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Abstract: Stable H∞ controller design is considered for systems which involve multiple time-
delays. Flow control problem in data-communication networks is chosen to present the proposed
design approach. An algorithm, which produces a robust stable controller, is developed. An
example is also presented, where the optimal controller, which is unstable, fails to produce a
stable response due to nonlinear effects. The proposed controller, however, can robustly stabilize
the system and produce desired response despite uncertain time-varying multiple time-delays.

1. INTRODUCTION

Many systems, biological, economical, or physical, include
time-delays. These delays may be ignored for controller de-
sign, when they are sufficiently small. However, when they
become significant, they may have a detrimental effect on
the system. In such a case, time-delays should be taken into
account during controller design. Existence of time-delays,
however, challenges the controller design problem, since
such systems are infinite dimensional. In the literature,
numerous approaches have been proposed for controller
design for time-delay systems (see Niculescu (2001) for a
wide survey). Operator theoretical approaches have been
used by Curtain and Zwart (1995) and by Foias et al.
(1996) to design controllers for general infinite dimensional

systems. Toker and Özbay (1995) used Hankel+Toeplitz
operator theory to design an H∞ controller for single-input
single-output (SISO) infinite dimensional systems. The
state-space techniques were used to design a controller for
systems with a single time-delay by Meinsma and Zwart
(2000). Later, by using the chain-scattering framework
and J-spectral factorizations, an H∞ controller design
approach for multi-input multi-output (MIMO) systems
with multiple time-delays was presented by Meinsma and
Mirkin (2005).

When an optimization approach, such as H∞, is used to
design a controller for any system, the resulting controller
may or may not be stable. When the resulting controller
is unstable, although it theoretically stabilizes the overall
system and optimizes a certain performance/robustness
measure, the closed-loop system may become highly sensi-
tive to sensor/actuator faults, numerical errors, and non-
linear effects. Such effects, may indeed cause an unstable
behaviour in a practical implementation. To avoid such
undesirable behaviour, stable controller design problem,
which is also referred to as the strong stabilization problem,
has been considered in the literature for a long time (e.g.,

Zeren and Özbay (2000)). Strong stabilization problem has
also been considered for time-delay systems (e.g., Abedor
and Poola (1989); Suyama (1991); Gümüşsoy (2004)).

However, those studies have been limited to systems which
involve a single delay. To the author’s best knowledge,
stable controller design problem for systems which involve
multiple delays have not been considered in the literature
up to date.

In the present paper, we consider the stable H∞ controller
design problem for systems which involve multiple time-
delays. We take data-communication networks as an ex-
ample case. In particular, we consider the flow control
problem in data-communication networks. This problem
has been widely studied, not only in the control literature,
but in the computer and communication literatures as well
(e.g., see Quet et al. (2002) and references therein). In
the rate-based flow control, a controller is implemented at
the bottleneck node, in order to adjust the rates of the
sources that send data to that node so that congestion
can be avoided. The existence of time-delays between the
bottleneck node and the sources, however, makes this
problem challenging. Furthermore, these delays are usually
uncertain and time-varying. An H∞ controller, which is
robust to uncertain time-varying multiple time-delays in
different channels was designed by Quet et al. (2002) using

the techniques of Toker and Özbay (1995). However, since

the results of Toker and Özbay (1995) were limited to SISO
systems, the controller proposed in Quet et al. (2002) was
obtained by defining seperate controller design problems
for each channel. Later, Ünal et al. (2006) used the MIMO
techniques of Meinsma and Mirkin (2005) to present an
H∞-optimal controller to solve the same problem. For
technical reasons, however, Ünal et al. (2006) assumed
that the uncertain parts of the time-delays were always
non-negative. This assumption was later removed in Ünal
et al. (2007), using the result of Ünal and İftar (2007). The

approach was also presented in more detail in Ünal et al.
(2007). In Ünal et al. (2007), it was also realized that when
the controller, apart from the integral action, is not stable,
an unstable behaviour may result in the closed-loop system
due to nonlinear effects. Therefore, in the present paper,
starting with the optimal controller of Ünal et al. (2007),
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we present an approach to find a stable controller (apart
from the integral action), which also robustly stabilizes the
overall system and produces a desired response.

1.1 Notation

For a time function x(t), ẋ(t) denotes its derivative with
respect to the time variable t. For a matrix M , MT

denotes its transpose and M−1 denotes its inverse. For
two symmetric matrices M and N , N ≤ M means that
M − N is non-negative definite. For a positive integer k,
Ik denotes the k × k dimensional identity matrix. I and
0 respectively denote appropriately dimensioned identity
and zero matrices. For positive integers k and l, Jk,l :=[

Ik 0
0 −Il

]
is a signature matrix. diag(m1, . . . , mk) denotes

a k×k dimensional diagonal matrix with m1, . . ., mk on its
main diagonal. For appropriately dimensioned matrices A,

B, C, and D,

[
A B
C D

]
denotes a realization of the transfer

function matrix (TFM) G(s) = C(sI −A)−1B + D. ‖ · ‖∞
and ‖·‖2 respectively denote the H∞ and L2 norms (Zhou
et al. (1996)). A TFM is said to be stable if it is in H∞.
A stable TFM is said to be bistable if its inverse exists in
H∞. A constant square matrix is said to be Hurwitz if all
its eigenvalues have negative real parts. A TFM Q ∈ H∞

is said to be contractive if ‖Q‖∞ < 1. For TFMs G and K,

where G =:

[
G11 G12

G21 G22

]
and G11 is k×k, G22 is l×l, and K

is k × l dimensional, HM(G, K) denotes the homographic
transformation (Kimura (1996)), which is defined as

HM(G, K) = (G11K + G12) (G21K + G22)
−1

.

Two important properties of the homographic transforma-
tion are the chain property:

HM(Ψ, HM(G, K)) = HM(ΨG, K) , (1)

where Ψ is a TFM which has the same dimensions as G,
and the inverse property: if Q = HM(G, K), where G is
invertible, then

K = HM(G−1, Q) . (2)

2. PROBLEM STATEMENT

In this section, we consider the flow control problem
for data-communication networks to illustrate stable H∞

controller design for systems with multiple time-delays.

2.1 Network Model

A data communication network with n sources feeding
a single bottleneck node is taken as a model. The flow
controller, which is to be designed, is implemented at the
bottleneck node. The controller calculates a rate command
for each source to adjust the rate of data it sends to the
bottleneck node in order to regulate the queue length at
the bottleneck node so that congestion is avoided. The
dynamics of the queue length are given as (Quet et al.
(2002)) q̇(t) =

∑n
i=1 rb

i (t) − c(t), where

q(t) is the queue length at the bottleneck node at time t,
rb
i (t) is the rate of data received by the bottleneck node

at time t from the ith source, i = 1, . . . , n,

c(t) is the outgoing rate of data from the bottleneck node
at time t, which equals to the capacity of the outgoing
link assuming that q(t) is positive.

The rate of data received by the bottleneck node, rb
i (t), is

given in terms of the rate command at time t, ri(t), issued
by the controller as follows (Quet et al. (2002)):

rb
i (t) =

{
(1 − δ̇f

i (t))ri(t − τi(t)), t − τf
i (t) ≥ 0

0, t − τf
i (t) < 0

. (3)

Here, τi(t) = τb
i (t) + τf

i (t) is the round-trip time-delay at
time t in channel i, where

τb
i (t) = hb

i + δb
i (t) is the backward time-delay at time t,

which is the time required for the rate command to
reach the ith source. Here, hb

i is the nominal time-
invariant known backward time-delay, and δb

i (t) is the
time-varying backward time-delay uncertainty,

τf
i (t) = hf

i + δf
i (t) is the forward time-delay at time t,

which is the time required for the data sent from

the ith source to reach the bottleneck node. Here, hf
i

is the nominal time-invariant known forward time-
delay, and δf

i (t) is the time-varying forward time-
delay uncertainty.

The nominal round-trip time-delay for the ith channel is

then given as hi = hb
i + hf

i and the round-trip time-delay

uncertainty is given as δi(t) = δb
i (t) + δf

i (t). It is assumed
that the uncertainties are bounded as follows:

|δi(t)| < δ+
i , |δ̇i(t)| < βi, |δ̇f

i (t)| < βf
i (4)

for some bounds δ+
i > 0 and 0 < βf

i ≤ βi < 1. It is further
assumed that, δi(t) is such that τi(t) ≥ 0 at all times. In
a real application, there also exist some hard constraints,
such as non-negativity constraints and upper bounds on
the queue length and data rates. In this work, however, we
assume that such constraints are always satisfied for the
purpose of controller design. We will, however, explicitly
take these constraints into account while doing simulations
in Section 4.

2.2 Control Problem

It is desired to design a controller for the above described
system to regulate the queue length, q(t). The controlled
system must be robustly stable against all time-varying
uncertainties in the time-delays which satisfy (4). More-
over, assuming that limt→∞ c(t) =: c∞ exists, the nominal
system must satisfy the tracking requirement:

lim
t→∞

q(t) = qd (5)

and the weighted fairness requirement (Quet et al. (2002)):

lim
t→∞

ri(t) = αic∞ , i = 1, . . . , n . (6)

Here, qd is the desired queue length, which is chosen as
some positive number (typically half the buffer size) and
αi > 0, i = 1, . . . , n, are the fairness weights, which satisfy∑n

i=1 αi = 1 .

Now, we can describe the overall system as shown in Fig. 1,
where

Po(s) := 1
s

[ 1 · · · 1 ] is the nominal plant,
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Fig. 1. Overall system (Ünal et al. (2007)).

K is the controller to be designed,
r := [r1 · · · rn]T ,
Λu(s) := diag

(
e−h1s, . . . , e−hns

)
represents the nominal

time-delays, which are taken outside the plant and
ordered as h1 ≥ h2 ≥ . . . > hn ≥ 0, in order to apply
the approach of Meinsma and Mirkin (2005),

∆ is a linear time-varying block, whose L2-induced norm
is less than 1 and which represents the uncertainties
in the time-delays, and

W1(s) :=
[
W 1(s) · · · Wn(s)

]
, where, for i = 1, . . . , n,

W i(s) :=
√

2

[
βi+β

f

i

s
√

1−βi

2δ+
i

]
.

The structure of ∆ and the derivation of W1 can be found
in Ünal et al. (2007).

To solve the control problem defined above, the mixed
sensitivity minimization problem shown in Fig. 2, which
was first defined by Ataşlar (2004), was considered in Ünal
et al. (2007). Here, W2(s) := 1

s
, W3(s) := σ1

s
, and

W4(s) :=
σ2

s




α2

α1
−1 0 0

α3

α1
0 −1 0

...
...

. . .
...

αn

α1
0 0 −1




,

where σ1 > 0 and σ2 > 0 are design parameters. Further-
more, d := q̇d − c, e1 is the integral of the error, y := qd −
q, and is introduced to achieve tracking (5), and e2 is
introduced to achieve the weighted fairness requirement
(6). The problem now is to determine a controller K which
minimizes the H∞ norm of the TFM from w := [wT

1 d]T

to z := [zT
1 e1 eT

2 ]T in Fig. 2 with ∆ block removed.

2.3 H∞ Controller Design

To solve the problem defined at the end of the previous

subsection, a co-prime factorization, Po(s) = M̃−1(s)Ñ(s),

in H∞ is necessary. Here, as in Ünal et al. (2007), we take

Ñ(s) = 1
s+ǫ

[ 1 · · · 1 ] and M̃(s) = s
s+ǫ

for an arbitrary
ǫ > 0. Then the system in Fig. 2 can be shown as in Fig. 3,

where ŷ := M̃−1y and

K̂(s) := K(s)M̃(s) =
s

s + ǫ
K(s) . (7)

Then the problem is to design a controller K̂ so that

‖Fl(P̂ , ΛuK̂)‖∞ < γ, for minimum possible γ, where

Fl(P̂ , ΛuK̂) is the closed-loop TFM from w to z in Fig. 3.

For a satisfactorily large given sensitivity level, γ, a con-

troller K̂, which satisfies ‖Fl(P̂ , ΛuK̂)‖∞ < γ, can be
obtained by applying the approach proposed by Meinsma
and Mirkin (2005), as shown in Ünal et al. (2007). The
corresponding controller, K, can then be found from (7) as

K(s) = s+ǫ
s

K̂(s). This controller has the structure shown
in Fig. 4, where κ := γ

2

√
2
∑

n

i=1
(δ

+

i )2

is a constant, F1 and

F2 are blocks which consist of delays and finite impulse
response (FIR) filters, GΛ is a bistable finite dimensional
TFM, and QΛ is a contractive, but otherwise arbitrary,
TFM (see Ünal et al. (2007) for details).

The optimal controller, Kopt, can be found by an itera-

tive procedure on γ as proposed in Ünal et al. (2007).
The minimum γ, for which there exists a solution to

‖Fl(P̂ , ΛuK̂)‖∞ < γ, is denoted by γopt. Then, Kopt(s) =
s+ǫ

s
K̂opt(s), where K̂opt satisfies ‖Fl(P̂ , ΛuK̂opt)‖∞ <

γopt.

Any controller K, including Kopt, obtained as above is
unstable due to the integral term (see Fig. 4). This is in

P0
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Fig. 2. System for the mixed sensitivity minimization
problem (Ataşlar (2004)).
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Fig. 3. Equivalent four-block problem (Ünal et al. (2007)).
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fact a desirable property which ensures tracking. The rest
of the controller, i.e., the part from ȳ to r in Fig. 4 (which

differs from K̂ only by a constant), may or may not be

stable. When this part (equivalently K̂) is unstable, due
to nonlinearities in the system (i.e., the hard constraints),
an unstable behaviour may be observed, at least for certain
actual delays and/or initial conditions (see Section 4).
In order to avoid such undesirable behaviour, in the
next section we will propose a design methodology which
ensures that the TFM from ȳ to r in Fig. 4 is stable.

3. PROPOSED DESIGN METHODOLOGY

In this section, we will propose a design methodology to
obtain a stable (apart from the integral action) controller
to solve the problem presented in the previous section.
For this, the TFM from ȳ to r in Fig. 4 must be stable.
Note that both F1 and F2 in Fig. 4 are stable, since
they contain only delays and FIR filters. Therefore, it is
sufficient to ensure that the TFM from ȳ to r̄ in Fig. 4 is
stable. Furthermore, γF2

:= ‖F2‖∞ is finite. Therefore, by
the small gain theorem (e.g., see Zhou et al. (1996)), the
mapping from ȳ to r̄ is stable if

‖HM(G−1
Λ , QΛ)‖∞ < 1/γF2

. (8)

Therefore, to solve our problem, we will try to find a
controller which satisfies (8) in addition to the condition
‖QΛ‖∞ < 1, which is required for the robust stability of
the overall system (see Subsection 2.3).

Let us partition G−1
Λ as G−1

Λ =:

[
Ĝ11 Ĝ12

Ĝ21 Ĝ22

]
, where Ĝ11 is

n×n and Ĝ22 is 1× 1. Then, HM(G−1
Λ , QΛ) = (Ĝ11QΛ +

Ĝ12)(Ĝ21QΛ + Ĝ22)
−1. Thus, (8) is satisfied if

‖(Ĝ11QΛ + Ĝ12)(γ
−1
F2

Ĝ21QΛ + γ−1
F2

Ĝ22)
−1‖∞ < 1 . (9)

By defining

G−1
Λγ

:=

[
In 0
0 γ−1

F2

]
G−1

Λ =

[
Ĝ11 Ĝ12

γ−1
F2

Ĝ21 γ−1
F2

Ĝ22

]
, (10)

(9) is equivalent to that

S := HM(G−1
Λγ

, QΛ) (11)

is contractive.

To find a condition to guarantee contractiveness of QΛ, let

us also partition GΛγ
as GΛγ

=

[
G11 G12

G21 G22

]
, where G11 is

n×n and G22 is 1×1. Then, using (11) and (2), we obtain

QΛ = HM(GΛγ
, S) = (G11S + G12)(G21S + G22)

−1. (12)

Following Lee and Soh (2005), let us introduce a nonzero
tuning parameter λ, so that

QΛ = (λG11S + λG12)(λG21S + λG22)
−1 . (13)

Let us also define U := λ(G11S +G12), V := 1−λ(G21S +

G22), and Γ :=
√

2

[
U
V

]
. Then

QΛ = U(1 − V )−1 = HM(GΓ, Γ) , (14)

where GΓ :=

[
[ In 0 ] 0

[ 0 −1 ]
√

2

]
and it satisfies GT

ΓJn,1GΓ ≤
J(n+1),1. This property of GΓ can be used to present a
sufficient condition for the contractiveness of QΛ. Let us

define zΓ, wΓ, uΓ and yΓ such that

[
zΓ

wΓ

]
= GΓ

[
uΓ

yΓ

]
and

uΓ = ΓyΓ. Then, by (14), zΓ = QΛwΓ. Since GT
ΓJn,1GΓ ≤

J(n+1),1, then

[
zΓ

wΓ

]T

Jn,1

[
zΓ

wΓ

]
=

[
uΓ

yΓ

]T

GT
ΓJn,1GΓ

[
uΓ

yΓ

]

≤
[

uΓ

yΓ

]T

J(n+1),1

[
uΓ

yΓ

]

which gives zT
Γ zΓ − wT

Γ wΓ ≤ uT
ΓuΓ − yT

Γ yΓ, which implies

‖zΓ‖2
2 − ‖wΓ‖2

2 ≤ ‖uΓ‖2
2 − ‖yΓ‖2

2 . (15)

Since uΓ = ΓyΓ, if Γ is contractive, ‖uΓ‖2 < ‖yΓ‖2. Then,
from (15), ‖zΓ‖2 < ‖wΓ‖2. However, since zΓ = QΛwΓ, this
implies contractiveness of QΛ. Therefore, QΛ is contractive
if Γ is contractive. Furthermore, recall that S must also
be contractive. These two conditions are simultaneously
satisfied if
∥∥∥∥
[

Γ
S

]∥∥∥∥
∞

=

∥∥∥∥∥∥



√

2

[
λ(G11S + G12)

1 − λ(G21S + G22)

]

S




∥∥∥∥∥∥
∞

< 1 . (16)

Let us define GG :=




√
2λG11

...
√

2λG12

−
√

2λG21

...
√

2(1 − λG22)

In

... 0
· · · · · · ·
0

... 1




. Then,

HM(GG, S) =

[
Γ
S

]
. Therefore, condition (16) is satisfied

if and only if HM(GG, S) is contractive. As a result, the
problem of finding a contractive QΛ which satisfies (8) is
solved if there exists λ > 0 and a contractive S such that
‖HM(GG, S)‖∞ < 1. This condition is equivalent to that

there exists a (J̄ , Ĵ)-lossless factorization of GG such as

GG = ΘGΦG, where J̄ := J(n+1+n),1, Ĵ := Jn,1, ΘG is

(J̄ , Ĵ)-lossless and ΦG is bistable (Kimura (1996)). Since,

by (1), HM(GG, S) = HM(ΘG, HM(ΦG, S)), (J̄ , Ĵ)-
lossless property of ΘG implies that ‖HM(GG, S)‖∞ < 1 if
and only if ‖HM(ΦG, S)‖∞ < 1 (Kimura (1996)). There-
fore, if an arbitrary but contractive QG := HM(ΦG, S) is
chosen, then, using (2), contractive S is obtained as

S = HM(Φ−1
G , QG) . (17)

Then, a contractive QΛ which satisfies (8) is obtained by
(12).

To find the state-space solution of (J̄ , Ĵ)-lossless factoriza-

tion of GG, note that lims→∞ G−1
Λ (s) = In+1 (Ünal et al.

(2007)) and let a minimal realization of G−1
Λ be given as

G−1
Λ =




Â B̂1 B̂2

Ĉ1 In 0

Ĉ2 0 1


 . (18)
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Then a minimal realization of G−1
Λγ

is given as

G−1
Λγ

=




Â B̂1 B̂2

Ĉ1 In 0

γ−1
F2

Ĉ2 0 γ−1
F2


 . (19)

Thus, a minimal realization of GΛγ
is given as

GΛγ
=




Â − B̂1Ĉ1 − B̂2Ĉ2 B̂1 γF2
B̂2

−Ĉ1 In 0

−Ĉ2 0 γF2


 . (20)

Therefore, a minimal realization of GG can be obtained as

GG =

[
AG BG

CG DG

]
, (21)

where AG := Â − B̂1Ĉ1 − B̂2Ĉ2, BG :=
[
B̂1 γF2

B̂2

]
,

CG :=




−
√

2λĈ1√
2λĈ2

0
0


, and DG :=




√
2λIn 0

0
√

2(1 − λγF2
)

In 0
0 1


.

Note that, since GΛ is bistable, from (18), both Â and

Â − B̂1Ĉ1 − B̂2Ĉ2 = AG are Hurwitz. Thus, GG is stable.

The state-space solution of (J̄ , Ĵ)-lossless factorization of
GG is given in the following theorem, which is taken from
Kimura (1996).

Theorem 1. Consider the stable system GG and its

minimal realization given in (21). GG has a (J̄ , Ĵ)-lossless
factorization, GG = ΘGΦG, if and only if there exists a
nonsingular matrix EG, such that

DT
GJ̄DG = ET

GĴEG , (22)

and a solution XG ≥ 0 to the following Riccati equation

XGAG + AT
GXG − Y T

G (DT
GJ̄DG)−1YG + CT

G J̄CG = 0 (23)

such that Aπ := AG + BGFG is Hurwitz, where FG :=
−(DT

GJ̄DG)−1YG and YG := DT
GJ̄CG + BT

GXG. In that

case, ΘG =

[
Aπ BG

CG + DGFG DG

]
E−1

G and

ΦG = EG

[
Aπ −BG

FG In+1

]
. (24)

Note that, DT
GJ̄DG =

[
(2λ2 + 1)In 0

0 −d

]
, where d :=

4λγF2
− 2λ2γ2

F2
− 1. Suppose EG is nonsingular and let

V := E−1
G . Then, from (22), V T DT

GJ̄DGV = Ĵ . Let

y := V x, where x := [ 0 · · · 0 1 ]
T
. Then, yT DT

GJ̄DGy =

xT Ĵx = −1, which implies that DT
GJ̄DG must have at

least one negative eigenvalue. However, since DT
GJ̄DG =[

(2λ2 + 1)In 0
0 −d

]
, and 2λ2+1 > 0, we must have −d < 0

if EG is nonsingular. Equivalently, EG is nonsingular only
if d > 0. On the other hand, if d > 0, a nonsingular EG

can be obtained as EG =

[ √
2λ2 + 1In 0

0
√

d

]
. Therefore,

a nonsingular EG satisfying (22) exists if and only if d > 0.

However, note that, d > 0 if and only if λ is chosen in the

interval
( √

2−1√
2γF2

,
√

2+1√
2γF2

)
.

Therefore, a controller which solves the problem of Subsec-
tion 2.2 and which is stable apart from the integral action
can be obtained by the following algorithm.

Algorithm 1:

1. Find the optimal sensitivity level γopt (see Subsec-
tion 2.3) and let γ = γopt.

2. Find F1, F2, and GΛ (see Subsection 2.3) for the
current sensitivity level γ. Also compute γF2

:=
‖F2‖∞. Choose a sufficiently large l and equally
spaced values λ1, λ2, . . ., λl within the interval( √

2−1√
2γF2

,
√

2+1√
2γF2

)
. Let i = 1.

3. For λ = λi, if there exists a solution XG ≥ 0 to
the Riccati equation (23), go to step 6. Otherwise,
continue with step 4.

4. If i = l, go to step 5. Otherwise, set i = i + 1 and go
to step 3.

5. Increase γ by a small amount and go to step 2.
6. Let QΛ = HM(GΛγ

, S), where, by (10), GΛγ
=

GΛ

[
In 0
0 γF2

]
and, by (17), S = HM(Φ−1

G , QG),

where ΦG is given by (24) and QG is contractive
but otherwise arbitrary. The desired controller is then
given by (see Fig. 4)

K(s) = F1(s)H(s)
κ(s + ǫ)

s(1 + F2(s)H(s))
, (25)

where H := HM(G−1
Λ , QΛ) and κ := γ

2

√
2
∑

n

i=1
(δ

+

i )2

.

4. ILLUSTRATIVE EXAMPLE

In this section, a network with two sources is considered
as an example to demonstrate the time-domain perfor-
mance of the controllers obtained by the proposed design
approach. Simulations are done using MATLAB Simulink,
where non-linear effects (hard constraints) are also taken
into account. We consider two cases. In the first one the
nominal delays in both channels are the same; in the
second case they are different. In both cases, we take

hf
i = hb

i = 1
2hi, i = 1, 2. Moreover, the desired queue

length, qd, is taken as 30 packets and the buffer size (max-
imum queue length) is taken as 60 packets. The capacity
of the outgoing link is taken as 90 packets/second. The
rate limits for the sources are taken as 150 packets/second.
In both cases the optimal controller excluding the integral

action (i.e., K̂opt) turns out to be unstable. We present the
results for both the optimal and the proposed controller.
For the optimal controller, we take QΛ = 0 and for the
proposed controller, we take QG = 0. In Figures 5–11, q
(whose scale is on the right) is the queue length and rs

1 and
rs
2 (whose scale is on the left) are the actual flow rates at

source 1 and 2, respectively (rs
i (t) = ri(t−τb

i (t)), i = 1, 2).

Case 1: We let h1 = h2 = 2, δ+
1 = 0.5, δ+

2 = 1, β1 = β2 =

0.6, βf
1 = βf

2 = 0.3, α1 = 2
3 , α2 = 1

3 , and σ1 = σ2 = 0.25.
Applying the approach of Subsection 2.3, the optimal
sensitivity level is obtained as γopt = 6.5623. We apply the
optimal controller to the system for two different actual
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Table 1. Uncertain part of the actual time-delays.

Case i δb
i
(t) δ

f
i
(t)

1a 1,2 0.3+0.3sin( 2π
50

t) 0.1+0.1sin( 2π
100

t)

1b 1,2 1.3+0.3sin( 2π
50

t) 0.1+0.1sin( 2π
100

t)

1c 1,2 1.3+0.3sin( 2π
50

t) 0.1

2 1 1.3+0.3sin( 2π
30

t) 0.1+0.1sin( 2π
100

t)

2 0.3+0.3sin( 2π
50

t) 0.1+0.1sin( 2π
100

t)

0 50 100 150 200 250 300
0

15

30

45

60

75

90

105

120

135

150

F
lo

w
 r

a
te

s
 a

t 
s
o
u
rc

e
s
 i
n
 p

a
c
k
e
ts

/s
e
c
o
n
d

0 50 100 150 200 250 300
0

10

20

30

40

50

Q
u
e
u
e
 l
e
n
g
th

 i
n
 p

a
c
k
e
ts

Time in Seconds

r
s

1

r
s

2

q

Fig. 5. Results for the optimal controller for Case 1a.
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Fig. 6. Results for the optimal controller for Case 1b.

time-delays, whose uncertain parts are given in Table 1 as
cases 1a and 1b. The results are shown in Figures 5 and 6,
respectively. In case 1a, where the uncertain parts of the
actual delays are relatively smaller, the optimal controller
can recover following some transient oscillations. However,
in case 1b, although the linear closed-loop system is stable,
a totally unstable response is obtained due to the nonlinear
effects.

We also design a controller which is stable apart from
the integral action, using Algorithm 1. The sensitivity
level obtained for this controller is γ = 12.2123. We then
apply this controller to the system for the same actual
time-delays as in cases 1a and 1b. The results are shown
in Figures 7 and 8, respectively. It is seen that, unlike
the optimal controller, the proposed controller produces
a smooth response in both cases. Both the queue length
and the flow rates oscillate around their desired values
(given by (5) and (6), respectively) at steady-state. The
reason for these oscillations is the time-varying forward
delays, and they are unavoidable, unless the actual delays
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Fig. 7. Results for the proposed controller for Case 1a.
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Fig. 8. Results for the proposed controller for Case 1b.
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Fig. 9. Results for the proposed controller for Case 1c.

are known by the controller (see Quet et al. (2002)). If
the forward delays are taken time-invariant, as in case
1c in Table 1, for example, these oscillations disappear
as shown in Fig. 9. In this case, the proposed controller
robustly stabilizes the overall system and satisfies both the
tracking (5) and fairness (6) requirements exactly, despite
time-varying uncertain backward time-delays and time-
invariant uncertain forward time-delays.

Case 2: We let h1 = 4, h2 = 2, δ+
1 = 0.5, δ+

2 = 1,

β1 = 0.6, β2 = 0.4, βf
1 = βf

2 = 0.3, α1 = 2
3 , α2 = 1

3 , and
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Fig. 10. Results for the optimal controller for Case 2.
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Fig. 11. Results for the proposed controller for Case 2.

σ1 = σ2 = 0.25. Applying the approach of Subsection 2.3,
the optimal sensitivity level is obtained as γopt = 7.6090.
We apply the optimal controller to the system for actual
time-delays, whose uncertain parts are given in Table 1 as
case 2. The results are shown in Fig. 10, where an unstable
behaviour is observed. For the controller designed using
Algorithm 1, the sensitivity level obtained is γ = 12.2090.
The results for this controller are shown in Fig. 11, for the
same actual time-delays. As in case 1, a smooth response
is obtained, where the queue length and the flow rates
oscillate around their desired values at steady-state.

5. CONCLUSION

Stable H∞ controller design has been considered for sys-
tems which involve multiple time-delays. Flow control
problem in data-communication networks has been chosen
to present the proposed design approach. The main result,
which is summarized as Algorithm 1, however, can be
applied to any system which involve multiple time-delays,
once the problem is stated as in Subsection 2.2, and the
steps of Subsection 2.3 are applied.
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