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Abstract: This paper examines the problem of link position tracking control for robot
manipulators with input toque uncertainty. It is assumed that the input torque uncertainty can
be regarded as dead-zone phenomena at each link of manipulator and all the system parameters
for robotic manipulator and dead-zone model are unknown. The proposed method ensures that
the unknown parameters are estimated adaptively, besides, an approximated errors of input
nonlinearities and external disturbances are attenuated by means of H∞ control performance. In
spite of considering the nonlinear adaptive H∞ control problems, based on our proposed method,
the compensator can design without solving the Hamilton-Jacobi-Isaacs equation. Numerical
simulation results are given to illustrate the effectiveness of our proposed method.

1. INTRODUCTION

This paper examines the problem of link position tracking
control for robot manipulators with input toque uncer-
tainty.

It is well known that a rigid n–link, serially connected,
direct–drive robot manipulators can be described as a
following form

M(θ)θ̈ + C(θ, θ̇)θ̇ + g(θ) = F (τ) (1)

where θ ∈ R
n is the rotational angle of robotic arm,

τ ∈ R
n is control input torques, M(θ) ∈ R

n×n is the

inertia matrix, C(θ, θ̇) ∈ R
n×n is the matrix composed

of centrifugal and Coriolis term, g(θ) ∈ R
n is the gravity

vector, F (∗) ∈ R
n is an unknown input toque uncertain

functional vector. In general, it is very difficult to know
the physical parameters of robotic manipulators, precisely.
Then the system matrix and vectors M(θ), C(θ, θ̇) and
g(θ) have some parametric uncertainties. Moreover, in
practice, the actuator model is not known exactly, then
the input term of the robotic manipulator should be
treat unknown function. Hence, in the presence of the
parametric uncertainties and input torque uncertainty, the
convergence of the tracking error may not be guaranteed.
Therefore, to achieve a good tracking control performance
in robotic manipulators, it is necessary to compensate
the effects due to parametric uncertainties, input torque
uncertainty, external disturbances, and so forth.

A common assumption in most of the previously designed
controllers is that the right hand side of (1) can be
described as follows:

F (τ) = τ + d (2)

where d ∈ R
n,∈ L2 is unknown external torque distur-

bances vector. It seems that the input torque uncertainty

is considered as input torque disturbance. Based on this
assumption, there have been researched about the robust
control method for robotic manipulators. In order to com-
pensate for such parametric uncertainties, passivity based
adaptive control methods have been proposed [Slotine and
Li [1988], Ortega and Spong. [1989], Spong [1992]]. It was
also shown that the external torque disturbance can be
compensated by the notion of a nonlinear H∞ control
method[Chen, Chang, and Lee [1997]]. In this method,
we have to solve a Hamilton–Jacobi–Isaacs (HJI) equation
for a controller. However, it is well known that we have a
great difficulty to solve a HJI equation. Based on L2 and
L∞ gain analysis, adaptive control for robotic system with
disturbance attenuation method was also proposed[Tomei
[1999]]. Dissipative based adaptive control method which
can compensate the parametric uncertainties and atten-
uate the external torque disturbance in the sense of H∞

optimality have been proposed for robotic manipulators
[Shen and Tamura [1999]]. The most advantage point of
this dissipative based adaptive control method can design
the disturbance attenuation control system without solv-
ing the HJI equation.

For high or ultra precision link position tracking control for
robotic manipulators, not only the effects of disturbances
but also explicitly considering the input torque uncertainty
is very important. To capture the input torque uncertainty,
it is assumed that the uncertainty can be written by the
friction phenomena which is described as

F (τ) = τ + Ff + d (3)

where Ff ∈ R
n are friction forces vector and d ∈ R

n,∈ L2

are unknown external torque disturbances vector. It is
assumed that the friction forces can be given by LuGre
model, an adaptive friction compensator for robotic ma-
nipulator is also proposed which is based on the passivity
based control [Panteley, Ortega, and Gäfvert [1998]]. In
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this method, it is assumed that the all the parameters
of the LuGre friction model and robotic manipulators are
unknown, and position tracking and friction compensation
are achieved with a very simple adaptive law. But, unfor-
tunately, this method included the discontinuous function
and it is not enough to compensate the approximation
errors of the friction model. Another adaptive friction
compensation method was also proposed [Tomei [2000]].
This method is required that many nominal parameters
for friction model should be known. Recently, an adaptive
H∞ controller with friction compensation and disturbance
attenuation for position tracking for a robotic manipula-
tor was given [Sato and Tsuruta [2006]]. This method is
also assumed that the friction model can be described as
LuGre model, but it does not include the discontinuous
function. Some experimental results are given to show the
effectiveness of this method.

In one point of view, the input torque uncertainty descrip-
tion (3) is effective, but it is not enough to caputure the
input torque uncertainty. As for the practical applications,
it should be taken into account that the input torque
uncertainty exists due to dead–zone or hysteresis charac-
teristics of actuators. For such uncertainties, if we give
some appropriate assumptions [Su, Stepanenko, Svobada,
and Leungć [2000], Wang, Su and Hong [2004]], then the
right hand side of (1) can be written as

F (τ) = τ + d = Ku + d (4)

where u ∈ R
n is actuator input, K ∈ R

n×n is transmission
matrix, and d ∈ R

n,∈ L2 are unknown external torque
disturbances vector. In the presence of the input torque
uncertainty, it is natural to assume that the transmission
matrix K is unknown.

In this paper, we proposed a novel adaptive H∞ control
method for robotic manipulator with input torque uncer-
tainty. It is assumed that the input torque uncertainty
can be divided into unknown input vector and input
torque disturbance, besides, unknown input vector can
be described as unknown transmission matrix multiply
the input torque, as shown in (4). Especially, our pro-
posed method can compensate a parametric uncertainty
of robotic manipulators and an uncertainty of the trans-
mission matrix. In addition, our proposed method is also
based on inverse optimal control strategy, an adaptive
H∞ controller can be designed without solving the HJI
equation. We demonstrate the practical advantages of our
proposed controller through comparative numerical simu-
lations. As a result, our proposed method suggested that
the compensation of the input torque uncertainty should
not only be treated as a input disturbance, but also divided
into uncertain transmission matrix and input disturbance
torques.

2. ROBOTIC SYSTEM AND ERROR DYNAMICS

We consider an n–revolute joints rigid manipulator with
input torque uncertainty which can be expressed as

M(θ)θ̈ + C(θ, θ̇)θ̇ + g(θ) = D(τ) + w, (5)

where θ ∈ R
n is the rotational angle of robotic arm,

τ ∈ R
n is control input torques, M(θ) ∈ R

n×n is the

inertia matrix, C(θ, θ̇) ∈ R
n×n is the matrix composed

of centrifugal and Coriolis term, g(θ) ∈ R
n is the grav-

ity vector, w ∈ R
n,∈ L2 is unknown external torque
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Fig. 1. Dead–zone model

disturbances vector, and D(∗) ∈ R
n is unknown input

toque uncertain functional vector. In general, a revolute
joints robotic system has following properties [Ortega and
Spong. [1989]],

C–1: M(θ) is bounded and positive symmetric matrix.

C–2: Matrix Ṁ(θ) − 2C(θ, θ̇) is skew–symmetric.

C–3: We can parametrize the dynamic equations (5) as,

M(θ)ξ̇ + C(θ, θ̇)ξ + g(θ) = Yd(θ, θ̇, ξ, ξ̇)β, (6)

where Yd(θ, θ̇, ξ, ξ̇) is an n × r matrix of known functions,
known as regressor, and β is an r–dimensional vector of
parameters which are constructed by the physical param-
eters of M(θ), C(θ, θ̇), g(θ). In general, β is an unknown
parameter vector because of the physical parameters of
M(θ), C(θ, θ̇), g(θ) are unknown. But if we can know the

nominal physical parameters M(θ), C(θ, θ̇), g(θ) as M0(θ),

C0(θ, θ̇), g0(θ), then we can describe (6) as follows:

M0(θ)ξ̇ + C0(θ, θ̇)ξ + g0(θ) = Yd(θ, θ̇, ξ, ξ̇)β0. (7)

As we can see the aforementioned arguments, β0 is known
parameter vector. Moreover, if we do not consider the
gravity term g(θ), then the regressor form can be written
as follows:

M(θ)ξ̇ + C(θ, θ̇)ξ = Yg(θ, θ̇, ξ̇, ξ)β. (8)

Moreover, if we assume that the input torque uncertainty
on each link does not affect to the other links, then, we
can describe input uncertainty as

D(τ) =









d1(τ1)
d2(τ2)

...
dn(τn)









(9)

To model the effect of the input torque uncertainty, we
employ the dead–zone model as follows:

di(τi) =

{

µri(τi(t) − bri) for τi(t) ≥ bri

0 for bli < τi(t) < bri

µli(τi(t) − bli) for τi(t) ≤ bli

(10)

where i = 1, 2, · · · , n [Su, Stepanenko, Svobada, and
Leungć [2000], Wang, Su and Hong [2004]]. We make
the assumptions that the dead–zone has the following
properties:
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(A1) The dead–zone output di(τi) is not available for
measurement.

(A2) The dead–zone slopes in positive and negative
region are same, i. e., µri = µli = µi.

(A3) The dead–zone parameters bri, bli, and µi are
unknown, but their signs are known: bri > 0, bli < 0,
µi > 0.

(A4) The dead–zone parameters bri, bli, and µi are
bounded, i. e., each lower and upper bounds are
known and it can be described as follows:

bri ∈ [brimin, brimax], bli ∈ [blimin, blimax],

µi ∈ [µimin, µimax].

(A1) ∼ (A4) are satisfied in practical applications. Then,
dead–zone model (10) can be rewritten as follows:

di(τi) = µiτi(t) + d′
i(τi) (11)

where d′i(τi) can be described from (10) and (11) as

d′
i(τi) =

{

−µibri for τi(t) ≥ bri

−µiτi(t) for bli < τi(t) < bri

−µibli for τi(t) ≤ bli

(12)

From (A2) and (A4), we can evaluate d(u(t)) as follows:

|d′i(τi)| ≤ ρi (13)

where ρi is upper–bound of d′
i(τi), which can be chosen as

ρi = max{µimaxbrimax,−µimaxblimin} (14)

where blimin is negative values.

Based on the aforementioned assumptions, the control
objective is to design an adaptive controller which can
attenuate the disturbances and the effects of input un-
certainties to the control performance by means of H∞

control, and to let the joint angles θ track a specified
desired trajectory, θd(t), i. e., which satisfies as follows:

lim
t→∞

θ(t) = θd(t).

Let θd ∈ R
n be bounded and differentiable up to second

order.

From (11), the robot dynamics (5) can be rewritten as
follows:

M(θ)θ̈ + C(θ, θ̇)θ̇ + g(θ) = Kτ + w (15)

where
K = diag{µ1, · · · , µn} (16)

τ = col(τ1, · · · , τn) (17)

w = col(d′
1
(τ1), · · · , d′n(τn)) + d (18)

and K ∈ R
n×n is unknown diagonal transmission matrix.

Let define the tracking error as

e = θ − θd. (19)

Besides, we also define the error signal as

s = ė + λe. (20)

Taking time derivative of each side of (20) and substitute
it into (15), then error equation for robotic system (15)
can be written as

M(θ)ṡ − λM(θ)ė + C(θ, θ̇)ė + Yd(θ, θ̇, θ̇d, θ̈d)β = Kτ + w
(21)

where Yd(θ, θ̇, θ̇d, θ̈d)β is the regressor description which is
described as

M(θ)θ̈d + C(θ, θ̇)θ̇d + g(θ) = Yd(θ, θ̇, θ̇d, θ̈d)β. (22)

Moreover, we can derive the following equation:

(λM(θ) − C(θ, θ̇))ė = λYg(θ, θ̇, e, ė)β, (23)

and substitute (23) into (21), then the error equation for
robotic system (15) can be further written as

M(θ)ṡ =−C(θ, θ̇)s − Yd(θ, θ̇, θ̇d, θ̈d)β + λYg(θ, θ̇, e, ė)β

+ Kτ + w

=−C(θ, θ̇)s − Yd(θ, θ̇, θ̇d, θ̈d)eβ − Yd(θ, θ̇, θ̇d, θ̈d)β0

+ λYg(θ, θ̇, e, ė)eβ + λYg(θ, θ̇, e, ė)β0 + Kτ + w

=−C(θ, θ̇)s − Ye(θ, θ̇, θ̇d, θ̈d, e, ė)eβ

− Ye(θ, θ̇, θ̇d, θ̈d, e, ė)β0 + Kτ + w (24)

where eβ = β − β0 and

Ye(θ, θ̇, θ̇d, θ̈d, e, ė) = Yd(θ, θ̇, θ̇d, θ̈d) − λYg(θ, θ̇, e, ė). (25)

For simplicity of notation, we will omit the parameter
description of regressor matrices, appropriately, then we
only describe as Yd, Ye, and Yg.

3. ADAPTIVE H∞ CONTROL METHOD

Based on the control objective and the subsequent stability
analysis, the following adaptive controller is developed:

τ = K̄−1

(

−e − Bs + Yeβ0 + Yeêβ + Ya(τ0)β̂a + v
)

.

(26)
K̄ ∈ R

n×n is an approximate diagonal transmission matrix
as follows:

K̄ = diag{k̄1, · · · , k̄n}, (27)

where k̄i are constants which are the design parameters.

êβ ∈ R
r×1, β̂a ∈ R

n×1 denote a subsequently designed
parameter estimates, and v is a new control input signal
which will be given later. Moreover, Ya(τ0) denotes as

Ya(τ0) = diag{−τ01, · · · ,−τ0n} (28)

where τ0i is the i–th element of the vector τ0 which is
defined as

τ0 = e + Bs − Yeβ0 − Yeêβ − v (29)

Based on the subsequent stability analysis, the parameter

estimates êβ , β̂a are generated from the following adapta-
tion laws:

˙̂eβ = −ΓβY T

e (θ, θ̇, θ̇d, θ̈d, e, ė)s (30)

˙̂
βa = −ΓaYa(τ0)s (31)

where Γβ ∈ R
r×r and Γa ∈ R

n×n denote constant,
diagonal positive definite adaptation gain matrices.

The closed–loop error system can be determined after
substituting (26) into (24) as follows:

M(θ)ṡ + C(θ, θ̇)s + Yeβe + Yeβ0

− KK̄−1

{

−e − Bs + Yeβ0 + Yeêβ + Ya(τ0)β̂a + v
}

− w = 0. (32)

The parameter estimation error ẽβ(t) ∈ R
r×1 is defined as

ẽβ = eβ − êβ , (33)

then the closed–loop error system (32) can be further
written as

M(θ)ṡ + C(θ, θ̇)s + Yeẽβ + Yeêβ + Yeβ0

+ KK̄−1

{

e + Bs − Yeβ0 − Yeêβ − Ya(τa)β̂a − v
}

− w − e + e − Bs + Bs − v + v = 0 (34)
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Besides, we can rewrite (34) as

M(θ)ṡ + C(θ, θ̇)s + e + Bs + Yeẽβ − v − w

+(KK̄−1 − I)τ0 − KK̄−1Ya(τ0)β̂a = 0 (35)

Note that K, K̄, and Ya(τ0) are diagonal matrices, then
the right hand side of 8–th and 9–th term of (35) can be
written as follows:

(KK̄−1 − I)τ0 − KK̄−1Ya(τ0)β̂a

=













k1

k̄1

− 1

. . .
kn

k̄n

− 1













τ0

−













−
k1

k̄1

τ01

. . .

−
kn

k̄n

τ0n













β̂a

= Ya(τ0)(β̄a − KK̄−1β̂a) (36)

where β̄ai = 1 −
(

ki/k̄i

)

. ki and k̄i are the i–th diagonal

elements of K and K̄, respectively.

From (36), we can rewrite (35) as

M(θ)ṡ+C(θ, θ̇)s+e+Bs+Yeẽβ−v−w+Ya(τ0)β̃a = 0 (37)

where β̃a = β̄a − KK̄−1β̂a and, hence,

˙̃
βa = −KK̄−1 ˙̂

βa (38)

4. STABILITY ANALYSIS

Theorem 1. Given robotic system defined by (15), the
control torque input given in (26) with (28) and (29), along
with the adaptation law given in (30) and (31). If a new
control input v is given as

v = −
1

2
R−1s, (39)

then, the closed–loop system is sub–optimal in the sense
that it minimizes the upper bound on the quadratic cost
functional J defined by

J = sup
w∈L2

{
∫ t

0

(

xTQx + vTRv − γ2wTw
)

dξ + V

}

(40)

for any t ≤ ∞, where x = [eT sT]T, γ ∈ R is positive
constant, Q ∈ R

n×n and R ∈ R
n×n are positive definite

matrixes, respectively. Besides, V (t) ∈ R is the following
nonnegative function :

V =
1

2
eTe +

1

2
sTM(θ)s +

1

2
ẽT

βΓ−1

β ẽβ +
1

2
β̃T

a Γ−1

a K̄K−1β̃a

(41)

Proof

After taking the time derivative of (41), substituting for
the closed–loop error system (37), utilizing C–2 and (38),
the following expression is obtained

V̇ =−λeTe + eTs − sTC(θ, θ̇) − sTe

− sTBs − sTYeẽβ + sTv + sTw − sTYa(τ0)β̃a

+
1

2
sTM(θ)s −−ẽT

βΓ−1

β
˙̂eβ − β̃T

a Γ−1

a
˙̂
βa

=−λeTe − sTBs − ẽT

β

(

Γ−1

β
˙̂eβ + Y T

e s
)

− β̃T

a

(

Γ−1

a
˙̂
βa + Ya(τ0)s

)

+ sTv + sTw

=−sTBs + sTv + sTw (42)

Then, we give the virtual system as

ẋ = f(x) + g(x)w + g(x)v (43)

x =

[

e
s

]

, f(x) =

[

−λe
αIs

]

, g(x) =

[

0
I

]

(44)

For the virtual system, we give the following Hamilton–
Jaccobi–Isaacs (HJI) equation

∂Ṽ

∂s
f(s(t)) +

1

4

{

‖LgṼ ‖2

γ2

−
(

LgṼ
)T

R−1

(

LgṼ
)

}

+ xTQx ≤ 0 (45)

where Ṽ (t) ∈ R is following nonnegative function :

Ṽ (t) =
1

2
eTe +

1

2
sTs =

1

2
xTx, (46)

and positive definite matrix Q is given as follows:

Q =

[

hI 0
0 B + (α + h)I

]

(47)

We can derive positive definite matrices Q and R satisfying
HJI equation (45) with its solution Ṽ (t) (46) and positive

constant γ. Then, we can evaluate V̇ in the final equation
of (42) as follows:

V̇ ≤−sT(B + αI)s +
1

4
sTR−1s −

1

4γ
sTs − hxTx

+ sTv + sTw

=−sT(B + αI)s +

(

v +
1

2
R−1s

)T

R

(

v +
1

2
R−1s

)

− vTR−1v − γ

∥

∥

∥

∥

w −
1

2γ2
s

∥

∥

∥

∥

2

+ γ2wTw − hxTx (48)

Consequently, we select the new control input v as (39),
then we can conclude that the all signals in the closed–
loop system are bounded and the v is a sub–optimal
control input which minimize the upper bound on the cost
functional (40).

Remark

As we can see (40), the L2 gain from the unknown bounded
dead–zone disturbance and the input torque disturbance
to tracking error s is prescribed by given constant γ, that
is, the H∞ control performance is attained adaptively for

generalized output
√

xTQx + vTRv.

5. NUMERICAL SIMULATIONS

The controller developed in (26) and the adaptation law
given in (30) and (31) were simulated for a two–link robot
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Fig. 2. 2–DOF robotic system

Fig. 3. Reference trajectories

planar manipulator. We consider a two–link robotic system
moving in the horizontal plane shown in the Fig.2. Let us
assume that the parameters of the unloaded manipulator
are known and are given by m1 = 12.27[kg], m2=2.083[kg],
l1=0.2[m], l2=0.2[m], r1=0.063[m], r2=0.080[m], I1 =

0.1149[kgm
2
], I2 = 0.0144[kgm

2
]. The properties C–1∼

C–3 are satisfied in this manipulator and we can directly
apply the proposed control method to the robotic system.

The control objective is to track the robot arm angle to
the reference signals as

θ̃ =

[

θ1d

θ2d

]

=

[

0.9 sin 4t
−1.8 sin 4t

]

, (49)

and its trajectories can be depicted as Fig. 3. The initial
position is given as [θ1(0) θ2(0)]T=[0.0 0.0]T[rad]. More-
over, the physical parameters of dead–zone (10) are given
as µ1 = 1.0, µ2 = 1.0, bl1 = −2.0, br1 = 2.0, bl2 = −0.5,
br2 = 0.5. These parameters are identified by the experi-
mental equipment.

To exhibit the effect of input uncertainty compensation,
we also apply the controller as follows:

τ = K̄−1 (−e − Bs + Yeβ0 + Yeêβ) , (50)
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Fig. 6. The tip positions

This controller (50) ignores to compensate the input
torque uncertainty, we call this case as ‘case 1.’ In
all simulations we selected the design parameters as
K̄ = diag{1.0, 1.0}, λ = 8.0, B = diag{30.0, 40.0},
Γβ = [3.0, 2.5, 1.5]T, Γa = diag{100.0, 180.0}, and R =
diag{0.05, 0.08}.

Figs. 4 and 5 show the error angles of link 1 and 2,
respectively. As we can see these figures that our proposed
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method (case 2) shows a good tracking performance com-
pared with case 1. Fig. 6 depicts the tip position of robotic
manipulator. Using our proposed method, the tip position
converges to the reference trajectory (i. e., 0[m] at x–axis,
0.25 ∼ 0.4 [m] at y–axis), but case 1 does not converge.
Figs. 7 and 8 show the input torque for each link. It is
found from these figures that our proposed method (case
2) exhibits a good compensation performance compared
with case 1. As we can see these simulation results, we
should treat the unknown input characteristics, especially,
dead–zone phenomena, not only input torque disturbance
but also input torque uncertainty.

6. CONCLUSIONS

This paper considered the problem of link position track-
ing control for robot manipulators with input toque uncer-
tainty. It was assumed that the input torque uncertainty
can be regarded as dead-zone effects at each link of ma-
nipulator and all the system parameters for dead–zone
model and robot were unknown. The proposed method
ensured that the unknown parameters were estimated
adaptively, besides, an approximated errors of dead–zone
model and external disturbances are attenuated by means
of H∞ control performance. Simulation results were given
to illustrate the effectiveness of our proposed method.
From the simulation results, we had shown that we should

compensate the external disturbance to the robotic system
and input uncertain characteristics, independently.
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