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Abstract: In conventional hard disk drives, a control system compensates for vibration in which
the frequency is higher than the Nyquist frequency by using a multi-rate filter that decreases
the gain above the Nyquist frequency. However, such a control system can only avoid instability
and cannot suppress disturbances above the Nyquist frequency. In response to this problem,
a control system design method that suppresses disturbances beyond the Nyquist frequency is
proposed. This method uses frequency responses of a controlled object and a digital controller
to calculate the gain of the sensitivity function in a sampled-data system without requiring
complex calculations involving matrices, and realizes a stable resonant filter that decreases the
gain of the sensitivity function above the Nyquist frequency. When the method was applied
to the head-positioning system of a hard disk drive, the experimental results showed that the
control system suppressed disturbances above the Nyquist frequency.

Keywords: Mechatronic systems; Tracking; Disturbance rejection; Vibration and modal
analysis; Design methodologies.

1. INTRODUCTION

The head-positioning accuracy of hard disk drives must
be improved to meet the increasing demand for larger
storage capacity [Lyman et al. (2003)]. In the head-
positioning system of a hard disk drive, vibrations of the
mechanical system impair positioning accuracy. Therefore,
it is important to compensate for the vibrations in the
head-positioning system to improve positioning accuracy
[Atsumi et al. (2003, 2005)].

The head-positioning system of a hard disk drive is im-
plemented in a sampled-data control system that has a
sampler and a hold. The head-positioning system also
has mechanical vibrations whose frequencies exceed the
Nyquist frequency of the control system. As such, the
head-positioning control system needs to compensate for
mechanical vibrations above the Nyquist frequency.

The control system in conventional hard disk drives com-
pensates for these vibrations by using a multi-rate fil-
ter that decreases the gain above the Nyquist frequency
[Weaver et al. (1995)]. However, such control systems can
only avoid the instability caused by mechanical resonances;
they cannot actually suppress the vibrations. Many stud-
ies have been done on control systems that improve the
control performance on the basis of sampled-data control
theories and multi-rate control techniques [Hirata et al.
(1999); Gu et al. (2000); Semba (2001); Hara (2006)].
However, these studies don’t focus on how to suppress
the vibrations with frequencies higher than the Nyquist
frequency.

In response to the above-mentioned problems, a control
system that suppresses disturbances beyond the Nyquist

frequency is proposed. The design method for the control
system uses frequency responses of a controlled object
and a digital controller for calculations of the gain of
the sensitivity function in a sampled-data system without
requiring complex calculations involving matrices. When
the method was applied to the head-positioning system of
a hard disk drive, the experimental results indicated that
the control system suppressed the vibrations caused by the
disturbances beyond the Nyquist frequency.

2. HEAD-POSITIONING SYSTEM OF HARD DISK
DRIVES

A hard disk drive consists of a voice coil motor (VCM),
several magnetic heads, several disks, and a spindle motor.
The head-positioning control system in hard disk drives is
illustrated in Fig. 1. In the head-positioning system, the
control variable is the head-position signal, which is em-
bedded in disks and is read by magnetic heads. This means
the head-position signal is only available as a discrete-
time signal. The control input is the voltage supplied to a
power amplifier that drives the VCM and magnetic heads,
which is calculated by a digital signal processor at certain
intervals. Therefore, a head-positioning control system can
be thought of as a sampled-data control system that has
a sampler and a hold.

A block diagram of the sampled-data control system with
a multi-rate digital filter is shown in Fig. 2. Here, S is
the sampler, C[z] is the single-rate digital controller, Ip[z]
is the interpolator, Fm[z] is the multi-rate digital filter,
Hm(s) is the multi-rate hold, Pc(s) is the continuous-
time plant, r is the reference signal, ud is the output
signal from C[z], uc is the output signal from Hm(s), dc

is the disturbance signal in continuous time, yc0 is the
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Fig. 1. Head-positioning system in hard disk drive
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Fig. 2. Block diagram of sampled-data control system

output signal from Pc(s), yc is the head-position signal
in continuous time, and yd is the head-position signal in
discrete time. In this study, the multi-rate number is m,
the sampling time is Ts [s], and the sampling frequency is
ωs = 2π/Ts [rad/s].

The timing used in reading or writing user data in hard
disk drives corresponds to intersampling in a sampled-
data control system. In other words, the essential purpose
of a head-positioning system is to control the maximum
displacement of the control variable including intersam-
pling behaviors. Therefore, the control system should be
designed as a sampled-data system so that the controller
compensates for the intersampling vibrations.

The head-positioning system has two control modes; one is
“seek control,” which moves the head onto the target track,
and the other is “following control,” which maintains the
head position on the target track. In the seek control,
the main target of the control system is the transient
characteristics of the head position, but in the following
control, the main target is the steady-state characteristics.
The purpose of this study is to develop a following control
system, so from here on, the steady-state characteristic of
the head position is focused.

3. ANALYSIS OF SAMPLED-DATA CONTROL
SYSTEM USING FREQUENCY RESPONSE

To avoid complex calculations involving matrices, the pro-
posed method uses frequency responses to analyze the
sampled-data control system. The method handles inter-
sampling vibrations and the characteristics of disturbance
rejections in a sampled-data system by using frequency
responses.

The relationship between a continuous-time signal and
discrete-time signal is defined in this paper. For illustration
purposes, the sinusoidal wave x0(t) is defined as

x0(t) = ejω0t. (1)

The discrete-time signal xd[n], which corresponds to the
signal after sampling of x0(t) with the sampling time Ts,
can be given as

xd[n] = x0(nTs) = ejω0Tsn. (2)

The continuous-time signal xc(t), which is created from
xd[n], can be given as

xc(t) =
∞
∑

l=−∞

δ(t − lTs)e
jω0t =

1

Ts

∞
∑

l=−∞

ej(ω0+ωsl)t, (3)

where δ is a Dirac delta function. Equations (2) and (3)
indicate that the discrete-time signal caused by a single
complex sinusoid can be given by a single frequency, and
the continuous-time signal caused by the discrete-time
signal consists of several frequencies.

3.1 Analysis of sensitivity function

In some papers, the gain-frequency response of the sensi-
tivity function in the sampled-data system is defined by us-
ing the worst-case H∞ norm of systems or the upper/lower
bound [Hara et al. (1995); Yamamoto et al. (1996)]. How-
ever, obviously, a head-positioning system has to control
the maximum displacement of the control variable, and the
maximum displacement has no bound in the steady-state
characteristics. Therefore, the infinity norms of signals are
used for defining the gain of the sensitivity function for
head-positioning control in hard disk drives. In this paper,
a gain-frequency response of the sensitivity function in a
sampled-data control system |Ssd| at ω0 is given by the
following equation using dc and yc in Fig. 2:

|Ssd(jω0)| =
||yc(t)||∞

||dc(t, ω0)||∞
= sup

t
|yc(t)|, (4)

where dc(t, ω0) is a single complex sinusoid,

dc(t, ω0) = ejω0t. (5)

The transfer characteristics from ud to yd at ω0, which is
a controlled object in a discrete-time system, is given as
Pd(jω0),

Pd(jω0) =
1

Ts

∞
∑

k=−∞

W (jω0 + jωsk)Pc(jω0 + jωsk), (6)

where

W (jω) = Ip[e
jωTs/m]Fm[ejωTs/m]Hm(jω). (7)

In a steady state with dc(t, ω0) = ejω0t, ud can be given
by the following equation:

ud[n] =
−C[ejω0Ts ]

1 + Pd(jω0)C[ejω0Ts ]
ejω0Tsn. (8)

Here, uc(t) and yc0(t) consist of several frequencies and
are given by follows:

uc(t) =
−C[ejω0Ts ]

1 + Pd(jω0)C[ejω0Ts ]

1

Ts

×
∞
∑

l=−∞

W (jω0 + jωsl)e
j(ω0+ωsl)t.

(9)
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yc0(t) =
−C[ejω0Ts ]

1 + Pd(jω0)C[ejω0Ts ]

1

Ts

×
∞
∑

l=−∞

W (jω0 + jωsl)Pc(jω0 + jωsl)e
j(ω0+ωsl)t.

(10)

Therefore, yc(t) also consists of several frequencies and is
given by

yc(t) = yc0(t) + dc(t, ω0)

= Γ(ω0)e
jω0t +

∞
∑

l=−∞, 6=0

Λ(ω0, l)e
j(ω0+ωsl)t, (11)

where

Γ(ω) = 1 −
1

Ts

C[ejωTs ]W (jω)Pc(jω)

1 + Pd(jω)C[ejωTs ]
, (12)

and

Λ(ω, l) = −
1

Ts

C[ejωTs ]W (jω + jωsl)Pc(jω + jωsl)

1 + Pd(jω)C[ejωTs ]
. (13)

Finally, |Ssd(jω0)| can be given by

|Ssd(jω0)| = sup
t

|yc(t)| = |Γ(ω0)| +
∞
∑

l=−∞, 6=0

|Λ(ω0, l)| .(14)

3.2 Disturbance suppression in sampled-data system

To suppress vibration in which the frequency is ω0, the
control system should have a certain level of |WPc| at ω0

so that |Γ(ω0)| becomes small and a small amount of |WPc|
at the aliasing frequencies so that

∑∞
l=−∞,6=0 |Λ(ω0, l)|

becomes small. On the other hand, yd[n] can be given by
the following equation:

yd[n] = yc(nTs)

= Γ(ω0)e
jω0Tsn +

∞
∑

l=−∞, 6=0

Λ(ω0, l)e
j(ω0Ts+2π)n

=



Γ(ω0) +
∞
∑

l=−∞, 6=0

Λ(ω0, l)



 ejω0Tsn

=

(

1 +
∞
∑

l=−∞

Λ(ω0, l)

)

ejω0Tsn

=
1

1 + Pd(jω0)C[ejω0Ts ]
ejω0Tsn

= Sd(jω0)e
jω0Tsn,

(15)

where Sd(jω0) is the sensitivity function at ω0 in a
discrete-time system.

Equation (15) indicates that when
∑∞

l=−∞,6=0 |Λ(ω0, l)| is
sufficiently small, Ssd can be given by

Ssd(jω0) ≃ Sd(jω0). (16)

Therefore, the control system can suppress the vibration,
in which the frequency is ω0 when

|W (jω0)Pc(jω0)| ≫
∞
∑

l=−∞, 6=0

|W (jω0 + jωsl)Pc(jω0 + jωsl)|
(17)

|Sd(jω0)| < 1 (18)

4. DISTURBANCE SUPPRESSION USING
MULTI-RATE RESONANT FILTER

To suppress the disturbance beyond the servo bandwidth
of the control system, the control system should have sta-
ble resonant characteristics at the disturbance frequency
[Atsumi et al. (2005, 2007)]. However, (17) indicates that
the control system should have small gains at aliasing
frequencies of the disturbance frequency. Therefore, when
the disturbance frequency is higher than the Nyquist fre-
quency, the control system should realize the resonant
characteristics by using continuous-time filters or multi-
rate filters. In this paper, a design method that uses the
multi-rate filter is proposed.

The multi-rate filter Fm is given by the following equation:

Fm[z] = 1 + Fr[z], (19)

where Fr is the multi-rate resonant filter. When Fr[z] = 0,
the transfer characteristics from ud to yd at ω0 are given
by follows:

Pd0(jω0) =
1

Ts

∞
∑

k=−∞

W0(jω0 + jωsk)Pc(jω0 + jωsk), (20)

where

W0(jω) = Ip[e
jωTs/m]Hm(jω). (21)

Here, the disturbance frequency is defined as ωr. To sup-
press the disturbance, Fr should have stable resonant char-
acteristics at ωr, and the control system, which includes
Fr, should satisfy the following equation [Atsumi et al.
(2007)]:

6
[

Pd(jωr)C[ejωrTs ]
]

= arctan

(

br(ωr)

ar(ωr) + 1

)

, (22)

where

ar(ωr) = Re
[

Pd0(jωr)C[ejωrTs ]
]

, (23)

and

br(ωr) = Im
[

Pd0(jωr)C[ejωrTs ]
]

. (24)

5. CONTROL SYSTEM DESIGN

The sampling time Ts of the hard disk drive used in this
study was 76.7 µs (ωs = 2π×13000 [rad/s] and the Nyquist
frequency was 6500 Hz). The frequency of disturbance ωr

is set to 7000 Hz. The frequency response of the mechanical
system is indicated by the dashed line in Fig. 3.

5.1 Controlled object

It is assumed that |Pc(jω)| is vanishingly small when ω >
2ωs. Thus, to reduce the calculation load, the frequency
response of Pc(jω) is defined as

Pc(jω) =

{

Pc0(jω) : |ω| ≤ 2ωs,

0 : |ω| > 2ωs.
(25)

Pc0 is assumed to be given by the product of the “me-
chanical model Ps” and the “equivalent dead-time model
Pdl.”

Pc0(s) = Ps(s) · Pdl(s). (26)
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Table 1. Parameters of Ps(s)

l ωnk(l) αk(l) ζk(l)

1 0 1.00 0
2 2π · 4100 −1.30 0.01
3 2π · 5700 −0.03 0.01
4 2π · 6200 −0.08 0.01
5 2π · 7650 0.12 0.02
6 2π · 8900 −0.13 0.02
7 2π · 9800 −0.35 0.03
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Fig. 3. Frequency response of mechanical system

The mechanical model Ps is given by follows [Atsumi et al.
(2003)]:

Ps(s) = Kp

ψ
∑

l=1

αk(l)

s2 + 2ζk(l)ωnk(l)s + ωnk(l)
2 , (27)

where ψ is the number of modes, αk is the residue of each
mode, ωnk and ζk are the natural frequency [rad/s] and
the damping ratio of the resonance, respectively, and Kp

is the plant gain. These parameters were fixed so that the
model’s frequency response coincided with the measured
result indicated by the dashed line in Fig. 3. To be more
precise, ψ was set to seven (the model order is fourteen),
Kp to 4.3 × 107, and the values of the other parameters
are listed in Table 1. The solid line in Fig. 3 represents the
frequency response of this mathematical model.

The equivalent dead-time model Pdl, which includes the
characteristics of the dead-time element, is given by follows
[Franklin et al. (1980)]:

Pdl(s) = e−τs, (28)

where τ is the equivalent dead time. Here, τ of the hard
disk drive used in this study is 10 µs.

5.2 Multi-rate hold and interpolator

In this paper, the multi-rate number m is set to two. The
multi-rate hold Hm is a zero-order hold (ZOH) and the
transfer characteristic is given by the following equation:

Hm(s) =
1 − e−(Ts/2)s

s
. (29)

The interpolator consists of an up-sampler and an inter-
polation filter. The transfer function of the interpolation
filter can be given by

Ip[z] = 1 + z−1. (30)
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Fig. 4. Frequency response of controlled object
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Fig. 5. Frequency response of open-loop characteristics

5.3 Controller design

First, the single-rate controller C[z], which stabilizes the
control system, is given by the “PI-lead filter” and de-
signed for the controlled object Pd0 in which Fm[z] = 0.
The frequency response of Pd0 is indicated by the dashed
line shown in Fig. 4. To make the phase margin more than
30◦, the gain margin more than 4.5 dB, and the open-loop
gain 0-dB crossover frequency 1100 Hz, C is set according
to the following equation:

C[z] =
11.8(z − 0.908)(z − 0.953)

(z − 0.161)(z − 1)
. (31)

The frequency response of Pd0C (the open-loop charac-
teristics without the resonant filter) is indicated by the
dashed line in Fig. 5.

To suppress the disturbance, Fm should have stable reso-
nant characteristics at ωr. From (22) and ωs/2 < ωr < ωs,
the phase of the multi-rate resonant filter at the distur-
bance frequency ωr should be

6 Fm0[e
jωrTs/2] = − 6 Pc(jωr) − 6 Ip[e

jωrTs/2]

− 6 Hm(jωr) − 6 C[ejωrTs ]− arctan

(

br(ωr)

ar(ωr) + 1

)

,
(32)

where

Fm0[z] = Fm[z] − 1. (33)

As a result, Fm[z] was set as follows:

Fm[z] = 1 +
0.0479(z − 4.37)(z − 1)

(z2 + 0.233z + 0.998)
. (34)
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Fig. 6. Frequency response of Fm
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The frequency response of Fm is shown in Fig. 6, and the
frequency response of Pd is indicated by the solid line in
Fig. 4.

The characteristics of the control system with the resonant
filter are indicated as follows. The frequency response of
the open-loop characteristics is indicated by the solid line
in Fig. 5. The Nyquist diagram is indicated in Fig. 7, and
the gain of the sensitivity function in discrete-time system
Sd is indicated in Fig. 8. These figures indicate that (18)
is satisfied by using the resonant filter, and (17) is also
satisfied because

|W (jωr)Pc(jωr)| = 3.11, (35)

and
∞
∑

l=−∞,6=0

|W (jωr + jωsl)Pc(jωr + jωsl)| = 0.11. (36)

By using the design results of the control system and
(14), the gain-frequency responses of the sensitivity func-
tions in sampled-data control systems were calculated.
The frequency responses of |Psd| are shown in Fig. 9. As
indicated by this figure, the control system suppresses the
disturbance at 7000 Hz.

6. SIMULATION AND EXPERIMENT

The simulation results of Fig. 2, in which the frequency
of disturbance signal dc is 7000 Hz, and the vibrational
amplitude is 0.1 track, are calculated. In Fig. 10, the
dashed line represents the signal of yc without the resonant
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Fig. 8. Frequency response of |Sd|

0 2000 4000 6000 8000 10000 12000
−30

−25

−20

−15

−10

−5

0

5

10

15

G
ai

n
 [

d
B

]

Frequency [Hz]

Fig. 9. Frequency response of |Ssd|

filter, and the solid line represents the signal of yc with
the resonant filter. In Fig. 11, the dashed line represents
the signal of yd without the resonant filter, and the solid
line represents the signal of yd with the resonant filter.
These figures indicate that the control system decreases
vibrations in which the frequency is higher than the
Nyquist frequency.

To show the effect of the proposed method, we did an
experiment using the conditions similar to those of the
simulation. In these experiments, the sampling time of yc

is 38.4 µs (1/2 of Ts) because the continuous-time signal
cannot be measured in actual head-positioning systems.
The time response of yc is shown in Fig. 12, and the time
response of yd is shown in Fig. 13. In both figures, the
dashed line represents the results without the resonant
filter, and the solid line represents the results with the res-
onant filter. These experimental results also indicate that
the control system decreases vibrations whose frequency
is higher than the Nyquist frequency. The differences be-
tween the simulation result and the experimental result are
caused by disturbances other than the disturbance signal
dc in the actual head-positioning system.

7. CONCLUSION

A control system design method that suppresses distur-
bances beyond the Nyquist frequency was proposed. This
method uses frequency responses of a controlled object and
digital controller for calculations of the gain of the sen-
sitivity function in a sampled-data system without com-
plex calculations involving matrices, and realizes a stable
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Fig. 10. Simulation results of yc
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Fig. 11. Simulation results of yd

resonant filter that decreases the gain of the sensitivity
function above the Nyquist frequency. When the method
was applied to the head-positioning system of a hard disk
drive, the experimental results indicated that the control
system suppresses the disturbance in which the frequency
was higher than the Nyquist frequency.
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