

Matrix-based scheduling and control of a mobile sensor network

V. Schiraldi*, V. Giordano*, D. Naso*, B. Turchiano*, F. L. Lewis**

* Dipartimento di Elettrotecnica ed Elettronica, Politecnico di Bari,
 Bari 70125, Italy. (email naso@poliba.it)

**Automation and Robotics Research Institute, University of Texas at Arlington,
J. Newell Blvd. 7300, Fort Worth, TX 76118 USA. (email lewis@uta.edu).

Abstract: This paper considers real-time coordination of a mobile sensor network composed of
heterogeneous resources with partially overlapping functionalities in charge of executing multiple
sequences of interconnected tasks. A discrete event controller based on a matrix-based formalism is
adopted to combine in a single framework task planning, dynamic resource assignment with look-ahead,
and shared resource conflict resolution with utility-based method. The matrix based controller is modular
and can be easily reconfigured if mission characteristics or network topology change. Simulations and
preliminary results on an experimental platform are provided to illustrate the main features of the proposed
control approach.

1. INTRODUCTION

A Mobile Sensor Network (MSN) is a network of mobile,
heterogeneous devices that are able to perform a variety of
tasks, including measuring, observing, tracking, finding or
manipulating objects. Many MSNs use very sophisticated
robots as single units, and borders between research areas
such as mobile robotics (Gerkey and Mataric, 2004), multi-
robot coordination/cooperation (Lee et al., 2003, Burgard, et
al., 2005, Tsalatsanis et. al., 2006), and sensor networks (Ren
et al., 2006, Dharne et al., 2006) are rapidly vanishing.
Mobility and multifunctionality are generally adopted as a
means to reduce the number of nodes, at the cost of making
the overall supervision and control task much more
challenging. In fact, in this case, the control system of the
MSN must simultaneously address task planning, dynamic
resource assignment, resolution of conflicts for shared
resources, and event-based feedback control. On the one
hand, it is well-known that all of these sub-problems have
been extensively investigated in related areas such as
operation research and manufacturing system control. On the
other hand, it can be still observed that the preponderance of
the related literature focuses on one aspect only, disregarding
(or strongly simplifying) the interactions with the other ones.
Therefore, recent researches (Giordano et al., 2006) have also
remarked that the effective exploitation of the capabilities of
multifunctional MSNs calls for integrated approaches capable
to properly describe and address all the problems within a
unified modelling and decision-making approach.

Recent research has identified the “Matrix-based Discrete
Event Control” (M-DEC) formalism (Tacconi and Lewis,
1997) as an effective tool to address this problem. This
discrete-event modelling technique has been applied to a
variety of complex, large-scale distributed systems, e.g.
(Mireles and Lewis, 2002). In (Giordano et al., 2006) the M-
DEC is used to control a MSN for which it is assumed that
task allocation is predetermined offline by decision-makers

using a priori information. Since many MSN need to cope
with (1) multiple competing missions issued at unpredictable
times, and (2) dynamic network topologies deriving from
mobility, faults and addition/removal of sensors, the
integration of a dynamic resource assignment tool in the M-
DEC framework is a natural and significant extension of the
work presented in (Giordano et al., 2006).

Thus, in this paper the matrix-based DEC is not only in
charge of implementing preconditions, postconditions, and
interdependencies of the tasks and shared resource
management, but it also dynamically determines task-to-
resource assignment. Considering the inherently turbulent
nature of the MSN operation, we develop a task allocation
algorithm that exploits estimates of task durations (when
available) to improve the overall task allocation by means of
“look-ahead” optimization. The algorithm is integrated within
the M-DEC system so as to obtain a single, global description
of the closed-loop control system of the MSN. Simulations
results for a large MSN with up to 20 mobile sensors are
provided and analyzed to evaluate the effectiveness of the
proposed strategy. This paper also overviews the
implementation of a laboratory-scale MSN with three mobile
robots, videocameras and other sensors. The reminder of the
paper is organized as follows. Sections 2 and 3 overview the
main assumptions and the key-elements of the M-DEC,
respectively. Section 4 describes the task assignment
algorithm, and Section 5 summarizes the simulation results.
Section 6 describes the MSN prototype and section 7
concludes the paper with final remarks.

 2. MAIN ASSUMPTIONS

Consider a MSN composed of q resources (mobile,
transportable or stationary sensors or group of sensors,
hereafter simply called robots). Each robot has one or more
functionalities, and the total number of different
functionalities available in the MSN is s. The MSN has to
accomplish a set of n missions. Each mission consists of a

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 10415 10.3182/20080706-5-KR-1001.0472

predefined set of tasks, which may be subject to precedence
constraints (the end of one task may be a necessary
prerequisite for the start of some other ones), while each task
needs exactly one functionality. For each couple (t,p), where t
is a task and p is a robot, a predefined real-valued non-
negative Utility function U(t,p) is available to describe the
desirability or effectiveness of the assignment of task t to
resource p. Further, we make the following assumptions:

• The robots may be heterogeneous (non-identical).
• Missions are issued at unknown times, while the

number and type of tasks composing a mission is
known a priori.

• The communication between robots and M-DEC is
based on a wireless system, whose failures, congestion
or limitations will not be considered.

For scheduling purposes, it must be also considered that the
speed of execution, or more generally the time needed by two
or more robots to perform a given task, may vary (one robot
may be faster, or closer to the target, than the other ones). In
our framework, we assume that some tasks may have
completely unpredictable execution times (e.g., finding a lost
object), while other ones have a known duration which
depends on the particular task-to-robot assignment.
Following the taxonomy proposed in (Gerkey and Mataric,
2004), our scenario is an instance of the Single-Task (ST)
robot Single-Robot (SR) task case (ST-SR). The taxonomy
classifies MSN problems also according to the nature of the
information available for task assignment. Since we consider
a turbulent and uncertain environment in which the available
information does not permit offline scheduling of robots and
tasks, our scenario falls in the class of Instantaneous
Assignment (IA) problems. However, it can also be noted
that the use of look-ahead evaluation in the task assignment
algorithm can be viewed as a particular form of short-term
planning.

3. OVERVIEW OF THE MATRIX-BASED DEC

The overall architecture of the M-DEC control system is the
same adopted in (Giordano et al., 2006). Briefly, the M-DEC
is a centralized supervision system which receives
information about new missions as an external input, assigns
the tasks to the robots and controls their execution, taking
into account their priorities and synchronizing the activities
accordingly. The M-DEC provides a rigorous, yet intuitive
mathematical framework to represent the mission planning of
a multi-robot system according to linguistic if-then rules as:

Rule i: If <robot 1 has completed task 3 of mission 5
and robot 2 is available> then <robot 2 starts task 4 of
mission 5 and robot 1 starts task 3 of mission 2>.

In particular within the matrix based formalism it is possible
(1) to model the MSN discrete event dynamics and (2) to
implement supervisory control policies to define resource
assignment, conflict resolution and task priorities.

3.1. Discrete-event system model

Let us consider a MSN of q robots in charge of performing n
missions, each one triggered by a predefined event and

composed of a predefined sequence of tasks fired when
certain logical conditions are met. In the matrix-based
modelling formalism, the value of the logical conditions for
the activations of q rules of a certain mission i composed of p
tasks is summarized by the rule logical vector

 (1) (2) ... ()
Ti i i ix x x x q⎡ ⎤= ⎣ ⎦ (1)

An entry of ‘1’ in the j-th position of vector xi denotes that
rule j is currently fired (all the preconditions are true).
The conditions of the tasks of each active mission are
described by two vectors, the mission task-in-progress vector
vIP

i, and the mission task-completed vector vi:

 (1) (2) ... ()
Ti i i i

IP IP IP IPv v v v p⎡ ⎤= ⎣ ⎦ (2)

 (1) (2) ... ()
Ti i i iv v v v p⎡ ⎤= ⎣ ⎦ (3)

Each component of vIP
i (vi) is set to “1” when the

corresponding task is in-progress (completed), and “0”
otherwise. In particular, vector vi represents a fundamental
precondition of many logical rules of the matrix-based model,
while vector vIP

i is mainly necessary to complete the
characterization of each mission (useful for the purpose of
computer simulation). Hereinafter, for brevity, we will focus
on vi only, and omit the further details about vPI

i and its
dynamical update rules.
Similarly, let us indicate with ui and yi, the Boolean input and
output variables of mission i, respectively. Variable ui is set
to “1” when the triggering event (fire alarm, intrusion, etc.) of
mission i has occurred, and yi is set to “1” when mission i is
completed. Finally let us define the Boolean resource vector r
having q elements where an entry of ‘1’ represents ‘resource
currently available’. In order to model n simultaneous MSN
missions we define the global task vector

 () () ()1 2 ...
TT T Tnv v v v⎡ ⎤= ⎢ ⎥⎣ ⎦

, (4)

obtained by stacking the n column task vectors. Similarly, we
can define the global input vector

 () () ()1 2 ...
TT T Tnu u u u⎡ ⎤= ⎢ ⎥⎣ ⎦

, (5)

the global output vector

 () () ()1 2 ...
TT T Tny y y y⎡ ⎤= ⎢ ⎥⎣ ⎦

, (6)

and the global logical vector

 () () ()1 2 ...
TT T Tnx x x x⎡ ⎤= ⎢ ⎥⎣ ⎦

. (7)

Vectors , , and v u y x have a dynamic size depending on the

number of tasks of each of the missions currently in progress.
In particular, at each time a new mission is activated due to
external circumstances, the vectors are resized accordingly,
introducing new elements with appropriate values (e.g., the
vector u is updated adding a new element set to “1”).
All these vectors provide a static description of the conditions
of the MSN at a given time. In the following we illustrate the

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

10416

update laws defining the evolution of the system variables
over time. The model is run in discrete-time, i.e. the effects of
events are computed at the first sample time after their
occurrence. When no event occurs between two sample
times, all the system variables remain unchanged. Hereafter,
except where noted differently, all matrix operations are
defined in the or/and algebra, where ∨ denotes logical OR,
∧ denotes logical AND, ⊕ denotes logical XOR, and
overbar indicates negation [see (Tacconi and Lewis, 1997)
for an introduction].

Before the description of the update rules, it is convenient to
introduce some fundamental matrices. Let i

vF be the task

sequencing matrix for an individual mission. i
vF has element

(j,h) set to “1” if the completion of task vi(h) is a necessary
prerequisite for rule logical vector xi(j). Similarly, let i

rF be
the resource requirements matrix having element (j,h) set to
“1” if the condition of h-th resource ()r l is an immediate

prerequisite for rule logical vector xi(j). Moreover, let i
uF be

the input matrix, having element (j,h) set to “1” if the
occurrence of input h-th is an immediate prerequisite for rule
logical vector xi(j).
As for the vectors of variables, the matrices related to the list
of n missions can be easily obtained by either stacking or
concatenating together the matrix blocks corresponding to
each individual mission. As an example, we report the task
sequencing matrix Fv for n missions

 ()1 2, ,..., n
v v v vF diagblock F F F= . (8)

The update of vectors are computed according to the
following equations.
After a task starts the corresponding resource becomes busy
and the corresponding element of vector r is set to 0:

 r=r-Fr
T

 ∧ x (9)

(the “minus” operator applied to Boolean components
should be interpreted as an XOR operation). At the end of a
task, the controller will command the release of the
corresponding robot and the MSN feeds the “resource
released” input, which is directly used in the model to reset
the value of r to the idle (“1”) condition.

The update of vector v occurs in two different cases. The
first one is when the M-DEC model receives the “j-th task of
i-th mission completed” message from the MSN. In such a
case, the corresponding element of v is set to one (vi(j)=1).
The second case occurs when it is set to “0” the element of
vector corresponding to previously completed tasks using the
following equation

 ()T
vv v F x= ⊕ ∧ . (10)

Mission inputs and outputs vectors are updated with similar
equations (Tacconi and Lewis, 1997).

3.2. Supervisory controller

At the supervisory level, the main function of the M-DEC is
to determine which rules must be fired, which tasks must be
started, and which resources are in charge of performing the
tasks. These functions are processed by means of two
different sets of logical equations, one for checking the
conditions for the activation of a generic rule of a generic
mission, and one for defining the consequent controller
outputs. The updated value of the rule logical vector is
computed with the following controller state equation

 () () () ()
dv r u u dx F v F r F u F u= ∧ ∨ ∧ ∨ ∧ ∨ ∧ . (11)

Matrix
duF in equation (11) is called the MSN conflict

resolution matrix and is used to model the influence of
control input du on the rule vector x . In particular, an entry
of “1” (“0”) in du disinhibits (inhibits) the activation of the
corresponding task. The vector du can be seen as one
controllable input of the MSN. Depending on the way one
selects the strategy to assign the control vector du ,
dispatching decisions can be implemented. Also, by
dynamically updating matrices Fr (which basically defines
which resource performs each task), different resource to task
assignments can be performed.
On the ground of the current value of the rule logical vector
x, the controller determines which tasks to start and which
resources to release by means of the matrix controller output
equations. In particular, the command of a task start is
performed by means of the task start vector sv (having the
same structure of vectors v and vp) using the following
Boolean matrix equation

 s vv S x= ∧ , (12)
where Sv is the task start matrix and has element (j,h) set to
“1” if logic state x(h) triggers the start command vs(j) for the
corresponding task. Similarly, the resource release command
is performed by means of the Boolean MSN resource release
vector rs using the following matrix equation

 rs=Srx. (13)

in which Sr is the resource release matrix, having element
(j,h) set to “1” if logic state x(h) triggers the release command
for the j-th nodes of the MSN. Therefore, vector rs has q
elements, each set to “1” when the controller commands the
release of the corresponding MSN unit.
In typical operating conditions, each MSN has several active
missions, and multiple tasks waiting for execution. The next
section presents the policies used to select, at any given time,
the most appropriate tasks and resources in order to avoid
conflicts and meet operational requirements. In particular, at
each sample time:

• the dispatcher (see next section) implements task
conflict resolution and task priorities (specified by ud
and Fud) and resource assignment (specified by Fr),

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

10417

• the controller sends to the MSN the task start and the
resource release commands specified by vectors sv and
rs respectively.

Fig.1 illustrates the architecture of the M-DEC, including the
new task assignment module described in the next section.

4. TASK ASSIGNMENT

(Gerkey and Mataric, 2004) suggest that ST-SR-IA problems
can be viewed as Optimal Assignment Problems (OAP), and
solved with various centralized or distributed methods
(Gerkey and Mataric, 2004). Among the possible methods,
the assignment strategy used in this paper is inspired to the
“Min Conflict with Happiness” (MCH) heuristics proposed in
(Gage and Murphy, 2004). The MCH is an algorithm for IA
in a preemptive environment, and can be summarized as a
sequence of three steps: a first greedy search for an initial
(feasible or unfeasible) assignment, followed by two different
(local and global) repair procedures which eliminate, as
much as possible, any unfeasible assignment generated in the
first step. Our assignment algorithm is structured in the same
sequence of three steps, but the procedures used in each step
are significantly different. The algorithm works dynamically
grouping tasks and resources in a number of sets, updated at
each sampling time τnow of the M-DEC. On the ground of the
M-DEC discrete event model variables, the dispatcher is
essentially in charge of updating matrices Fr, Fud and vectors
ud and r, and of feeding them to the supervisory controller. In
particular, for this purpose, the dispatcher calculates all the
following sets (which can be easily derived from M-DEC
model by means of simple matrix operations that are omitted
for brevity):

• TCO (completed tasks). This is the set of completed

tasks, which is obviously disregarded by the scheduling
procedures.

• TIP (tasks in progress). This is the set of the task in
execution at time τnow(represented by vp in the M-DEC).
As pre-emption is not allowed, also these tasks are not
subject to scheduling decision. However, if their

expected completion time is known, such
information is used for pre-scheduling of other
activities.

• TPA pre-assigned tasks. This set includes all the
tasks waiting for process (i.e. not yet started)
but already pre-assigned to resources by look-
ahead assignment. For the assignment
algorithm, the tasks in TPA are considered
equivalent to those in TIP (i.e., decisions about
preassigned tasks cannot be changed).

• TNE non-executable. This set encompasses all
the tasks that cannot be started at time τnow due
to precedence constraints with other tasks (e.g.,
“measure temperature at location x0” needs task
“reach location x0” to be in TCO before
activation).

• TUA un-assigned tasks. This set includes all the
remaining tasks, which are not assigned to
resources but ready for execution at time τnow.

• PID (idle resources). This set includes all the resources
idle at time τnow. (described by “1” elements of r in the
MDEC).

• PPA (pre-assigned resources). This is the set of
resources for which the following two conditions
simultaneously occur: (1) at time τnow, the resource is
processing one task in TIP which is expected to end
before τnow+∆τ, where ∆τ is the width of the look-ahead
time window; (2) the resource has already been
preassigned to a new task in TPA by a previous iteration
of the look-ahead algorithm.

• PEJ (resources ending job). This is the set of resources
for which only the first one of the conditions specified
for PPA is true. In other words, this set includes all the
resources that are available for pre-assignment at time
τnow.

• PBU (busy resources). This is the set of resources that
are not included in any of the sets defined above. These
resources are currently processing a task whose
expected end is either unknown or exceeds the current
look-ahead window τnow+∆τ.

The decision algorithm executes the following sequence of

steps:
Step 1. Look-ahead precondition check. The look-ahead

algorithm preliminary assigns resources on the ground of
expected completion time of the tasks in TIP (see Fig. 2) by
conveniently updating matrix Fr. The look-ahead algorithm is
executed only when (1) the number of free resources is lower
than a predefined threshold, i.e. |PID|<δID, and (2) the number
of unassigned tasks is greater than a threshold, i.e. |TUA|>δUA.
This condition prevents the execution of look-ahead when the
number of idle resources is sufficiently large with respect to
the number of unassigned tasks. Essentially, when the
conditions for look-ahead hold true, the assignment algorithm
considers the resources in PEJ as idle and preassigns them to
tasks in TUA according to the rules described in the following.

Step 2. Task assignment precondition check. At each
sample time, the task assignment algorithm is executed only
if the overall number of resources in PID (or PID∪PEJ if look-

MSN DISCRETE-EVENT
MODEL

- receives acknowledgements from
controlled hardware
- updates system condition variables
- sends updates to controller

M-DEC DISPATCHER

- Determines Task and Resource Sets
defined in Section IV
- Updates resource matrices
- Performs look-ahead assigments (if
active)

MOBILE SENSOR
NETWORK u [new

mission]

[Robot released]

[Task Completed]

v

x
u
r

fs
[Release
 robot]

vs
[Start Task]

MATRIX-BASED DISCRETE EVENT CONTROL SYSTEM

x [Logical Rules]

M-DEC
SUPERVISORY CONTROLLER

- Computes controller and state
equations (11), (112), and (13)

Fr, ud,Fud, r

Fig. 1. MSN: General architecture of the M-DEC, including the discrete event
model, the dispatcher and the supervisory controller

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

10418

ahead is active) is above a predefined threshold δPC
(significantly smaller than δID). Otherwise, if |PID|+|PEJ| < δPC
the assignment is postponed: resources in PID (if any) are kept
idle for few time samples in order to obtain a larger pool of
alternatives for the assignment algorithm.

Step 3. Initial assignment. Each task is assigned to the
resource in PID (or PID∪PEJ if look-ahead is active) with the
maximum utility, disregarding whether the resource has been
already assigned to other tasks. If no assignment is possible,
the task remains unassigned at the current sampling time.

Step 4. Local Conflict Removal. Tasks in conflict (i.e.,
assigned to the same resource) are sorted by flexibility
(number of alternate resources that can perform the task). For
each task in the sorted list, the algorithm checks if it can be
redirected to a resource in PID at the cost of a decreased
utility. Moreover, similarly to (Gage and Murphy, 2004),
several heuristic procedures are applied to further reduce the
amount of conflicts in the assignment. At the M-DEC level,
conflict resolution strategies are implemented by suitably
updating vector ud and matrix Fud.

Step 5. Global conflict removal. This step could be seen as
an iterative refinement of the step 4. In this case, instead of
redirecting tasks in conflict, the procedure tries to free some
resource by redirecting tasks that are currently not in conflict,
with the aim of making the freed resource available for tasks
whose conflicts could not be removed in the previous step.
Given the inherently combinatorial nature of this procedure,
this step may become time-consuming even for relatively
small numbers of tasks and sensors. For this reason, its
execution is limited by a timeout (smaller than sampling time
of the M-DEC). At the end of step 5, if conflicts remain, the
M-DEC supervisory controller will command the start of the
task with the highest utility, while all the other ones will be
reconsidered at the next decision time.

5. SIMULATIONS

This section provides a summary of numerical simulations,
directly obtained with the M-DEC implementation in Matlab
platform, which have been performed to test and tune the free
parameters of the task assignment algorithm, quantify the
contribution of the look-ahead strategy and show the

suitability of the M-DEC to be integrated with on-line
dispatching strategies. The simulations consider a set of 294
randomly generated scenarios with 20 resources, and up to
400-500 tasks for each scenario. Each mission has a variable
number of tasks which have randomly generated precedence
constraints. Task characteristics and utility matrices (such as
the one given as example in Table I) are also generated
randomly. The scenarios describe problems with a variable
degree of complexity, ranging from easy cases in which
many homogeneous robots are available to perform few
hardly overlapping missions, to more complex problems with
many overlapping missions and heterogeneous robots).

TABLE I
EXAMPLE OF UTILITY TABLE.

 P1 P2 P3 P4 P5
L1 0.33 0 0 0.5 1
L2 0 0.67 0 1 0
L3 0 0 1 0 0
L4 0.8 0 0.9 0.33 0
L5 0 1 0 0 0.2
L6 1 0 0 0.67 0

Simulations are replicated altering one of the free parameters
(thresholds δID, δUA etc., look ahead window ∆τ). Results
suggest that parameters δID and ∆τ are particularly critical
for the effectiveness of the proposed task assignment
algorithm. The sensitivity analysis with respect to δID is
summarized in Fig.2a. The mean utility (normalized with
respect to the utility obtained without look-ahead) is
increasing with the value of δID (named look-ahead range).
As a further example, Table II shows the data for a single
simulation. It can be noticed that the increase of look-ahead
range improves the overall utility at the cost of a slightly
extended total makespan (time needed to complete all the
missions in the scenario). Fig.2b summarizes the sensitivity
of the results with respect to the look-ahead window ∆τ.
Figures suggest that high values for both parameters permit
to achieve the best combination of advantages related to look-
ahead inspections. Similar analyses lead to conclude that
good results are generally obtained when δUA is one to two
times larger than δID. (smaller values of δUA tend to leave too
many resource unassigned; while larger values tend to
increase resources’ idle time).

Fig. 2. (a) The effects of look-ahead range: Total Utility for increasing look-ahead ranges (the results are normalized with respect to the TU
obtained without look-ahead). (b) Effect of increased width of look-ahead window (in time units). Simulations suggest to use high values for
both parameters.(c) Top view (from the video sensor) of the experimental arena.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

10419

6. EXPERIMENTS ON A MSN PROTOTYPE

The M-DEC control system has been implemented on an
experimental laboratory-scale prototype of MSN, developed
at the Laboratory of Robotics, DEE, Polytechnic of Bari. The
MSN is composed of five mobile robots (K-Team Khepera
robots) equipped with infrared sensors and encoders, and a
set of transportable fictitious sensors that can be moved or
removed by one mobile robot equipped with a small gripper
with a contact sensor (Fig.2c). All the sensors are controlled
by the M-DEC implemented in Matlab, and both sensory and
control signals are transmitted by either radio-communication
for battery-operated Kheperas or serial wires. The MSN has
several tasks, which include “reach position”, “seek for
objects”, “place sensor”, “push obstacle”, “map obstacle
shape”, “remove obstacle”, etc. Battery-operated Kheperas
are wireless: they have higher utilities for some tasks (e.g.
they can reach any point in the arena), and lower ones for
power-consuming tasks as “pushing obstacles”. On the
contrary, wired Kheperas have a navigation range limited by
the wire, but can perform push or removal tasks with higher
utilities. The approximated position of each sensor is
obtained using a videocamera mounted on the top of the
1m×1m sensor arena (see Fig.2c). The M-DEC includes a
textual interface for mission assignment, and a number of
monitoring interfaces, which include the top view monitor.
The experiments performed on the prototype confirm the
effectiveness of the integrated scheduling and control
platform and its experimental feasibility. The M-DEC MSN
completes autonomously all the missions issued through the
textual interface, handling conflicts, synchronization of
activities and feedback control in a unified modelling and
control platform. Task assignments are generally performed
with the highest utility and the control system tolerates very
well the typical disturbances (noisy sensory data, delays due
to image processing or communication through serial
interfaces) of real-world devices.

7. CONCLUSIONS

This paper has presented a discrete-event coordination
scheme for mobile heterogeneous sensor networks in the
execution of multiple missions. The proposed control
architecture integrates, in the same matrix-based formalism, a
discrete event model, a dispatcher and a supervisory
controller. In particular we have presented an effective
dispatching algorithm that takes into account the estimated
duration of a task (when available) to improve the overall

utility of the assignment. As main result, this paper shows
that the matrix formalism allows to (1) easily combine in a
single framework task planning, dynamic resource
assignment with look-ahead, and shared resource conflict
resolution with utility-based method and to (2) easily
optimize the controller parameters to cope with different
scenarios, robot functionalities, MSN size. Also the use of a
unified decision and control environment allows the designer
to (1) model, (2) simulate, and (3) experimentally implement
the closed loop system in a straightforward way.
The M-DEC proposed in this paper is fully centralized (it is
run on a single PC). Following current trends in sensors
networks, the research activities in progress are focused on
the distribution of the M-DEC controller across a set of
independent processors to achieve a multi-agent sensory
platform.

8. ACNOWLEDGEMENT

This research work was partially funded by Regione Puglia
under Progetto Strategico CIP_PS121 “Telecommunication
Facilities And Wireless Sensor Networks In Emergency
Management”.

REFERENCES

Burgard, W., Moors, M., Stachniss, C., and Schneider, F.E., Coordinated
multi-robot exploration; IEEE Trans. on Robotics, Vol. 21, N.3, June 2005.

Dharne, A.G.; Jayasuriya, S.; “A new protocol for the development and
maintenance of autonomous mobile sensor networks”, Proc. of 2005 IEEE
American Control Conf., 3494 – 3499, June 2005.

Farinelli, A., Iocchi, L., Nardi, D., Ziparo, V.A., “Task Assignment with
Dynamic Perception and Constrained Tasks in a Multi-Robot System”,
ICRA 2005, Proceedings of the 2005 IEEE Int. Conf. on Robotics and
Automation, 1523 - 1528 , April 2005.

A. Gage and R. Roberson Murphy, Sensor Scheduling in Mobile Robots
Using Incomplete Information via Min-Conflict With Happiness IEEE
Trans. Systems, Man, And Cybernetics—Part B: Cybernetics, Vol. 34, No. 1,
February 2004

Gerkey B., Mataric M., "A formal analysis and taxonomy of task allocation
in multi-robot systems", The Int. Journal of Robotics Research, Vol. 23, no.
9, pp. 939-954, September 2004.

V. Giordano, P. Ballal, F. Lewis, B.Turchiano, and J. B. Zhang,
“Supervisory Control of Mobile Sensor Networks: Math Formulation,
Simulation, and Implementation”, IEEE Trans. Systems, Man, And
Cybernetics—Part B: Cybernetics, Vol. 36, No. 4, August 2006.

J.-H. Lee, and H. Hashimoto, “Controlling Mobile Robots in Distributed
Intelligent Sensor Network”, IEEE Trans. Industrial Electronics, Vol. 50,
No. 5, October 2003.

Mireles J., Lewis F., “Intelligent material handling: development and
implementation of a matrix-based discrete event controller”, IEEE Trans.
Industrial Electronics, Vol. 48, Issue 6 , pp. 1087–1097, December 2001.

H. Ren, M.Q.H. Meng, X. Chen; “Investigating Network Optimization
Approaches in Wireless Sensor Networks”, Proc. of 2006 IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2015 – 2021;
Oct. 2006.

D. Tacconi and F. Lewis, “A new matrix model for discrete event systems:
Application to simulation,” IEEE Control Syst. Mag., vol. 17, no. 5, pp. 62–
71, Oct. 1997.

Tsalatsanis, A., Yalcin, A., Valavanis, K. P., “Automata-based Supervisory
Controller for a Mobile Robot Team”, LARS '06. IEEE 3rd Latin American
Robotics Symposium, 53 - 59 , Oct. 2006.

TABLE II
EFFECTS OF INCREASING WIDTH OF LOOK-AHEAD RANGE

Look-ahead
order Makespan Total Utility Global Repair

Intervention
0 1243 195.69 4
1 1243 195.69 4
2 1207 221.79 3
3 1213 247.14 5
4 1289 240.81 9
5 1247 255.66 9
6 1270 263.76 18
7 1273 263.00 9
8 1277 273.29 8
9 1330 272.73 10

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

10420

