi
≤ M ′

ωi+1
≤ Mωi

. 2

Proposition 2: Given Mωi and Me
ωi

, the estimation error
e(Mωi ,M

e
ωi

) =
∑

p∈P D (Mωi(p) − Me
ωi

(p)) is a monoton-
ically nonincreasing function of ωi. i.e., e(Mωi ,M

e
ωi

) ≥
e(Mωi+1 ,M

e
ωi+1

). 2

4. FTC DESIGN

We first give the definition of generalized mutual exclusion
constraints (GMEC) that have been considered in Giua
et al. (2004), Iordache and Antsaklis (2006).

Definition 7: Given an integer matrix L = [l1 . . . ls] with
lj ∈ Zmd

and an integer vector k = [k1, . . . , ks] with lj ∈ Z,
a GMEC of the PN (L, k) defines the set of legal markings
L = {M ∈ Nmd |LT ·M ≤ k}. 2

For the FTC objective of our application described in
Section 2.2, we consider a set of forbidden markings F =
{M ∈ Nmd |M 6∈ L}. Forbidden markings violate L, which
must be prevented from being reached (e.g., in the traffic
light control, no more than one green light can be activated
simultaneously).

4.1 Adaptive FTC scheme using observer

Based on the marking estimates and fault information
provided by the observer of Algorithms 1, an adaptive FTC
scheme is designed for PN as follows.

Assumption 2: The initial actual marking M0 ∈ L 2

Assumption 2 is quite general, if the initial situation
violates the GMEC, the system would be destroyed at the
beginning.

Algorithm 2: Computation of the PN based fault
tolerant controller using observer

1. Given the observed ωi, solve for each j(1 ≤ j ≤ s) the
IPP





max LT
j ·M

s.t.
M ∈ C(ωi|V, b)
M ∈ L

(2)

and let hj be its optimal solution.
2. Update the FTC controller with{

Ccj = −LjC
Mcj = kj − hj

(3)

where Ccj and Mcj denote the incidence matrix and
markings of the controller.

3. Let i = i + 1, go to 1. ¥
Compared with the logical control design in Giua et al.
(2004), Holloway and Krogh (1990), the control law (3) is
based on place invariants Iordache and Antsaklis (2006),
which is updated based on the consistent markings of the
observer at each time when a normal discrete transition
fires. Under this controller, some controllable discrete
transitions are disabled such that F is never reached. The
separate computation as in Holloway and Krogh (1990) is
not required.

Theorem 2: Supposed that Assumptions 2 and all the con-
ditions in Theorem 1 hold. The controller (3) guarantees
that F is never reached in spite of fault t ∈ p•, if
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Mωitj
∈ L,∀tj ∈ p• (4)

Proof: Since M0 ∈ L from Assumption 2, and the fault
does not occur as the first transition from Lemma 1,
based on the result in Iordache and Antsaklis (2006), the
controller (3) ensure Mω1 ∈ L.

As for i ≥ 2, assume that t may follow ωi, condition (4)
guarantees that once a fault from input place p occurs,
the GMEC is still not violated. On the other hand, under
Assumption 1, only the faults from one input place is
considered before it is determined to occur or not. So
the controller (3) only disables the controllable normal
transition rather than the fault transitions at each step.
From Theorem 1, C(ωi|V, b) includes all markings that
may be reached by possible faults after observed ωi, which
together with the result in Iordache and Antsaklis (2006)
leads to that F is never reached in spite of faults. 2

Remark 2 : The condition (4) is less restrictive than
the general condition in most literatures e.g.,Iordache
and Antsaklis (2006), where L · C(, Tuo) = 0, i.e. the
unobservable transition tuo ∈ Tuo can not change the
markings in places that related to the GMEC. Our method
can be applied even if L · C(, Tf ) 6= 0 as shown in the
application. ♦
If Tf -subset is FC, i.e. some faults share the same input
discrete place, then C(ωi|V, b) has to include more possible
markings, which would lead to more restrictive controller.
The following result can help to analyze the permissiveness
of the controller.

Proposition 3: Suppose that the conditions in Theorem 2
holds. Let C(ωi)FC , C(ωi)FCF be two sets of ωi-consistent
markings for the case that Tf -subset is FC and FC free
respectively. The controller (3) based on C(ωi)FCF is at
least as permissive as that based on C(ωi)FC .

Proof: For all ωi, Theorem 1 implies that C(ωi)FCF ⊆
C(ωi)FC , it follows that hjFCF ≤ hjFC , where hjFCF ,
hjFC denote the solution of Algorithm 3 with respectively
C(ωi)FCF and C(ωi)FC , which, together with (3), leads to
McjFCF ≤ McjFC i.e., the marking in control places under
C(ωi)FCF is equal to or less than that under C(ωi)FC .
Based on the result in Iordache and Antsaklis (2006), it
holds that more controllable transitions may be disabled
under C(ωi)FC . This complete the proof. 2

Remark 3: The observer-based controller may be more
restrictive than that obtained when the actual marking
is known. This may lead to a deadlock. The concept of
Siphon can be used to prevent the PN from the deadlock as
in Hsieh (2004),Giua et al. (2004),Iordache and Antsaklis
(2006). ♦

5. APPLICATION

This section applies the proposed method to the traffic
light control system as described in Section 2.2.

Let us come back to the PN model in Fig. 2. It can be
obtained that L = {M ∈ N12|M(g1) + M(g2) + M(g3) ≤
1}, i.e., only one green light can be activated at one time.
Li = {M ∈ N12|M(gi) + M(rj) + M(rh) = 3,M(yp) +
M(rq) + M(rm) = 3, i 6= j 6= h, p 6= q 6= m, with
the green light sequence g1 → g2 → g3 → g1, and

dg
i = 57s, dy

i = 3s, dr
i = 120s}, i.e., if one green light or one

yellow light is activated, the other two should be red lights.
We also suppose that if more than one green light can be
activated simultaneously, the green light that satisfies the
prescribed sequence is chosen to avoid the conflict.

5.1 Healthy case

We first consider the fault-free case to show the perfor-
mance of observer-based controller. The macromarking is

{
M(g1) + M(y1) + M(r1) = 1
M(g2) + M(y2) + M(r2) = 1
M(g3) + M(y3) + M(r3) = 1

(5)

The initial marking is (100000100010) which is unknown.
Fig. 3 shows the evolution of the estimation based on
Algorithm 1, which shows that the estimates is the low
bound of actual marking, and equal to the actual marking
after t6 fires, which verifies propositions 1 and 2. The Fig.
4 shows the controller designed from Algorithm 2. In the
healthy case, the marking always belongs to L.
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Fig. 3. Marking estimation
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5.2 Faulty cases

We consider the following 2 faulty cases

Case 1: t1f ∈ Tf : r1 → y1 as shown in Fig. 5. In this
case, after t2 fired, more consistent markings have to be
provided. Note that Assumption 1 is satisfied, since after
t2 fired, t2 is impossible to fire again before t9 or t1f fires.
If t1f : r1 → y1 really occurs, it can be diagnosed once t2
fires as shown in Lemma 1. If t9 fires before t2, then it
is determined that t1 does not occur. The fault tolerant
controller after t2 fired is also given in Fig. 5. Such that t1f
does not violate the GMEC.
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Fig. 5. PN in the faulty case 1

Case 2: t1f ∈ Tf : r1 → y1 and t2f : r1 → g1 as shown in
Fig. 6. Note that LC(, t2f ) 6= 0, which violate the condition
in Iordache and Antsaklis (2006). The Tf -subnet is FC
since t1f and t2f share the same input place r1. Similarly
more consistent markings will be provided by the observer
after t2 fired. However, the controller after t2 fired, shown
in Fig. 6 is less permissive than that in Case 1, due to
possible fault t2f which may activate g1, the controller must
disable t3, i.e., the green light g2 can not be activated. This
verifies the Proposition 3. In fact, under t2f , the system gets
deadlock unless t2f really occurs.
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Fig. 6. PN in the faulty case 2

6. CONCLUSION

This paper discusses the FTC problem for discrete event
systems modeled by PN with application to the traffic light
control problem. The proposed observer-based adaptive
FTC scheme has been shown effective to accommodate the
fault represented by unobservable transitions. The future
work will be focused on the FTC design for more general
faults, e.g., marking variation due to faults in each place.
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