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Abstract: This paper proposes a Self-Evolving Interval Type-2 Fuzzy Neural Network (SEIT2FNN) for 
nonlinear systems identification. The SEIT2FNN has both on-line structure and parameter learning 
abilities. The antecedent parts in each fuzzy rule of the SEIT2FNN are interval type-2 fuzzy sets and the 
fuzzy rules are of the Takagi-Sugeno-Kang (TSK) type. An on-line clustering method is proposed to 
generate fuzzy rules which flexibly partition the input space. For parameter learning, the consequent part 
parameters are tuned by a rule-ordered Kalman filter algorithm for high accuracy learning performance. 
The antecedent part parameters are learned by gradient descent algorithms. Comparisons with 
identification using other type-1 and type-2 fuzzy systems verify the performance of the SEIT2FNN.  

 

1. INTRODUCTION 

Type-2 Fuzzy logic systems (FLS) are extensions of type-1 
FLS, where the membership value of a type-2 fuzzy set is a 
type-1 fuzzy number (Karink et al, 1999, Mendel and John, 
2002, Mendel 2001). Type-2 FLS appear to be a more 
promising method than their type-1 counterparts in handling 
problems with uncertainties such as noisy data and different 
word meanings. That is, type-2 fuzzy sets allow researchers 
to model and minimize the effects of uncertainties in rule-
based systems. Type-2 FLS have been successfully applied to 
some control problems (Melin and Castillo, 2004, Hagras, 
2004).  

Fuzzy rule derivation is often difficult and time-consuming, 
and requires expert knowledge. This creates a common 
bottleneck in fuzzy system design. To overcome this 
disadvantage, many Fuzzy Neural Networks (FNNs) have 
been proposed (Jang, 1993, Lin and Lin, 1997, Juang and Lin, 
1998, Kukolj and Levi, 2004). Most FNNs are proposed for 
the type-1 FLS design. Type-2 fuzzy rules are more complex 
than type-1 fuzzy rules because of their use of type-2 fuzzy 
sets in antecedent or consequent parts. Therefore, most type-2 
FNN research is only concerned with interval type-2 fuzzy 
systems.  

The theory of interval type-2 fuzzy systems was studied in 
(Liang and Mendel, 2000). In (Lee, et al, 2003), the authors 
proposed parameter learning of interval type-2 fuzzy system 
using a Gaussian primary membership functions with 
uncertain standard deviation as a type-2 fuzzy set. Studies 
(Wang, et al, 2004, Mendel, 2004, Hagras, 2006) proposed 
parameter learning algorithms of interval type-2 fuzzy 

systems using Gaussian primary membership functions with 
uncertain means as type-2 fuzzy sets.  

In the aforementioned type-2 FNNs, only parameters are 
learned, and the structures are all fixed and must be assigned 
in advance. Fixed structures may not handle time-varying 
systems or systems with operating points changing with time. 
Therefore, the purpose of this paper is to develop a type-2 
FNN with both structure and parameter evolution ability. The 
proposed FNN is called a Self-Evolving Interval Type-2 
Fuzzy Neural Network (SEIT2FNN). Initially there are no 
fuzzy rules in a SEIT2FNN. All of the rules are generated on-
line by proposed structure learning which not only helps 
automate rule generation, but also locates good initial rule 
positions for subsequent parameter learning. The 
SEIT2FNN’s structure evolution ability makes it more 
suitable to handling time-varying systems than type-2 fuzzy 
systems which adjust their parameters based on pre-trained 
and fixed structures. The consequent parameters in the 
SEIT2FNN are learned by a rule-ordered Kalman filter 
algorithm. The antecedent part parameters are learned by 
gradient descent learning algorithms. Simulations on systems 
identification are conducted to verify SEIT2FNN 
performance. These simulations also compare other type-1 
and type-2 systems.  

The rest of this paper is organized as follows. Section 2 
introduces the SEIT2FNN structure. Section 3 introduces 
structure and parameter learning in a SEIT2FNN. Section 4 
simulates nonlinear system identification problems. Finally, 
Section 5 draws conclusions.  

2. SEIT2FNN STRUCTURE 

This section introduces the structure of a Self-Evolving 
Interval Type-2 Fuzzy Neural Network (SEIT2FNN). Figure 
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1 shows the proposed network structure, which has a total of 
six layers. This six- layered network realizes an interval type-
2 fuzzy system whose consequent part is a linear combination 
of input variables, i.e., Takagi-Sugeno-Kan (TSK)-type. Each 
SEIT2FNN rule has the following form 

Rule i :  IF 1x  is 1
iA�  AND … AND nx  is i

nA�                  

THEN y  is  0
1

n
i i

j j
j

a a x
=

+∑� � ,  i =1, … , M  (1) 

where i
jA� , j =1,… , n  and iG�  are interval type-2 fuzzy 

sets, M  is the number of rules, i
ja� , 0,...,j n=  are 

interval sets, and  

[ , ]i i i i i
j j j j ja c s c s= − +� , 0, ,j n= …                        (2) 

Detailed mathematical functions of each layer are introduced 
as follows.  

Layer 1 (Input layer): The inputs are crisp values. For 
input range unification, each node in this layer scales inputs 

ix , 1, ,i n= … , to within the range [ 1,  1]− . No weights to 
be adjusted in this layer. 

Layer 2 (Fuzzification layer): This layer performs the 
fuzzification operation. Each node in this layer defines an 
interval type-2 membership function. For the i th fuzzy set 

i
jA�  in input variable jx , a Gaussian primary membership 

function (MF) having a fixed standard deviation σ  and an 
uncertain mean that takes on values in 1 2[ , ]m m  is used (Fig. 
1), i.e.,  

21exp{ ( ) } ( , ; )
2i

j

i
j j i i

j j jiA
j

x m
N m xµ σ

σ
−

= − ≡�
, 

1 2[ ,  ]i i i
j j jm m m∈                  (3) 

The footprint of uncertainty (FOU) of this MF can be 
represented as a bounded interval in terms of upper MF, i

jA
µ � , 

and lower MF, i
jA

µ � , where  

                      
1 1

1 2

2 2

( , ; )          

( )=     1                          <           

( , ; )          

i i i
j j j j j

i i
j j j ji

j i i i
j j j j j

N m x x m

x m x m
A

N m x x m

σ

σ

µ
 <
 <
 >

�
          (4) 

and  

1 2
2

1 2
1

( , ; )          
2( )=

( , ; )          
2

i i
j ji i

j j j j

ji i i
j j ji i

j j j j

m m
N m x x

x
m m

N m x x
A

σ

σ
µ

 +
<


+ >

�
                 (5) 
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Fig. 1.  Structure of the Self-Evolving Interval Type-2 Fuzzy Neural 

Network (SEIT2FNN) 

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

Fig. 2. An interval type-2 fuzzy set with an uncertain mean. 

That is, the output of each node can be represented as an 
interval [ i

jA
µ � , i

jA
µ � ]. 

Layer 3 (Meet layer): Each node in this layer is a rule 
node, and performs the fuzzy meet operation using an 
algebraic product operation. The output of a rule node is a 
firing strength, iF , which is an interval type-1 fuzzy set. The 
firing strength is computed as follows (Liang and Mendel, 
2000)  

[ , ]i i iF f f=                                    (6) 

where  

1
i
j

n

i A
j

f µ
=

= ∏ �  and 
1

i
j

n

i A
j

f µ
=

= ∏ �                           (7) 

Layer 4 (Consequent layer): Each node in this layer is called 
a consequent node. Each rule node in Layer 3 has its own 
corresponding consequent node in Layer 4. The output of 
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each node is an interval type-1 fuzzy set , denoted by 
[  ,  ]i i

l rw w .  According to Eq. (1) and (2), the node output is  

0 0 0 0
1

[  ,  ] [ ,  ] [ , ]
n

i i i i i i i i i i
l r j j j j j

j

w w c s c s c s c s x
=

= − + + − + ⋅∑               

(8) 

That is,  

                            
0 0

n n
i i i
l j j j j

j j

w c x x s
= =

= −∑ ∑                        (9) 

where 0 1x � , and  

                             
0 0

n n
i i i
r j j j j

j j

w c x x s
= =

= +∑ ∑                    (10) 

Layer 5 (Output processing layer): The extended output is an 
interval type 1 set [ ,  ]l ry y . Each node in this layer 

computes this interval output. The outputs ly  and ry  can be 
computed using the Karnik-Mendel iterative procedure 
(Mendel, 2001). In that procedure, the consequent parameters 
are re-ordered in ascending order. Let 1( , , )M

l lw w= …lw  

and 1( , , )M
r r rw w= …w denote the original rule-ordered 

consequent values, and let 1( , , )M
l ly y= …ly  and 

1( , , )M
r ry y= …ry  denote the re-ordered sequence, where 

1 2 M
l l ly y y≤ ≤ ≤"  and 1 2 M

r r ry y y≤ ≤ ≤" . According 

to (Mendel, 2004), the relationship between lw , rw , ly , 

and ry  is  

l lQ= ly w  and rQ=r ry w                         (11) 

where lQ  and rQ  are M M×  permutation matrices. Re-

order the if  accordingly and call them ig . The outputs ly  

and ry  can be computed as follows 

1 1

1 1

L Mi i i i
l li i L

l L Mi i
i i L

g y g y
y

g g
= = +

= = +

+
=

+
∑ ∑
∑ ∑

                    (12) 

and 

1 1

1 1

R Mi i i i
r ri i R

r R Mi i
i i R

g y g y
y

g g
= = +

= = +

+
=

+
∑ ∑
∑ ∑

                    (13) 

Layer 6 (Output layer): Each output node corresponds 
to one output linguistic variable. Nodes in this layer compute 
the output linguistic variable y  using a defuzzification 
operation. Because the output of Layer 5 is an interval set, 

nodes in Layer 6 defuzzify it by computing the average of ly  

and ry . Hence, the defuzzified output is 

                     
2

l ry yy +=                            (14) 

3. SEIT2FNN LEARNING 

The SEIT2FNN simultaneously uses two types of 
learning to evolve: structure and parameter learning. The 
following sections introduce detailed structure and parameter 
learning algorithms. 

3.1. Structure Learning 

    The first task in structure learning is determining when to 
generate a new rule. Geometrically, a rule corresponds to a 
cluster in the input space, and a rule firing strength can be 
regarded as the degree to which an input data belongs to 
cluster. Based on this concept, a previous study (Juang and 
Lin, 1998) used the rule firing strength as a criterion for type-
1 fuzzy rule generation. This idea is extended to type-2 fuzzy 
rule generation criteria in a SEIT2FNN. Since the firing 
strength in the SEIT2FNN is an interval (see Eq. (6)), the 
center of the interval is computed  

1 ( )
2

i i
c if f f= +                              (15) 

The firing strength center then serves as a rule generation 
criterion. That is, for each piece of incoming data 

1( , , )nx x x=K …  find 

1 ( )
arg  max ( )i

ci M t
I f x

≤ ≤
= K

           (16) 

where ( )M t  is the number of existing rules at time t. If 

( )I
c thf x φ≤K

, then a new rule is generated, where 

(0,1)thφ ∈  is a pre-specified threshold. The threshold 
decides the number of input clusters generated in a 
SEIT2FNN. A smaller thφ  value generates a smaller number 
of rules. Once a new rule is generated, a corresponding fuzzy 
set in each input variable is generated.  

Once a new fuzzy set is generated, it should be assigned with 
an initial shape. According to the notation in Eq. (3), the 
initial uncertain mean i

jm  and standard deviation i
jσ  for the 

new interval type-2 fuzzy set in input variable jx are  

       [ 0.1,  0.1]i
j j jm x x∈ − +                          (17) 

                      0.2i
jσ =                                                   (18) 

Repeating the above process for every incoming piece of 
training data generates new rules, one after another, until the 
complete IT2FNN is finally constructed.  
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3.2. Parameter Learning 

The parameter learning phase occurs concurrently with 
the structure learning phase. For each piece of incoming data, 
all free SEIT2FNN parameters are tuned, whether the rules 
are newly generated or originally existent. To clarify, 
consider the single-output case, where the objective is to 
minimize the error function 

21 [ ( ) ( )]
2 dE y t y t= −                          (19) 

Here, ( )y t  and ( )dy t  denote real and desired outputs, 
respectively. The Karnik-Mendel iterative procedure for 
computing ly  and ry  in Eq. (12) and (13) has the premise 

that i
lw  and i

rw  are re-arranged in ascending order. During 

the parameter learning process, the i
lw  and i

rw  values 
change, and their orders and corresponding rule orders in 
computing Eq. (12) and (13) should change accordingly. To 
update parameters, it is necessary to know exactly where 
specific antecedent and consequent parameters are located, 
and this is very difficult to ascertain when ly  and ry  are not 
in a rule-ordered format. This problem was addressed in 
(Mendel, 2004). The SEIT2FNN approach considers this 
problem in its derived rule-ordered Kalman filtering 
algorithm for consequent parameter learning. Let 

1 2( , ,..., )M Tf f f=f  and 1 2( , ,..., )M Tf f f=f where 
the firing strengths are expressed according to the original 
rule order. According to (Mendel, 2004), Eq. (12) can be re-
expressed in the following rule-ordered form 

1 1 2 2

1
( ) (

   

T T T T T T
l l l l

l L M
l i l ii=1 i L

Q E E Q Q E E Q
y

Q Q )
= +

+
=

+∑ ∑
l lf w f w

f f           (20) 

where 

 1 1 2( , ,..., , ,..., ) L M
LE ×= ∈ℜ0 0e e e   

and ( )
2 1 2( ,..., , , ,..., ) M L M

M LE − ×
−= ∈ℜ0 0 ε ε ε ,      (21) 

and where 1L
i

×∈ℜe  and M L
i

−∈ℜε  are elementary 

vectors. The output ry can be re-expressed in same way. In 
(Mendel, 2004), consequent parameters are tuned by a 
gradient descent algorithm. In a SEIT2FNN, a rule-ordered 
Kalman filtering algorithm tunes consequent parameters. 
Output ly  and ry  can be expressed as  

  l l ly = Twφ , 1 M
l

×∈ℜφ                              (22) 

and  

r r ry = Twφ , 1 M
r

×∈ℜφ                             (23) 

respectively. Thus, the output y  in Eq. (14) can be re-
expressed as  

                
1 1( ) ( )
2 2l r l l r r TSKy y y ′= + = + =φ φ φT T

TSKw w w      (24) 

The consequent parameter vector TSKw  is updated by 
executing the following rule-ordered Kalamn filtering 
algorithm 

( 1) = ( ) ( 1) ( 1)( ( 1) ( 1) ( )) 

( ) ( 1) ( 1) ( )1( 1) [ ( ) ]
( 1) ( )

d
TSK TSK TSK TSK TSK

TSK TSK

TSK TSK

t t S t t y t t t

S t t S tS t S t
t S t

Τ

Ττ
λ λ

+ + + + + − +

+ ++ = −
+ +

w w w

Τ

φ φ
φ φ

φ φ
           

(25) 

where 0 1λ< ≤  is a forgetting factor ( λ =0.9995 in this 
paper). Here, 2 ( 1) 2 ( 1)

0  =  M n M nS q I + × +⋅ ∈ℜ , and q  is a 
large positive constant. SEIT2FNN antecedent parameters are 
tuned by a gradient descent algorithm. That is, 

 
1 1

1

( 1) ( )i i
j j i

j

Em t m t
m

η ∂+ = −
∂

                          (26) 

                2 2
2

( 1) ( )i i
j j i

j

Em t m t
m

η ∂+ = −
∂

                    (27) 

                ( 1) ( )i i
j j i

j

Et tσ σ η
σ

∂+ = −
∂

                        (28) 

where η  is a learning coefficient. Details of the learning 
algorithm can be found in (Mendel, 2004), where the authors 
had explicitly derived gradient calculations considering the 
rules re-ordering problem.  

4. SIMULATIONS 

Example-System Identification.  

This example uses the SEIT2FNN to identify a 
nonlinear system. The plant to be identified is guided by the 
difference equation (Lin and Lin, 1997, Juang and Lin, 1998) 

               3
2

( )( 1) ( )
1 ( )

d
d

d

y ty t u t
y t

+ = +
+

               (29) 

The training patterns are generated with 
( ) sin(2 100)u t tπ= , t =1, … , 200. The SEIT2FNN 

inputs are ( )dy t  and ( )u t , and the desired output is 

( 1)dy t + . Performance is evaluated using the root-mean-
squared error (RMSE) 
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Fig. 3. Identification results of the SEIT2FNN using ten rules. 

 

 200 2
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1 [ ( 1) ( 1)]
200

d
k

RMSE y t y t
=

= + − +∑             (30) 

where ( )y t  is the SEIT2FNN output. The learning 
coefficient η  is set at 0.05. The structure learning threshold 

thφ  determines the number of generated fuzzy rules. Three 

rules are generated when thφ  is set at 0.01. Since the number 
of fuzzy sets and the number of rules is small, the fuzzy set 
reduction operation in structure learning is not used, i.e., ρ  
is set to be zero. Training is performed for 500 iterations. 
Table 1 shows the performance of the SEIT2FNN.  

This example also tests SEIT2FNN performance with 
a greater number of rules, caused by assigning a larger value 
of thφ . Table II shows the performance of the SEIT2FNN 
with a greater number of rules: 10 rules are generated when  

thφ = 0.15. The results in Tables I and II indicate that with the 

same consequent type, a higher number of thφ  generates a 
higher number of rules and generally improves SEIT2FNN 
performance.  

The interval type 2 fuzzy logic system presented in 
(Mendel, 2004) is compared to the SEIT2FNN, and denoted 
as T2FLS hereafter. The T2FLS has no structure learning, 
and the number of rules in T2FLS is assigned a priori. 
T2FLS parameters are tuned by the gradient descent 
algorithm in (Mendel, 2004). Tables I and II show T2FLS 
performance with TSK-type consequents, respectively. The 
results show that with the same number of rules and 
consequent type, the RMSE of SEIT2FNN is much smaller 
than the RMSE of T2FLS.  

The performance of Type 1 fuzzy neural networks (FNNs) 
that were applied to the same identification problem is also 
compared. These type 1 FNNs include the fuzzy adaptive 
learning control network (FALCON) (Lin and Lin, 1997) and 
self-constructing neural fuzzy inference network (SONFIN) 
(Juang and Lin, 1998), both of which also have structure 
learning abilities. Table I lists the performance of the  

TABLE 1. PERFORMANCE OF SEIT2FNN AND OTHER TYPE 1 AND 
TYPE 2 FUZZY STSTEMS. 

Type 1 Type 2     Methods 
 

FALCON SONFIN  T2FLS(TSK) SEIT2FNN
 

Rule number 6 7 3 3 
parameter 
number 

54 35 36 36 

Iterations 60000 500 500 500 
RMSE 0.02 0.008 0.039 0.0069

 
FALCON and the SONFIN, indicating that the SEIT2FNN 
has a smaller RMSE and number of rules than these two type 
1 FNNs. The results also show that SONFIN performance, 
which has structure learning ability, is better than the T2FLS 
when a nearly identical number of parameters are used in 
both networks. 

5. CONCLUSIONS 

This paper proposes a SEIT2FNN. In contrast to existing 
type-2 fuzzy systems, there is no need to determine 
SEIT2FNN structure in advance because the proposed 
structure learning ability enables the SEIT2FNN to evolve its 
structure on-line. The proposed rule-ordered Kalman filter 
algorithm helps tune the consequent parameters on-line and 
improves learning accuracy. Simulation results show that, 
compared with type-1 fuzzy systems that also have on-line 
structure learning ability, the SEIT2FNN achieves higher 
learning accuracy with a smaller number of rules for both 
clean and noisy data. Future studies will examine practical 
applications of the SEIT2FNN to control and signal 
processing problems with noise or uncertainty. 
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