

A Self-Evolving Interval Type-2 Fuzzy Neural Network
for Nonlinear Systems Identification

Chia-Feng Juang*, Chun-Feng Lu**, and Yu-Wei Tsao*

*Department of Electrical Engineering, National Chung Hsing University
Taichung, Taiwan, R.O.C. (e-mail:cfjuang@dragon.nchu.edu.tw).

**Department of Electrical Engineering, Chung Chou Institute of Technology,
Changhua, Taiwan, R.O.C.

Abstract: This paper proposes a Self-Evolving Interval Type-2 Fuzzy Neural Network (SEIT2FNN) for
nonlinear systems identification. The SEIT2FNN has both on-line structure and parameter learning
abilities. The antecedent parts in each fuzzy rule of the SEIT2FNN are interval type-2 fuzzy sets and the
fuzzy rules are of the Takagi-Sugeno-Kang (TSK) type. An on-line clustering method is proposed to
generate fuzzy rules which flexibly partition the input space. For parameter learning, the consequent part
parameters are tuned by a rule-ordered Kalman filter algorithm for high accuracy learning performance.
The antecedent part parameters are learned by gradient descent algorithms. Comparisons with
identification using other type-1 and type-2 fuzzy systems verify the performance of the SEIT2FNN.

1. INTRODUCTION

Type-2 Fuzzy logic systems (FLS) are extensions of type-1
FLS, where the membership value of a type-2 fuzzy set is a
type-1 fuzzy number (Karink et al, 1999, Mendel and John,
2002, Mendel 2001). Type-2 FLS appear to be a more
promising method than their type-1 counterparts in handling
problems with uncertainties such as noisy data and different
word meanings. That is, type-2 fuzzy sets allow researchers
to model and minimize the effects of uncertainties in rule-
based systems. Type-2 FLS have been successfully applied to
some control problems (Melin and Castillo, 2004, Hagras,
2004).

Fuzzy rule derivation is often difficult and time-consuming,
and requires expert knowledge. This creates a common
bottleneck in fuzzy system design. To overcome this
disadvantage, many Fuzzy Neural Networks (FNNs) have
been proposed (Jang, 1993, Lin and Lin, 1997, Juang and Lin,
1998, Kukolj and Levi, 2004). Most FNNs are proposed for
the type-1 FLS design. Type-2 fuzzy rules are more complex
than type-1 fuzzy rules because of their use of type-2 fuzzy
sets in antecedent or consequent parts. Therefore, most type-2
FNN research is only concerned with interval type-2 fuzzy
systems.

The theory of interval type-2 fuzzy systems was studied in
(Liang and Mendel, 2000). In (Lee, et al, 2003), the authors
proposed parameter learning of interval type-2 fuzzy system
using a Gaussian primary membership functions with
uncertain standard deviation as a type-2 fuzzy set. Studies
(Wang, et al, 2004, Mendel, 2004, Hagras, 2006) proposed
parameter learning algorithms of interval type-2 fuzzy

systems using Gaussian primary membership functions with
uncertain means as type-2 fuzzy sets.

In the aforementioned type-2 FNNs, only parameters are
learned, and the structures are all fixed and must be assigned
in advance. Fixed structures may not handle time-varying
systems or systems with operating points changing with time.
Therefore, the purpose of this paper is to develop a type-2
FNN with both structure and parameter evolution ability. The
proposed FNN is called a Self-Evolving Interval Type-2
Fuzzy Neural Network (SEIT2FNN). Initially there are no
fuzzy rules in a SEIT2FNN. All of the rules are generated on-
line by proposed structure learning which not only helps
automate rule generation, but also locates good initial rule
positions for subsequent parameter learning. The
SEIT2FNN’s structure evolution ability makes it more
suitable to handling time-varying systems than type-2 fuzzy
systems which adjust their parameters based on pre-trained
and fixed structures. The consequent parameters in the
SEIT2FNN are learned by a rule-ordered Kalman filter
algorithm. The antecedent part parameters are learned by
gradient descent learning algorithms. Simulations on systems
identification are conducted to verify SEIT2FNN
performance. These simulations also compare other type-1
and type-2 systems.

The rest of this paper is organized as follows. Section 2
introduces the SEIT2FNN structure. Section 3 introduces
structure and parameter learning in a SEIT2FNN. Section 4
simulates nonlinear system identification problems. Finally,
Section 5 draws conclusions.

2. SEIT2FNN STRUCTURE

This section introduces the structure of a Self-Evolving
Interval Type-2 Fuzzy Neural Network (SEIT2FNN). Figure

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 7588 10.3182/20080706-5-KR-1001.0444

1 shows the proposed network structure, which has a total of
six layers. This six- layered network realizes an interval type-
2 fuzzy system whose consequent part is a linear combination
of input variables, i.e., Takagi-Sugeno-Kan (TSK)-type. Each
SEIT2FNN rule has the following form

Rule i : IF 1x is 1
iA� AND … AND nx is i

nA�

THEN y is 0
1

n
i i

j j
j

a a x
=

+∑� � , i =1, … , M (1)

where i
jA� , j =1,… , n and iG� are interval type-2 fuzzy

sets, M is the number of rules, i
ja� , 0,...,j n= are

interval sets, and

[,]i i i i i
j j j j ja c s c s= − +� , 0, ,j n= … (2)

Detailed mathematical functions of each layer are introduced
as follows.

Layer 1 (Input layer): The inputs are crisp values. For
input range unification, each node in this layer scales inputs

ix , 1, ,i n= … , to within the range [1, 1]− . No weights to
be adjusted in this layer.

Layer 2 (Fuzzification layer): This layer performs the
fuzzification operation. Each node in this layer defines an
interval type-2 membership function. For the i th fuzzy set

i
jA� in input variable jx , a Gaussian primary membership

function (MF) having a fixed standard deviation σ and an
uncertain mean that takes on values in 1 2[,]m m is used (Fig.
1), i.e.,

21exp{ () } (, ;)
2i

j

i
j j i i

j j jiA
j

x m
N m xµ σ

σ
−

= − ≡�
,

1 2[,]i i i
j j jm m m∈ (3)

The footprint of uncertainty (FOU) of this MF can be
represented as a bounded interval in terms of upper MF, i

jA
µ � ,

and lower MF, i
jA

µ � , where

1 1

1 2

2 2

(, ;)

()= 1 <

(, ;)

i i i
j j j j j

i i
j j j ji

j i i i
j j j j j

N m x x m

x m x m
A

N m x x m

σ

σ

µ
 <
 <
 >

�
 (4)

and

1 2
2

1 2
1

(, ;)
2()=

(, ;)
2

i i
j ji i

j j j j

ji i i
j j ji i

j j j j

m m
N m x x

x
m m

N m x x
A

σ

σ
µ

 +
<

+ >

�
 (5)

y

Layer4

Layer3

Layer2

Layer1

1F

… …

xn

… …

xj

… …

x1

R1
…… Rj RM

- - - - -

… …… …… …

1

…… - - - - -
MF

[,]l ry y

Layer5

Layer6

x
x

1aK�
jaK�

MaK�

xjF

y

Layer4

Layer3

Layer2

Layer1

1F

… …

xn

… …

xj

… …

x1

R1
…… Rj RM

- - - - -

… …… …… …

1

…… - - - - -
MF

[,]l ry y

Layer5

Layer6

x
x

1aK�
jaK�

MaK�

xjF

Fig. 1. Structure of the Self-Evolving Interval Type-2 Fuzzy Neural

Network (SEIT2FNN)

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 2. An interval type-2 fuzzy set with an uncertain mean.

That is, the output of each node can be represented as an
interval [i

jA
µ � , i

jA
µ �].

Layer 3 (Meet layer): Each node in this layer is a rule
node, and performs the fuzzy meet operation using an
algebraic product operation. The output of a rule node is a
firing strength, iF , which is an interval type-1 fuzzy set. The
firing strength is computed as follows (Liang and Mendel,
2000)

[,]i i iF f f= (6)

where

1
i
j

n

i A
j

f µ
=

= ∏ � and
1

i
j

n

i A
j

f µ
=

= ∏ � (7)

Layer 4 (Consequent layer): Each node in this layer is called
a consequent node. Each rule node in Layer 3 has its own
corresponding consequent node in Layer 4. The output of

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

7589

each node is an interval type-1 fuzzy set , denoted by
[,]i i

l rw w . According to Eq. (1) and (2), the node output is

0 0 0 0
1

[,] [,] [,]
n

i i i i i i i i i i
l r j j j j j

j

w w c s c s c s c s x
=

= − + + − + ⋅∑

(8)

That is,

0 0

n n
i i i
l j j j j

j j

w c x x s
= =

= −∑ ∑ (9)

where 0 1x � , and

0 0

n n
i i i
r j j j j

j j

w c x x s
= =

= +∑ ∑ (10)

Layer 5 (Output processing layer): The extended output is an
interval type 1 set [,]l ry y . Each node in this layer

computes this interval output. The outputs ly and ry can be
computed using the Karnik-Mendel iterative procedure
(Mendel, 2001). In that procedure, the consequent parameters
are re-ordered in ascending order. Let 1(, ,)M

l lw w= …lw

and 1(, ,)M
r r rw w= …w denote the original rule-ordered

consequent values, and let 1(, ,)M
l ly y= …ly and

1(, ,)M
r ry y= …ry denote the re-ordered sequence, where

1 2 M
l l ly y y≤ ≤ ≤" and 1 2 M

r r ry y y≤ ≤ ≤" . According

to (Mendel, 2004), the relationship between lw , rw , ly ,

and ry is

l lQ= ly w and rQ=r ry w (11)

where lQ and rQ are M M× permutation matrices. Re-

order the if accordingly and call them ig . The outputs ly

and ry can be computed as follows

1 1

1 1

L Mi i i i
l li i L

l L Mi i
i i L

g y g y
y

g g
= = +

= = +

+
=

+
∑ ∑
∑ ∑

 (12)

and

1 1

1 1

R Mi i i i
r ri i R

r R Mi i
i i R

g y g y
y

g g
= = +

= = +

+
=

+
∑ ∑
∑ ∑

 (13)

Layer 6 (Output layer): Each output node corresponds
to one output linguistic variable. Nodes in this layer compute
the output linguistic variable y using a defuzzification
operation. Because the output of Layer 5 is an interval set,

nodes in Layer 6 defuzzify it by computing the average of ly

and ry . Hence, the defuzzified output is

2

l ry yy += (14)

3. SEIT2FNN LEARNING

The SEIT2FNN simultaneously uses two types of
learning to evolve: structure and parameter learning. The
following sections introduce detailed structure and parameter
learning algorithms.

3.1. Structure Learning

 The first task in structure learning is determining when to
generate a new rule. Geometrically, a rule corresponds to a
cluster in the input space, and a rule firing strength can be
regarded as the degree to which an input data belongs to
cluster. Based on this concept, a previous study (Juang and
Lin, 1998) used the rule firing strength as a criterion for type-
1 fuzzy rule generation. This idea is extended to type-2 fuzzy
rule generation criteria in a SEIT2FNN. Since the firing
strength in the SEIT2FNN is an interval (see Eq. (6)), the
center of the interval is computed

1 ()
2

i i
c if f f= + (15)

The firing strength center then serves as a rule generation
criterion. That is, for each piece of incoming data

1(, ,)nx x x=K … find

1 ()
arg max ()i

ci M t
I f x

≤ ≤
= K

 (16)

where ()M t is the number of existing rules at time t. If

()I
c thf x φ≤K

, then a new rule is generated, where

(0,1)thφ ∈ is a pre-specified threshold. The threshold
decides the number of input clusters generated in a
SEIT2FNN. A smaller thφ value generates a smaller number
of rules. Once a new rule is generated, a corresponding fuzzy
set in each input variable is generated.

Once a new fuzzy set is generated, it should be assigned with
an initial shape. According to the notation in Eq. (3), the
initial uncertain mean i

jm and standard deviation i
jσ for the

new interval type-2 fuzzy set in input variable jx are

 [0.1, 0.1]i
j j jm x x∈ − + (17)

 0.2i
jσ = (18)

Repeating the above process for every incoming piece of
training data generates new rules, one after another, until the
complete IT2FNN is finally constructed.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

7590

3.2. Parameter Learning

The parameter learning phase occurs concurrently with
the structure learning phase. For each piece of incoming data,
all free SEIT2FNN parameters are tuned, whether the rules
are newly generated or originally existent. To clarify,
consider the single-output case, where the objective is to
minimize the error function

21 [() ()]
2 dE y t y t= − (19)

Here, ()y t and ()dy t denote real and desired outputs,
respectively. The Karnik-Mendel iterative procedure for
computing ly and ry in Eq. (12) and (13) has the premise

that i
lw and i

rw are re-arranged in ascending order. During

the parameter learning process, the i
lw and i

rw values
change, and their orders and corresponding rule orders in
computing Eq. (12) and (13) should change accordingly. To
update parameters, it is necessary to know exactly where
specific antecedent and consequent parameters are located,
and this is very difficult to ascertain when ly and ry are not
in a rule-ordered format. This problem was addressed in
(Mendel, 2004). The SEIT2FNN approach considers this
problem in its derived rule-ordered Kalman filtering
algorithm for consequent parameter learning. Let

1 2(, ,...,)M Tf f f=f and 1 2(, ,...,)M Tf f f=f where
the firing strengths are expressed according to the original
rule order. According to (Mendel, 2004), Eq. (12) can be re-
expressed in the following rule-ordered form

1 1 2 2

1
() (

T T T T T T
l l l l

l L M
l i l ii=1 i L

Q E E Q Q E E Q
y

Q Q)
= +

+
=

+∑ ∑
l lf w f w

f f (20)

where

 1 1 2(, ,..., , ,...,) L M
LE ×= ∈ℜ0 0e e e

and ()
2 1 2(,..., , , ,...,) M L M

M LE − ×
−= ∈ℜ0 0 ε ε ε , (21)

and where 1L
i

×∈ℜe and M L
i

−∈ℜε are elementary

vectors. The output ry can be re-expressed in same way. In
(Mendel, 2004), consequent parameters are tuned by a
gradient descent algorithm. In a SEIT2FNN, a rule-ordered
Kalman filtering algorithm tunes consequent parameters.
Output ly and ry can be expressed as

 l l ly = Twφ , 1 M
l

×∈ℜφ (22)

and

r r ry = Twφ , 1 M
r

×∈ℜφ (23)

respectively. Thus, the output y in Eq. (14) can be re-
expressed as

1 1() ()
2 2l r l l r r TSKy y y ′= + = + =φ φ φT T

TSKw w w (24)

The consequent parameter vector TSKw is updated by
executing the following rule-ordered Kalamn filtering
algorithm

(1) = () (1) (1)((1) (1) ())

() (1) (1) ()1(1) [()]
(1) ()

d
TSK TSK TSK TSK TSK

TSK TSK

TSK TSK

t t S t t y t t t

S t t S tS t S t
t S t

Τ

Ττ
λ λ

+ + + + + − +

+ ++ = −
+ +

w w w

Τ

φ φ
φ φ

φ φ

(25)

where 0 1λ< ≤ is a forgetting factor (λ =0.9995 in this
paper). Here, 2 (1) 2 (1)

0 = M n M nS q I + × +⋅ ∈ℜ , and q is a
large positive constant. SEIT2FNN antecedent parameters are
tuned by a gradient descent algorithm. That is,

1 1

1

(1) ()i i
j j i

j

Em t m t
m

η ∂+ = −
∂

 (26)

 2 2
2

(1) ()i i
j j i

j

Em t m t
m

η ∂+ = −
∂

 (27)

 (1) ()i i
j j i

j

Et tσ σ η
σ

∂+ = −
∂

 (28)

where η is a learning coefficient. Details of the learning
algorithm can be found in (Mendel, 2004), where the authors
had explicitly derived gradient calculations considering the
rules re-ordering problem.

4. SIMULATIONS

Example-System Identification.

This example uses the SEIT2FNN to identify a
nonlinear system. The plant to be identified is guided by the
difference equation (Lin and Lin, 1997, Juang and Lin, 1998)

 3
2

()(1) ()
1 ()

d
d

d

y ty t u t
y t

+ = +
+

 (29)

The training patterns are generated with
() sin(2 100)u t tπ= , t =1, … , 200. The SEIT2FNN

inputs are ()dy t and ()u t , and the desired output is

(1)dy t + . Performance is evaluated using the root-mean-
squared error (RMSE)

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

7591

0 20 40 60 80 100 120 140 160 180 200
-1.5

-1

-0.5

0

0.5

1

1.5

time step

y d(k
+1

)

actual output
desired output

Fig. 3. Identification results of the SEIT2FNN using ten rules.

 200 2
1

1 [(1) (1)]
200

d
k

RMSE y t y t
=

= + − +∑ (30)

where ()y t is the SEIT2FNN output. The learning
coefficient η is set at 0.05. The structure learning threshold

thφ determines the number of generated fuzzy rules. Three

rules are generated when thφ is set at 0.01. Since the number
of fuzzy sets and the number of rules is small, the fuzzy set
reduction operation in structure learning is not used, i.e., ρ
is set to be zero. Training is performed for 500 iterations.
Table 1 shows the performance of the SEIT2FNN.

This example also tests SEIT2FNN performance with
a greater number of rules, caused by assigning a larger value
of thφ . Table II shows the performance of the SEIT2FNN
with a greater number of rules: 10 rules are generated when

thφ = 0.15. The results in Tables I and II indicate that with the

same consequent type, a higher number of thφ generates a
higher number of rules and generally improves SEIT2FNN
performance.

The interval type 2 fuzzy logic system presented in
(Mendel, 2004) is compared to the SEIT2FNN, and denoted
as T2FLS hereafter. The T2FLS has no structure learning,
and the number of rules in T2FLS is assigned a priori.
T2FLS parameters are tuned by the gradient descent
algorithm in (Mendel, 2004). Tables I and II show T2FLS
performance with TSK-type consequents, respectively. The
results show that with the same number of rules and
consequent type, the RMSE of SEIT2FNN is much smaller
than the RMSE of T2FLS.

The performance of Type 1 fuzzy neural networks (FNNs)
that were applied to the same identification problem is also
compared. These type 1 FNNs include the fuzzy adaptive
learning control network (FALCON) (Lin and Lin, 1997) and
self-constructing neural fuzzy inference network (SONFIN)
(Juang and Lin, 1998), both of which also have structure
learning abilities. Table I lists the performance of the

TABLE 1. PERFORMANCE OF SEIT2FNN AND OTHER TYPE 1 AND
TYPE 2 FUZZY STSTEMS.

Type 1 Type 2 Methods

FALCON SONFIN T2FLS(TSK) SEIT2FNN

Rule number 6 7 3 3
parameter
number

54 35 36 36

Iterations 60000 500 500 500
RMSE 0.02 0.008 0.039 0.0069

FALCON and the SONFIN, indicating that the SEIT2FNN
has a smaller RMSE and number of rules than these two type
1 FNNs. The results also show that SONFIN performance,
which has structure learning ability, is better than the T2FLS
when a nearly identical number of parameters are used in
both networks.

5. CONCLUSIONS

This paper proposes a SEIT2FNN. In contrast to existing
type-2 fuzzy systems, there is no need to determine
SEIT2FNN structure in advance because the proposed
structure learning ability enables the SEIT2FNN to evolve its
structure on-line. The proposed rule-ordered Kalman filter
algorithm helps tune the consequent parameters on-line and
improves learning accuracy. Simulation results show that,
compared with type-1 fuzzy systems that also have on-line
structure learning ability, the SEIT2FNN achieves higher
learning accuracy with a smaller number of rules for both
clean and noisy data. Future studies will examine practical
applications of the SEIT2FNN to control and signal
processing problems with noise or uncertainty.

REFERENCES

Hagras, H (2004). “A hierarchical type-2 fuzzy logic control
architecture for autonomous mobile robots,” IEEE
Trans. Fuzzy Systems, vol. 12, no. 524-539.

Hagras, H (2006). “Comments on dynamical optimal training
for interval type-2 fuzzy neural network (T2FNN),”
IEEE Trans. Syst., Man and Cyber. - Part B:
Cybernetics, vol. 36, no. 5, pp. 1206-1209.

Jang, J. S (1993). “ANFIS: Adaptive-network-based fuzzy
inference system,” IEEE Trans. Syst., Man, Cybern.,
vol. 23, no. 3, pp. 665-685.

Juang, C. F and C. T. Lin (1998). “An on-line self-
constructing neural fuzzy inference network and its
applications,” IEEE Trans. Fuzzy Systems, vol. 6. no. 1,
pp. 12-32.

Karnik, N. N, J. M. Mendel, and Q. Liang (1999). “Type-2
fuzzy logic systems,” IEEE Trans. on Fuzzy Systems,
vol. 7, no. 6, pp. 643-658.

Kukolj, D and E. Levi (2004). “Identification of complex
systems based on neural and Takagi-Sugeno fuzzy model,”
IEEE Trans. Sys., Man, Cybern., Part B: Cybernetics, vol.
34, no. 1, pp. 272-282.

Lee, C. H, Y. C. Lin, and W. Y. Lai (2003). “Systems
identification using type-2 fuzzy neural network (Type-
2 FNN) systems,” Proc. IEEE Int. Symp.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

7592

Computational Intelligence in Robotics and
Automation, vol. 3, pp. 1264-1269.

Liang, Q and J. M. Mendel (2000). “Interval type-2 fuzzy
logic systems: theory and design,” IEEE Trans. On Fuzzy
Systems, vol. 8, no. 5, pp. 535-550.

Lin, C. J. Lin and C. T. Lin (1997). “An ART-based fuzzy
adaptive learning control network,” IEEE Trans. Fuzzy
Systems, vol. 5, no. 4, pp. 477-496.

Melin, P and O. Castillo (2004). “Intelligent control of non-
linear dynamic plants using type-2 fuzzy logic and
neural networks,” Proc. IEEE Int. Conf. Fuzzy Systems,
Budapest, Hungary.

Mendel, J. M. (2001). Uncertain Rule-Based Fuzzy Logic
System: Introduction and New Directions, Prentice Hall,
Upper Saddle River.

Mendel, J. M. and R. I. John (2002). “Type-2 fuzzy sets
made simple,” IEEE Trans. On Fuzzy Systems, vol. 10, no.
2, pp. 117-127.

Mendel J. M (2004). “Computing derivatives in interval type-
2 fuzzy logic system,” IEEE Trans. On Fuzzy Systems,
vol. 12. no. 1, pp. 84-98.

Wang, C. H, C. S. Cheng, and T. T. Lee (2004). “Dynamical
optimal training for interval type-2 fuzzy neural
network (T2FNN),” IEEE Trans. on Syst., , Man, and
Cyber. - Part B: Cybernetics, vol. 34, no. 3, pp. 1462-
1477.

Appendix. Acknowledgement

This was supported by the National Science Council, Taiwan,
Republic of China, under Grant number NSC 96-2628-E-
005-087-MY3.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

7593

