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Abstract: This paper proposes a technique for reducing the number of uncertain parameters
in order to simplify robust and adaptive controller design. The system is assumed to have
a known structure with parametric uncertainties that represent plant dynamics variation. An
original set of parameters is identified by nonlinear least-squares (NLS) optimization using noisy
frequency response functions. Based on the property of asymptotic normality for NLS estimates,
the original parameter set is re-parameterized by an affine function of the smaller number of
uncorrelated parameters. The correlation among uncertain parameters over NLS estimates from
different plants is detected by the singular value decomposition. A numerical example illustrates
the usefulness of the proposed technique.

1. INTRODUCTION

Plant dynamics variation abounds in practical control
problems. Such variation is caused by, e.g., the change
of operational points and conditions, time-varying prop-
erties, and limited manufacturing tolerance for cheap and
massive production. For instance, in the mass-spring-
damper system, spring and/or damper coefficients may
vary depending on the position of the mass due to non-
linearity. Also, in batch fabrication, it is very costly to try
to produce millions of products with exactly same dynam-
ics. Taking into consideration plant dynamics variation
is crucial to achieve satisfactory control systems for any
conceivable situation.

In order to deal with plant dynamics variation, robust
and adaptive control techniques (Zhou (1998); Åström and
Wittenmark (1995)) are known to be powerful tools. These
techniques are based on models representing dynamics
variation, and various modeling and system identification
methodologies for such models have been developed (Ljung
(1999); Chen and Gu (2000)).

In modeling, we always have to consider the trade-off
between accuracy and simplicity of the model. Although a
complex model can capture system properties in detail, it
is often not preferable for controller design purpose due to
unduly high computational cost. Especially, if we employ
too many parameters to represent dynamics variation,
numerical controller design based on modern robust con-
trol techniques often falls into computational infeasibility.
Therefore, model set simplification is an important step.

For a model set involving parametric variation, there are
mainly two ways of model simplification, i.e., model order
reduction and parameter number reduction, and the latter
is the main topic in this paper. Based on the idea of the

principal component analysis (Jolliffe (2002)), Conway et
al. recently developed a parameter reduction method using
the singular value decomposition (Conway et al. (2007)).
A possible drawback is that they do not consider the effect
of error of the estimates and noise in experimental data on
parameter reduction, while this paper discusses in detail
how the noise on frequency response function data affects
the parameter reduction stage.

This paper proposes a parameter reduction technique to
simplify robust and adaptive controller design. The system
is assumed to have a known structure with parametric un-
certainties caused by plant dynamics variation. An original
set of parameters is identified by nonlinear least-squares
(NLS) optimization using noisy frequency response func-
tions. With the property of asymptotic normality for NLS
estimates, the original parameter set is re-parameterized
by an affine function of the smaller number of uncorrelated
parameters. The correlation among uncertain parameters
over NLS estimates from different plants is detected by the
singular value decomposition.

The paper is organized as follows. In Section 2, we re-
view the nonlinear least-squares technique for parameter
estimation. This section also introduces our assumptions
of the plant and the data. Section 3 discusses asymptotic
properties, i.e., strong consistency and asymptotic normal-
ity, of the NLS estimates. Based on the asymptotic prop-
erties, Section 4 proposes a parameter reduction technique
based on the singular value decomposition. A practical
example is given after presenting the reduction technique.

Notation used in this paper is standard. The set of positive
numbers and positive integers are denoted by R+ and Z+,
respectively. The set of p dimensional real vector is R

p, and
the set of p × q complex matrices is C

p×q. (If p = q = 1,
these indices are omitted.) For a complex matrix M ,
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Re(M) and Im(M) respectively mean the real and the
imaginary part of M , and MT and M∗ are respectively
the transpose and the complex conjugate transpose of M .
Other notation will be explained in due course.

2. PARAMETER ESTIMATION BY NONLINEAR
LEAST-SQUARES OPTIMIZATION

As is written in Ljung (1999), the model construction
requires three basic entities, that is, the model structure,
the data, and the optimality criterion. In the following,
we will explain what these entities are in this paper.
Throughout this paper, we assume that the system to be
modeled is a scalar system, but extensions of the results
in this paper to multivariable cases are straightforward.

2.1 Model structure

It is assumed that we have a priori information on the
structure of a continuous-time linear time-invariant (LTI)
true system:

[G(θ)] (s), θ ∈ Θ ⊂ R
p, (1)

where θ is a parameter vector and Θ is a set determined
by a priori knowledge of parameters. (For example, we
may know that some parameters in θ must be positive.)
The structure of G may come from either physical laws or
experimental data. Simple examples are standard first and
second order transfer functions:

[G(θ)] (s) :=
K

Ts + 1
, θ := [K,T ]

T
,

[G(θ)] (s) :=
Kω2

s2 + 2ζωs + ω2
, θ := [K, ζ, ω]

T
.

(2)

In what follows, we suppose that the true system is
represented as

[G(θ⋆)] (s), (3)

with the true parameter vector θ⋆ ∈ Θ.

2.2 Frequency domain experimental data

For the true system (3), we take noisy frequency response
function (FRF) data as

Ĝm = [G(θ⋆)] (jωm) + em, m = 1, . . . , M. (4)

where ωm ∈ R+ is the frequency of the sinusoidal input

signal, Ĝm ∈ C contains both gain and phase information,
and M ∈ Z+ is the number of frequencies.

The term em is a complex-valued white noise random
variable resulting the following property:

e :=










[
Re {e1}
Im {e1}

]

...
[

Re {eM}
Im {eM}

]










∼ N (0, σ2I2M ), (5)

meaning that e is generated by a normal distribution
with zero mean and covariance σ2I2M . The origin of the
complex-valued white noise em is from the asymptotic
normal distribution of the Fourier transform of white noise
(see more details in Brillinger (2001); Ljung (1993)). Some
of it can be viewed as the quantization and electronic noise

of the data acquisition system. Such noise level σ can
be suppressed effectively by averaging sinusoidal output
signals over many periods. This is the major advantage of
identifying LTI systems based on FRFs.

2.3 Nonlinear least-squares optimization

For the given model structure (1) and FRF data
{

(ωm, Ĝm);m = 1, . . . , M
}

,

we consider to find the least-squares estimate θ̂M that
minimizes the residual sum of squares:

θ̂M := argmin
θ∈Θ

M∑

m=1

∣
∣
∣Ĝm − [G(θ)] (jωm)

∣
∣
∣

2

. (6)

The minimization problem (6) is in general a nonlinear
least-squares (NLS) optimization problem with a con-
straint θ ∈ Θ, for which it is nontrivial to guarantee the
existence and the uniqueness of the global solution. From
now on, we assume the existence and the uniqueness of
the global minimizer (the NLS estimate of θ) of the NLS
problem.

3. ASYMPTOTIC PROPERTIES OF NONLINEAR
LEAST-SQUARES ESTIMATES

Next, we will review and discuss two important properties

of the NLS estimate θ̂M , i.e., strong consistency and
asymptotic normality (Davidson and Mackinnon (1993),
Pintelon and Schoukens (2001)).

3.1 Strong consistency

Our first concern is the consistency. Roughly speaking, the
consistency relates to a fundamental question: “Can we
recover the true parameter θ⋆ by minimizing the residual in
(6) for a large number of samples?” The precise definition
is given next.

Definition 1. An estimate θ̂M of θ⋆ is strongly consistent

if θ̂M converges to θ⋆ almost surely (i.e., with probability
one) as M (the number of data) goes to infinity.

Theorem 2. (Theorem 6 in Jennrich (1969)). Let DM be a
distance between two parameter vectors defined by

DM (θ, θ′) :=

M∑

m=1

|[G(θ)] (jωm) − [G(θ′)] (jωm)|
2
.

If the following conditions hold, then the NLS estimate θ̂M

of θ⋆ is strongly consistent.

C1: DM (θ, θ′)/M converges uniformly to a continuous
function D(θ, θ′), and

C2: D(θ, θ⋆) = 0 if and only if θ = θ⋆.

As an illustration of this theorem, let us consider a simple
first order structure:

[G(θ)] (s) =
K

Ts + 1
, (7)

where θ := [K,T ]
T

,K > 0, T > 0. Then, by defining

θ′ := [K ′, T ′]
T
, we have

DM (θ, θ′) :=

M∑

m=1

∣
∣
∣
∣

K

Tjωm + 1
−

K ′

T ′jωm + 1

∣
∣
∣
∣

2

. (8)
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In this case, provided that the frequency points {ωm}M
m=1

are taken at even intervals within a fixed frequency range
[ω, ω], we have uniform convergence in the condition C1:

lim
M→∞

DM (θ, θ′)

M
=

1

ω − ω

∫ ω

ω

∣
∣
∣
∣

K

Tjω + 1
−

K ′

T ′jω + 1

∣
∣
∣
∣

2

dω.

︸ ︷︷ ︸

=:D(θ,θ′)

(9)
In addition, it is easy to prove that, for the function
D(θ, θ′) in (9), the condition C2 holds for ω < ω. There-

fore, the NLS estimate θ̂M of θ⋆ is strongly consistent.

In this paper, we consider the case when an NLS estimate
is strongly consistent.

3.2 Asymptotic normality

If an NLS estimate is strongly consistent, our next concern
is to identify the distribution of the NLS estimate. It
turns out that, under some assumptions, the NLS estimate
has asymptotically normal distribution. This property will
become important later in parameter reduction. To present
our result on asymptotic normality, we will introduce the
following concept.

Definition 3. A model set G is said to be uniformly stable
for a set Θ if all the transfer functions in the set

G(Θ) := {[G(θ)] (s) : θ ∈ Θ} (10)

are stable.

In the next theorem, we use the notation

[∇G(θ⋆)](s) :=

[
∂

∂θ
G(θ)

]

θ=θ⋆

(s), (11)

to denote the gradient vector evaluated at θ⋆.

Theorem 4. Assume the following.

• θ̂M is a strongly consistent LS estimate of θ⋆.
• For a given compact parameter set Θ, the model set
G(Θ) is uniformly stable.

• G(θ) is smooth in Θ.
• The true parameter θ⋆ is in the interior of Θ in (10).
• Frequency points {ωm ; m = 1, . . . , M} are dis-

tributed uniformly over a frequency range [ω, ω] such
that

lim
M→∞

ΣM (θ⋆) = Σ(θ⋆), (12)

where Σ(θ⋆) is a positive definite matrix, and ΣM is
defined by

ΣM (θ⋆) :=

∑M
m=1 Re {[∇G(θ⋆)](jωm)[∇G(θ⋆)](jωm)∗}

M
,

(13)

Then, we have

θ̂M →d N (θ⋆,W (θ⋆)), as M → ∞, (14)

where →d denotes “converges in distribution” and

W (θ⋆) :=
σ2Σ−1(θ⋆)

M
. (15)

(In words, θ̂M is asymptotically normal with mean θ⋆ and
covariance matrix W (θ⋆).)

The proof is omitted due to the space limitation, and will
be presented in our companion paper (Nagamune and Choi
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Fig. 1. Computer generated noisy FRF data for a second
order system (blue-wiggly line) and its identified
system (red-solid line).

(2008)). The error covariance matrix W (θ⋆) in (15) will
play an important role in the parameter reduction step.

Remark 5. If Σ(θ⋆) becomes singular, then the true pa-
rameter θ⋆ is not identifiable, and we have to modify the
parameterization.

Remark 6. The Fisher information matrix I(θ⋆) (Kay
(1993)) of the model (4) can be easily computed by

I(θ⋆) =
MΣM (θ⋆)

σ2
.

By the Cramér-Rao theorem (Kay (1993); Emery and Ne-
narokomov (1998)), the covariance matrix of any unbiased

estimator θ̂ is lower bounded by the Cramér-Rao Lower
Bound (CRLB), or the inverse of the Fisher information
matrix I(θ⋆):

E

{

(θ̂ − θ⋆)(θ̂ − θ⋆)T
}

� I(θ⋆)−1 =
σ2Σ−1

M (θ⋆)

M
, (16)

where E is an expected operator. Notice that this CRLB
approaches to W (θ⋆) as M increases.

Remark 7. The choice of [ω, ω] can significantly affect the
error covariance matrix W . We want to select [ω, ω] to
minimize the “size” of the covariance matrix W . The opti-
mization is usually considered in terms of the determinant
or the trace of W or I (see more details in Emery and
Nenarokomov (1998)). In practice, [ω, ω] should contain
all the modes of the dynamical system.

3.3 A numerical example on asymptotic normality

Consider a second order dynamical system:

[G(θ)] (s) :=
Kω2

s2 + 2ζωs + ω2
, θ := [K, ζ, ω]

T
. (17)

Let the true parameters be θ⋆ := [1, 0.3, 4]
T
.

FRFs are contaminated by complex-valued white noise em

resulting the property in (5) with σ = 0.02, and shown
in Fig. 1. The number of frequency points is M = 500,
and they are evenly distributed in log-scale over the fixed
frequency interval [0.1, 100].

An NLS algorithm with an initial point θ0 = [20, 20, 20]
T

converges to θ̂M = [0.99897, 0.30014, 3.99999]
T

for com-
puter generated FRFs. By approximating Σ(θ⋆) with
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Fig. 2. A confidence region (ellipsoid) contains the error
random variable (black-dot) with probability 0.971.

ΣM (θ̂M ), the estimation error covariance matrix W is
approximated as

W (θ⋆) ≈
σ2

500
ΣM (θ̂M )−1,

= 10−5

[
0.1383 0.0443 0.0369
0.0443 0.0525 0.0590
0.0369 0.0590 0.6392

]

,

=: V SV T ,

(18)

which is a positive definite matrix. The matrix V denotes
the orthonormal coordinate transformation that contains
eigenvectors of W in (18). From the estimation error
covariance in (18), an approximate confidence region with
some probability is the ellipsoid defined by

(θ̂ − θ⋆)T W−1(θ̂ − θ⋆) ≤ χ2, (19)

where χ2 is a value for the chi-squared distribution with
three degrees of freedom. The 97.1% confidence region
with χ2 = 32 is shown with respect to the orthonormal
basis in Fig. 2. In this simulation experiment, the estima-
tion error is

θ̂ − θ⋆ = 10−3 × [−1.0341, 0.1385, −0.0112]T .

The error point with respect to the orthonormal basis is
then

V T (θ̂ − θ⋆) = 10−3 × [0.0801, 0.9109, −0.5024]T ,

which is contained in the 97.1% confidence region in Fig. 2.
In practice, to obtain the confidence region, we have to use
prior knowledge of σ or estimate it from samples.

4. PARAMETER REDUCTION

So far, we have derived the asymptotic error covariance

matrix W (θ⋆) of the nonlinear least-squares estimate θ̂ 1

for a single true system G(θ⋆) with single FRF data. In
this section, by considering multiple true systems G(θ⋆

ℓ ),
ℓ = 1, 2, . . . , with the same model structure, and a cor-
responding set of NLS estimates and error covariances,
we will re-parameterize the set with a fewer number of

1 Hereafter, we omit the superscript M of θ̂M for notational sim-
plicity.

N (0,W2)

N (0,W3)

N (0,W1)

θ⋆
2

θ⋆
3

θ⋆
1

θ̂11

θ̂21

θ̂31

θ̂32

θ̂33
ǫ̂11

ǫ̂21

ǫ̂31

ǫ̂32
ǫ̂33

Fig. 3. Three samples of θ⋆
ℓ are distributed in the square

support of the probability density function for θ⋆
ℓ .

For each sample of θ⋆
ℓ , there is an asymptotic normal

distribution of its NLS estimates. Ellipsoids corre-
spond to approximate confidence regions with some
probability.

uncorrelated parameters. This step is called parameter re-
duction. Such multiple true systems represents the dynam-
ics variation caused by manufacturing tolerance, change of
operating points, and time varying nature of the plant. A
time varying correlation on parameters can be represented
by a collection of time invariant correlations with given
short time intervals.

For the ℓ-th dynamical system, we denote the true param-
eter by θ⋆

ℓ , and its NLS estimate based on the k-th FRF

data by θ̂ℓk. Then, the estimation error is

ǫℓk := θ̂ℓk − θ⋆
ℓ , ℓ = 1, 2, . . . , k = 1, 2, . . . . (20)

By Theorem 4, for a fixed ℓ, errors {ǫℓk; k = 1, 2, . . . } are
asymptotically normally distributed as M → ∞:

ǫℓk →d N (0,Wℓ), Wℓ := W (θ⋆
ℓ ) =

σ2Σ−1(θ⋆
ℓ )

M
. (21)

Few samples from (21) for three true parameter vectors
are illustrated in Fig. 3. For each true parameter vector
θ⋆

ℓ , there is an asymptotic normal distribution of its NLS
estimates.

Given a finite number of NLS estimates

{θ̂ℓk ∈ R
p; ℓ = 1, . . . , L, k = 1, · · · ,K}, (22)

where p is the number of parameters, and the ℓ-th asymp-
totic error covariances

{Wℓ; ℓ = 1, . . . , L} , (23)

the parameter reduction problem is to find a parameter
set

{
θ := θ̄ + V λ;λ ∈ R

q, |λ(i)| ≤ 1, i = 1, . . . , q
}

(24)

with q < p, or equivalently θ̄ ∈ R
p and V ∈ R

p×q, so
that the set approximates all the given estimates in (22)
in some sense. Next, we will provide a parameter reduction
method based on the singular value decomposition.

Remark 8. We only consider an affine mapping from λ to
θ in (24). Such parameterization occurs in many robust
control and adaptive control applications. The parameter
reduction to fewer number of uncorrelated uncertainties
in the solution (24) will significantly reduce the numerical
burdens and complexity of the robust controller synthesis
based on convex optimization. In the reduction, the NLS
estimation covariance matrix Wℓ will play a key role for
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detecting the correlation among {θ⋆
ℓ }. In particular, ob-

taining uncorrelated parameter λ from the identified sys-

tems with θ̂ℓk is a necessary pre-process for the synthesis of
multiple robust controllers which involves a large number
of iterations of convex optimization (Choi et al. (2006)).

In this paper, the assumption on the process of generating
the true parameters θ⋆

ℓ , ℓ = 1, 2, . . . is as follows.

Assumption: The true parameters θ⋆
ℓ , ℓ = 1, 2, . . . , are

generated by means of a stationary random process {λℓ} ⊂
R

q with zero mean Eℓ {λℓ} = 0 2 and some covariance
Eℓ

{
λℓλ

T
ℓ

}
= Λ 3 as

θ⋆
ℓ = θ̄ + V λℓ, ℓ = 1, 2, . . . , (25)

where θ̄ ∈ R
p, V ∈ R

p×q, and q ∈ Z+ are unknown and to
be determined.

Next, we will explain how to obtain the unknown param-
eters from the estimates and covariances, for the infinite
sample case (ℓ = ∞, k = ∞) and for the finite sample case
(ℓ < ∞, k < ∞).

4.1 Infinite sample case

Although infinite samples are impossible in practice,
the following theorem justifies the parameter reduction
method which will be proposed in the next subsection for
finite sample cases.

Theorem 9. In the case of infinite samples, the unknown
parameters θ̄, q and V are obtained by

θ̄ = EℓEk

{

θ̂ℓk

}

= lim
L→∞

lim
K→∞

1

L

1

K

L∑

ℓ=1

K∑

k=1

θ̂ℓk, (26)

q = rank(P − W ), (27)

P := EℓEk

{

(θ̂ℓk − θ̄)(θ̂ℓk − θ̄)T
}

, (28)

W := Eℓ {Wℓ} , (29)

V = U(:, 1 : q)Σ(1 : q, 1 : q)1/2Λ−1/2 ∈ R
p×q, (30)

where U(:, 1 : q) is a matrix consisting of the first q
columns of U , Σ(1 : q, 1 : q) is a matrix consisting of
the first q rows and first q columns of Σ, and P 1/2 denotes
a matrix square root of a positive definite matrix P .

We will prove this theorem. The estimation error (20)
becomes

ǫℓk = θ̂ℓk − (θ̄ + V λℓ). (31)

The nominal parameter θ̄ ∈ R
p can be obtained by

averaging both sides of (31), by letting M go to infinity,
and by using assumptions Eℓ {λℓ} = 0 and Ek {ǫℓk} = 0.

For the nominal parameter vector θ̄, the error covariance
matrix P is, as M goes to infinity in (21),

2
Eℓ is the expectation operator over ℓ.

3 The covariance matrix Λ = Eℓ

{
λℓλ

T
ℓ

}
is a user’s choice. An

example of a random process {λℓ} that appears in robust control
applications is the uniform distribution, with each vector element
λ(i), i = 1, . . . , q, having the probability density function fλ(i) and
the covariance matrix Λ as

fλ(i) =
1

2
, λ(i) ∈ [−1, 1] , Λ =

1

3
Iq .

P =EℓEk

{
(V λℓ + ǫℓk)(V λℓ + ǫℓk)T

}
,

=Eℓ

{
(V λℓ)(V λℓ)

T
}

+ EℓEk

{
ǫℓkǫT

ℓk

}
,

=V ΛV T + W,

(32)

Here, we have used Ek {ǫℓk} = 0 and Ek

{
ǫℓkǫT

ℓk

}
= Wℓ.

By taking the singular value decomposition (SVD) of the
matrix P − W :

V ΛV T = P − W = UΣUT , (33)

we can determine the reduced number of parameters q as

q = rankΣ = rank(P − W ), (34)

and the matrix V as in (30).

4.2 Finite sample case

In practice, we only have a finite number of samples.

For sample sets {θ̂ℓk : ℓ = 1, . . . , L, k = 1, . . . , K} and
{Wℓ : ℓ = 1, . . . , L}, the matrices θ̄, P and W in Theorem 9
can be approximated respectively by

θ̄s :=
1

L

1

K

L∑

ℓ=1

K∑

k=1

θ̂ℓk, (35)

P s :=
1

L

1

K

L∑

ℓ=1

K∑

k=1

(θ̂ℓk − θ̄s)(θ̂ℓk − θ̄s)T , (36)

W s :=
1

L

L∑

ℓ=1

Wℓ. (37)

In finite sample cases, the reduced number q of parameters
must be determined by truncating relatively small singular
values of P s−W s. Due to Theorem 9, the approximations
become better as the numbers of samples L and K in-
creases.

4.3 A numerical example

We illustrate the proposed parameter reduction method
with an example, taken from the book (Chen et al.,
2006, Ch. 11). Consider the following set of true system
dynamics:

S :=

{

G(s) =

5∏

m=1

[Gm(δ)] (s) : δ ∈ [−0.2, 0.2]

}

, (38)

where

[G1(δ)] (s) =
0.64013

s2
,

[G2(δ)] (s) =
0.912s2 + 0.4574s + 1.433(1 + δ)

s2 + 0.3592s + 1.433(1 + δ)
,

[G3(δ)] (s) =
0.7586s2 + 0.9622s + 2.491(1 + δ)

s2 + 0.7891s + 2.491(1 + δ)
,

[G4(δ)] (s) =
9.917(1 + δ)

s2 + 0.1575s + 9.917(1 + δ)
,

[G5(δ)] (s) =
2.731(1 + δ)

s2 + 0.2613s + 2.731(1 + δ)
.

(Frequency is scaled by 10−4; see (Chen et al., 2006,
eq.(11.4)).) For each of three δ = 0,±0.2, we took K = 3
noisy FRF data with noise variance σ2 = 0.01.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

12387



By regarding eight parameters as components of uncertain
θ, the NLS estimates were obtained as

{

θ̂ℓk ∈ R : ℓ = 1, . . . , 3, k = 1, . . . , 3
}

. (39)

We also computed the approximated asymptotic error
covariances:

{Wℓ : ℓ = 1, . . . , 3} . (40)

Based on these estimates and covariances, we reduced the
number of uncertain parameters λ to one. The three largest
singular values of P s − W s are

0.1886, 0.0100, 0.0002.

We need to select q in (34) by neglecting small singular
values. In practical problems with finite samples, one may
need some trial and error to select an appropriate q.
Theoretical results in this paper guarantees that, as M ,
L and K go to infinity, we are able to obtain the true
value of q, which is one in this example.

Here, we selected q = 1 and performed parameter re-
duction. In Figure 4, it is shown the noisy FRF data
(blue lines), and Bode plots of transfer functions obtained
by optimally perturbing one uncertain parameter λ (red
lines). As can be seen in the figure, a model set with one
parameter can capture the FRF data quite well, which
indicates that the original 8 parameters were redundant to
represent the uncertain system. This parameter reduction
will lead to the reduction of the burden and the conserva-
tiveness in robust controller design.
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Fig. 4. The noisy FRF data (blue lines), and Bode plots of
transfer functions obtained by optimally perturbing
one uncertain parameter λ (red lines).

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a parameter reduction
technique for robust and adaptive control. The technique
has been developed based on asymptotic properties of non-
linear least squares estimates, that is, strong consistency
and asymptotic normality, and utilized the singular value

decomposition to detect the correlation of original param-
eters. The basic idea of the proposed reduction method is
based on the principal component analysis (PCA). Our
main contribution is the proposed parameter reduction
technique based on PCA and its asymptotic convergence
results based on the statistical properties of NLS esti-
mates.

The essential necessary assumption in this paper is that we
know the structure of the true system, which is not realistic
in some applications. Important future work is automatic
detection of the structure of the true system from the
combination of a priori information and experimental
frequency response function data.
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