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Abstract: The vast majority of control applications are based on non-interacting decentralized control 

designs. Because of their single-loop structure, these controllers cannot suppress interactions of the 

system. It would be useful to tackle the undesirable effects of the interactions at the design stage. A novel 

model predictive control scheme based on Nash optimality is presented to achieve this goal. In this 

algorithm, the control problem is decomposed into that of several small-coupled mixed integer 

optimisation problems.  The relevant computational convergence, closed-loop performance and the effect 

of communication failures on the closed-loop behaviour are analysed.  Simulation results are presented to 

illustrate the effectiveness and practicality of the proposed control algorithm. 

 

1. INTRODUCTION 

Control of multiple-input multiple-output (MIMO) systems 

can be accomplished either by a centralized multivariable 

controller or by a set of independent single-input single-

output (SISO) controllers. Despite the superior closed-loop 

performance of centralized multivariable controllers, there 

are many reasons for which the decentralized control is the 

dominating and preferred method used in practice. In fact, the 

latter approach exhibits a list of advantages over the former 

one: flexibility in operation, failure tolerance, simplified 

design and tuning, etc. (Campo and Morari, 1994). Also, 

communication between controllers, start up and shut-down 

schemes and identification experiments are more complicated 

for the centralized control. The multivariable controllers such 

as model predictive controllers (MPC) are usually used in a 

supervisory mode with decentralized PID controllers 

stabilising the system at the regulation control level. 

In spite of their practical benefits, single loop controllers 

cannot often suppress the effects of interactions of MIMO 

process (Johansson and Rantzer, 1999). When the process 

interactions are significant, it is of key importance to choose 

the right control structure, i.e. right pairing of the inputs and 

outputs (Conley and Salgado, 2000), (Lee and Edgar, 2002). 

However, appropriate control structure selection and 

controllers tuning are not sufficient to eliminate the input–

output coupling. 

Previous work on distributed MPC is reported in (Oschs et 

al., 1998).  The proposed algorithms use a wide variety of 

approaches, including multi-loop ideas (Oschs et al., 1998), 

decentralized computation using standard coordination 

techniques (Giovanini et al., 2007), robustness to the actions 

of others (Camponogara et al., 2002), (Jia and Krogh, 2001), 

(Jia and Krogh, 2002), penalty functions and partial grouping 

of computations (Keviczky et al., 2004). The key point is 

that, when decisions are made in a decentralized fashion, the 

actions of each subsystem must be consistent with those of 

the other subsystems, so that decisions taken independently 

do not lead to a violation of the coupling constraints. The 

decentralization of the control is further complicated when 

disturbances act on the subsystems making the prediction of 

future behaviour uncertain. 

In this paper, we consider situations where the distributed 

controllers can exchange information several times every 

sample. The objective is to achieve some degree of 

coordination among agents that are solving MPC problems 

with locally relevant variables, costs, and constraints, but 

without solving a centralized MPC problem. Such 

coordination schemes are useful when the local optimization 

problems are much smaller than a centralized problem. Here 

we assume that the connectivity of the communication 

network is sufficient for the subsystems to obtain information 

regarding all the variables that appear in their local domain.  

In this case, we are interested in identifying conditions under 

which the agents can perform multiple iterations to find 

solutions to their local optimization problems that are 

consistent in the sense that all shared variables converge to 

the same values for all the agents.  We also show that when 

convergence is achieved using this type of coordination, the 

solutions to the local problems collectively solve an 

equivalent, global, multi-objective optimization problem.  In 

other words, the coordinated distributed computations solve 

an equivalent centralized MPC problem.  This means that 

properties that can be proved for the equivalent centralized 

MPC problem (e.g., stability) are valid for the solution 

obtained using the coordinated distributed MPC 

implementation.   

The paper is organized as follows. In Section 2, a distributed 

MPC algorithm based on Nash optimality is proposed. In
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 Section 3, the convergence condition of the distributed 

predictive control algorithm for linear models is analysed. 

The nominal stability and the performance deviation under 

communication failure are analysed in Sections 4. A 

simulation example is provided to demonstrate the efficiency 

of the distributed MPC algorithm in Section 5. Conclusions 

are given in Section 6. 

2. DISTRIBUTED MODEL PREDICTIVE CONTROL 

MPC is formulated here as resolving an on-line open-loop 

optimal control problem in a moving horizon style. At 

decision instant k, the controller samples the state of the 

system x(k) and then solves an optimization problem of the 

following form to find the control action: 

( )

1 1
min ( ( ) ( )) ( ( ) ( )) ( ) ( )

2 2

T T

ref ref
U k

X k X k Q X k X k U k RU k− − +  

s.t. ( ) ( ) ( ) and ( )X k Gx k HU k TU k b= + ≤                                 1                                                                                                        

where the state, input and output predicted trajectories are 

given by 

{ }
{ }
{ }

( ) ( , ) ( , ) ,

( ) ( , ) ( , )

( ) ( , ) ( , )

p

ref ref ref p

c

X k x k k x k n k

X k x k k x k n k

U k u k k u k n k

= +

= +

= +

⋯

⋯

⋯

 (1) 

G and H are the observability and Hankel matrices of the 

system and c pn n≤ . The variables x(k+i,k), x r e f(k+i,k) and 

u (k+ i , k) are, respectively, the predicted state, the reference 

state, and the predicted control at time k+ i based on the 

information available at time k and the global system model: 

( 1) ( ) ( ),

( ) ( ),

x k Ax k Bu k

y k Cx k

+ = +

=                                                         2 

where ,  and yu x
nn nu R x R y R∈ ∈ ∈ .  

The centralised MPC control problem, described by (1) can 

be converted into a decentralised MPC control problem 

(Giovanini et al., 2007) by decomposing the system into a 

number of smaller-scale MPC control problems that are 

subsequently solved in an iterative manner. Necessary for this 

approach is the existence of a communication network over 

which the decentralised MPC controller can communicate 

and coordinate their actions. The following assumptions are 

also necessary:  

 
1. The local states of each subsystem x l(k) are accessible, 

2. The controller agents communication is synchronous, 

3. Controllers can communicate several times within a     

sampling time interval. 

This set of assumptions is not restrictive. In fact, if the local 

states are not accessible they can be estimated from local 

outputs y l(k) and the control inputs using a Kalman filter. 

The assumptions 2 and 3 are also valid since in most control 

problems, the sampling time interval is longer than the 

computational and the communication times. 

The first step in the development of a decentralised MPC 

control is to approximate the cost function as,  

( ) ( )
1

( ), ( ) ( ), ( ), ( )
a

i il l

n

l l

l

J X k U k J X k U k U kβ
∈ ∈ −

=

≈ ∑ L I L
               3 

where 1 an
β β⋯ is a set of weights that satisfy 0lβ ≥ . The 

notation ( )iU k  denotes [ ]( ) ( , ) ( , )
T

i i i cU k u k k u k n k= +⋯ , where 

the notation ( )iu k refers to the i
th
 system input. The set I is 

assumed to be such that ( ) ( )
i

U k U k
∈

=
I

whilst the intersections 

of the sub-sets 1 an
∈⋯L L I are assumed to be empty sets. 

Note that (3) correspond to a multi-objective description of 

the original problem (Chankong and Haimes, 1983), where 

the weights lβ  are employed to define the influence of each 

local performance index Jl on the optimization problem. 

Using the approximations from above an  coupled 

optimisation problems are formed, 

( )
( )

min ( ), ( ), ( )
i il l

i l

l
U k

J X k U k U k
∈ ∈ −

∈
L I L

L

 1, , al n= …  

s..t. ( ) ( ) ( ) and ( )
i ll lX k Gx k HU k TU k b
∈

= + ≤
L

                           4 

in which ( )
i l

U k
∈ −I L

are assumed known. The optimisation 

problem has now been transformed into a dynamic game of 

an  agents, where each agent searches for optimal decisions 

in response to the decision of others. Therefore, the behaviour 

of the global system will emerge from the iterative solution 

of the an  coupled optimization problems.  The goals of the 

decomposition are to reduce the complexity of the 

optimization problem by ensuring that each sub-problem in 

(4) is smaller than the overall problem. The price paid to 

simplify the optimisation problem is the requirement to 

calculate the interconnection between the sub-problems, 

which can be solved by means of Nash optimality concept 

(Nash, 1951). 

Definition 1:  A group of control decisions 

{ }1
( ) ( ) ( )

i i na
U k U k U k

∈ ∈
= ⋯

L L
is said to be Nash optimal if  

( ) ( )
1 1 1 1

1 1 ( ), ( ), ( )  ( ), ( ), ( ) 1, ,
i i i i

q q q q

l l aJ X k U k U k J X k U k U k l n
∈ ∈ − ∈ ∈ −

− −≤ = …
L I L L I L

      5 

If the Nash optimal solution is achieved, each sub problem 

does not change its control decision ( )
i l

U k
∈L

because it has 

achieved the locally optimal objective under the above 

conditions; otherwise, the local performance index will 

degrade.  Each subsystem optimizes its objective function 

using its own control decision assuming that other 

subsystems’ solutions are known and optimal.  So, if 

condition    is satisfied, the whole system has arrived at an 

equilibrium point (attractor) in the coupling decision process. 

Since the mutual communication and the information 

exchange are adequately taken into account, each subsystem 

solves its local optimization problem if the other subsystems’ 

optimal solutions are known. Then, each agent compares the 

newly optimal solution with that obtained in the previous 

iteration and checks if the terminal condition is satisfied. If 
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the algorithm is convergent, all the terminal conditions of the 

an  agents will be satisfied, and the whole system will arrive 

at Nash equilibrium at this time. The sub-problems (4) can be 

solved using an iterative algorithm. As the controllers do the 

best for themselves by solving their problems in response to 

the decisions of the others, their    iterative search for 

solutions give rise to a dynamic game.  Therefore, in this 

scenario two fundamental questions naturally arise: the 

behaviour of each agent's iteration process during the 

negotiation process and the location and number of attractors 

of the decentralized problem.  

3. CONVERGENCE ANALYSIS 

To study the convergence properties of the proposed method, 

the centralised MPC problem is written in a form where the 

equality constraints have been eliminated, i.e 

( )

1
min ( ) ( ) ( )

2

T T

U k
U k MU k f U k+  

s.t. ( )TU k b≤                                                                          6 

wehre ( )T
M H QH R= +  and ( ( ) ( ))T T

reff X k Gx k QG= − − . 

Now, in order to ensure that the proposed decentralised 

algorithm converges to the solution of the centralised 

problem, defined by (13), each of the sub-problems should 

inherit the following structure, 

{ } { } { }, ,
( )

1
min

2
i i j i i i i j il l l l l l l l li li l

T T T

U k
U M U f U U M Uα α

∈ ∈ ∈ ∈ ∈ ∈ − ∈ − ∈ ∈∈
∈

+ +
L L L L L I L I L L L

L
L

 

{ } { },
s.t. ( )  for 1, ,

i j i il l l l aT U k b l n
∈ ∈ ∈ ∈

≤ = …
K L L K

                                      7 

where the time index k is dropped for clarity of presentation 

and the matrix-vector notation { },i j
A

∈ ∈M N
denotes a matrix 

formed from the M rows and N  columns of the general 

matrix A  and where the parameter α is a positive scalar. 

Note that the constrained optimal solution to the sub-

problems satisfies the following first order optimality 

conditions,  

 { }( )
{ } { } { }( )

{ } { }( )
, , ,

,

1

( ) ( ) ,

0 ( )  for 1, ,

i i j i j i i jl l l l l l l li l

i j i il l l l

T T

l

l a

U k M f M U k T

T U k b l n

α α α λ
∈ ∈ ∈ ∈ − ∈ ∈ − ∈ ∈∈

∈ ∈ ∈ ∈

−
= − + +

= Λ − = …

L L L I L L I L K L
L

K L L K
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where 
lΛ is a diagonal representation of the vector lλ , and 

where lλ  is a set of Lagrange multipliers. Using (8), the 

proposed iterative algorithm can be expressed in terms of a 

centralised constrained difference equation,  

( )( )
( )
1 1( ) ( ) ,

0 ( )

q q T q

q q

U k M f M M U k T

TU k b

α α α λ− −= − + − +

= Λ −

ɶ ɶ
                 9 

where  matrix Mɶ is a block-diagonal matrix of matrices. The 

sub-problems are unconstrained, i.e. if the matrix T and the 

vector b are empty, it is trivial to show that the decentralised 

algorithm, expressed by (16), converges to the solution of the 

centralised MPC problem. This follows by rewriting as:               

 

( )( )1 1 1 1 1( ) ( ) ( ) ( )q q qU k M f M M U k I M M U k M fα α α α− − − − −= − + − = − −ɶ ɶ ɶ ɶ     10 

Thus by making the scalar parameter α  sufficiently small the 
system converges to a steady state condition, given by,  

1( )ssU k M f−= −                                                                    11 

which corresponds to the unconstrained solution of (1). 

In the presence of constraints, it is slightly more complicated 

to derive the conditions under which the decentralised 

algorithm converges to the solution of the centralised MPC 

problem. In order to show that the algorithm indeed converge 

it will be shown that each iteration decreases the value of the 

global cost function, i.e. that the iteration satisfies the 

following condition,  

1 1 11 1
0

2 2

qT q T q q T q T q
U MU f U U MU f U

− − −  + − + ≤   
  

                          12 

By substituting ( )qU k  in (9), the following expression can 

be obtained: 

  
( ) ( ) ( ) ( )

( ) ( )

1 1 1

1 1 1 1 1

1

1

1 1

2 2

1 1

2 2

1

2

qT q T q q T q T q

T T
q T q q T q q q

T
T q T q

U MU f U U MU f U

MU f T M MU f T MU f M MU f

T M T

α λ λ α

α λ λ

− − −

− − − − −

−

  + − + =   
  

− + + + + − + +

+

ɶ

ɶ

  13 

where 

( )1 1 1 1/ 2 1/ 2 1/ 2 1/ 2

1M M M MM M I M MM Mα α− − − − − − −= − = −ɶ ɶ ɶ ɶ ɶ ɶ ɶ . 

Consequently, if the parameter α  is made sufficiently small 

such that the matrix 
1 0M ≻  and if the term 

( ) ( )11/ 2
T

T q T qT M Tα λ λ−ɶ  is smaller than the other right hand-

side terms the whole of the right-hand side of (13) evaluates 

to a negative value, which means that the global cost-function 

decreases at each iteration. To prove that the term 

( ) ( )11/ 2
T

T q T qT M Tα λ λ−ɶ  is smaller than the other right-hand 

side terms the 
a

n decentralised problems are expressed as a 

centralised problem,  

1

( )

1
min ( ) ( ) ( ) ( ) ( ) ( )

2q

q T q T q q T q

U k
U k MU k f U k U k M M U kα α α−+ + −ɶ ɶ  

s.t. ( )q
TU k b≤                                                                        14                       

The solution to the problem described by (14) is given by (7), 

which when inserted into the cost-function gives the 

following optimal cost value, 

( ) ( ) ( ) ( )

1

( )

1 2 1

1
min ( ) ( )

2

1 1
( ) ( )

2 2

q

qT q T q q T q

U k

T T
q q T q T q

U MU k f U U M M U

M M U f M M M U f T M T

α α α

α α α α α λ λ

−

− −

+ + − =

− − + − + +

ɶ ɶ

ɶ ɶ ɶ ɶ

   15 

By assuming that 1( )q
U k

−  is feasible with respect to the 

constraints (which it is, provided that 0 ( )U k is feasible) the 

optimal cost-function value at iteration q must be less than or 

equal to the value of the cost function when ( )qU k is 
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replaced by 1( )q
U k

− . This subsequently leads to the following 

inequality condition, 

 

( ) ( ) ( ) ( )
( )

( ) ( )
( ) ( )

2 1 1

1 1 1 1

1 1 1 1

2 1

1
( ) ( )

2

( )

( ) ( )

TT
T q T q q q

q T q q T q

T
q q q q

T
q q

T M T M M U f M M M U f

U MU U M M U f

M M M U M f U M M M M U M f U

MU f M MU f

α λ λ α α α α

α α

α α α α

α

− −

− − − −

− − − −

−

≤ − + − +

+ + − + ≤

− + + − + + ≤

+ +

ɶ ɶ ɶ ɶ

ɶ ɶ

ɶ ɶ ɶ ɶ ɶ ɶ ɶ

ɶ

16 

Since, according to the above, the term  ( ) ( )1
T

T q T qT M Tλ λ−ɶ  

is always less than the term 

( ) ( )1 1 1( ) ( )
T

q qMU k f M MU k f− − −+ +ɶ  it follows that the right 

hand side of (16) is negative definite. This, in turn, means 

that if the scalar parameter α  is small enough the 

decentralised algorithm converges to the solution of the 

centralised MPC control problem.  

4. COMMUNICATION FAILURES 

The proposed controllers use the communication network to 

coordinate each other to accomplish the control objectives. 

To study this problem, the failures in the communication 

system are modelled introducing two matrices:  

The connection matrix E, defined by 

, , 1, ,ij aE e i j n = =  …                                                           17 

which characterises the communication structure of the 

system. An element e i j = 1 indicates connection between i 

and j subsystems, while e i j = 0 shows no connection between 

these agents. 

The communication failure matrix T, defined by 

, 1, ,jj aT t j n = =  …                                                             18 

models the communication failures. An element t i j = 1 

corresponds to a perfect communication between agents i and 

j, while t i j = 0 corresponds to a communication failure 

between these agents. A failure between agents i and j at a 

given sample is represented with the transition from 1 →0 of 

the corresponding element t i j  o f  T. 

With these preliminaries, the prediction model under the 

communication failure at time instant k can be rewritten as 

follows 

( ) ( ) ( ).X k GETx k HETU k= +                                                   19 

Then, the control action of the entire system is given by 

1

0 1( ) ( ) ( ) 1.q qU k K ETU k K ETx k q−= + >                                  20 

At each sample, the system states x(k) are known in advance 

and remain constant during the iterations, thus any change of 

the communication structure during the iterations does not 

modify this term. Then, the convergence of decentralised 

control scheme under the communication failure is 

determined by  

( )0
1
1.K ETρ ≤ )                                                                    21 

Under communication failure, each agent cannot exchange 

information properly. In the extreme case ET = 0, the 

convergence condition (21) is always satisfied, and this 

situation corresponds to the fully decentralized control 

architecture where the convergence and stability depends on 

the structure selection. 

Once the convergence of iterates can be guaranteed, the next 

issue to be addressed is the effect of the communication 

failures on the closed-loop stability. In order to establish the 

effect of communication failures on the closed-loop system, 

the control action is given by  

( ) 1

0 1( ) ( ) ( )fU k I K ET K ETx k K x k
−

= − =                                   22 

leading to the closed-loop system  

( )( 1) ( )fx k A BIK x k+ = −                                                         23 

The stability of the closed-loop system under communication 

failures is determined by  

( )1

0 1eig ( ) 1.A BI I K ET K ET−− − <                                          24 

Under the communication failure, each agent cannot 

exchange information properly therefore, the stability of the 

closed-loop system will depend on the dynamic 

characteristics of the interactions between subsystems. In the 

extreme case ET = 0, the stability condition is always 

satisfied corresponding to the full decentralized architecture. 

Finally, the effect of communication failures on the closed-

loop performance is analysed. Under the communication 

failure, each controller cannot exchange information 

properly, leading to a deterioration of the closed-loop 

performance. The magnitude of the degradation depends on 

the effect of the failure on the system, which is given by 

( )
*

( )
( ) 1 ( )

eigm

W k
J k J k

F


≤ +  

 

ɶ                                                      25 

where * ( )J k  is the optimal performance without failures, 

( )meig F denotes the minimal eigenvalue of  

( )( ) ( )( )1 1

1 0 1 0 ,
T

F K I K H Q K I K H R− −= − − − − +                       26 

and  

( )
( ) ( )

1
1

0 0 0

( ) ( ) ( ),

( ) 2 2 .

T TW k S k H QH R S k

S k I I I K I K K ET
−−

= +

 = − + − + −
 

                       27 

Proof. See (Giovanini and Balderud, 2006). 

The magnitude of the closed-loop performance degradation is 

quantified by W(k) while an estimation of fault-free 

performance is provided by ( )meig F . In the extreme case 
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where ET = 0, the resulting closed loop corresponds to the 

full decentralized control architecture, given by 

( )
max *( ) 1 ( )

eig
Dec

m

W
J k J k

F


= +  

 
                                                  28 

where 

( )
( ) ( )

max max max

1
1

max 0 0

,

2 .

T T TW S H QH R S

S I I I K I K
−−

= +

 = − + − +
 

                                      29 

5. SIMULATION AND RESULTS 

An underwater towing application, which involves four 

UUVs that tows a non-actuated towing object along a 

predefined path, is considered in this simulation study. The 

control problem is to ensure that the actions of the UUVs are 

coordinated such that the towing object remains on the path.  

By assuming that the towing forces generated by each UUV 

is linearly related to the towing energy and by denoting the 

towing forces generated by the i:th UUV, 

( ( ), ( ), ( ))
x y zi i iF k F k F k , and the position of the towing object 

( ( ), ( ), ( ))x k y k z k , the above control problem can be stated in 

terms of a centralised optimal control problem, 

( )
min ( ( ) ( )) ( ( ) ( )) ( ) ( )T T

U k
S k W k Q S k W k U k R U k− − + ∆ ∆

. .  ( ) ( ) ( ), ( )s t W k Gw k HU k TU k b= + ≤                                     30 

The matrices Q and R in (30) are symmetric and positive 

definite. The vector S(k) represents the reference path whilst 

the vector W(k) represents the predicted positions of the 

towing object. The vector w(k) denotes the dynamic states of 

the towing object at the discrete time-instant k. The equality 

constraints accounts for the dynamics of the towing object. 

The dynamic capabilities of the UUVs are accounted for by 

the second term of the value function and the inequality 

constraints. The dynamics of the UUVs are thus modelled as 

a set of value-function penalties and inequality constraints 

rather than as a set of equality constraints, which eliminates 

the need for a detailed dynamic model of each UUV. Note 

that since these constraints and penalties represents 

conservative estimates of the dynamic capabilities of the 

UUVs they will not be utilized to their full potential (for that, 

a nonlinear model is needed).  

To solve the above optimal control problem a model that 

relates the towing forces, U(k), to the predicted positions of 

the towing object, W(k), is needed. It is assumed that the 

amplitude of the drag forces generated when the towing 

object ploughs through the water depends linearly on the 

velocity, ( ( ), ( ), ( ))x k y k z kɺ ɺ ɺ . The direction of the drag forces 

is strictly opposite to velocity direction a model describing 

the motion dynamics of the towing object can be obtained by 

applying Newton's laws of acceleration and motion.   

� �
( 1) ( ) ( ) ( ) ( ),s s s

B VA

w k I t A w k t Bu k t V v k+ = + + +ɶ ɶ ɶ
��	�


                             31 

where 
s
t is the sample time and v(k) are a set of stochastic 

disturbances. 

Once a discrete-time model representation of the system has 

been obtained, the model can be used to compute the 

constraint matrices G and H, then by replacing ( )W k  in the 

value function with the terms on the right hand side of the 

equality constraints the following centralised optimal control 

problem is obtained,  

min ( ) ( )

s.t      

T T

U
S Gw HU Q S Gw HU U R U

TU b

− − − − +∆ ∆

≤
                            32 

In this instance it is desired to solve the above optimal 

control problem in a decentralized manner such that the 

problem can be distributed between the UUVs. The 

centralized problem is therefore partitioned into four sub-

problems, where the j:th sub-problem have the following 

structure, 

4 4

( )
1 1

4

1

min ( ) ( )

2                                s.t   

j

T T

i i i i j jj j
U k

i i

T

j ji i j j

i

S Gw H U Q S Gw H U U R U

U R U T U b

= =

=

− − − − − ∆ ∆ +

+ ∆ ∆ ≤

∑ ∑

∑

ɶ

ɶ

             33 

where,  

( ) ( , ) ( , ) ,

( ) ( , ) ( 1, ) ( , ) ( 1, ) ,

( , ) ( , ), ( , ), ( , )
x y z

T

j j j c

T

j j j j c j c

T

j j j j

U k u k k u k n k

U k u k k u k k u k n k u k n k

u k k F k k F k k F k k

 = + 

 ∆ = − − + − + − 

 =  

⋯

⋯  

The notation, jB , denote the columns of the matrix B that 

described the influence from ( )ju k  and similarly where the 

matrices ijRɶ  has been appropriately derived from the 

symmetric positive definite matrix R.  

A series of simulations have been carried out using a 

normalised model parameters as follows, 

[ ]

, 100 , 15, 2, 1, 20, 60,

( ) 0.1,0.2, 0.3 ( ), 0.05 ( ) 0.05

s c p

T

Q I R I m d t n n

v k k U kψ

= = = = = = =

= − + − ≤ ∆ ≤
 

Fig. 1 compares the trajectories computed by the proposed 

algorithm and a centralised algorithm. Two slightly different 

versions of the proposed algorithm have been employed. In 

one of the versions the algorithm is allowed to iterate 

indefinitely until the convergence criteria has been met, 

whilst in the other version iterations are disallowed.  

The reference path starts at a shallow depth and then spirals 

down to a deeper depth were some manoeuvres are 

performed. The performance of the centralised and the 

decentralised algorithms are similar. All three solutions track 

the reference trajectory and compensate for the disturbances 

well. It is also worth noticing that when limiting the number 

of iterations in the decentralised algorithm the performance 

of the control solution is only marginally affected. Fig. 2 

shows snapshots (every 20
th
 sample) of the direction and 

amplitude of the towing forces computed by the decentralised 
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algorithm.  Fig. 3 shows the number of iterations required by 

the decentralised algorithm to converge to the centralised 

solution. The number of iterations remains reasonably steady 

at approximately 20 iterations per sample. This number 

depends weakly on the length of the prediction and control 

horizon and strongly on the precision to which the control 

actions are determined. By accepting lower precision, the 

number of iterations required to reach a steady state solution 

can be drastically decreased.  
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Fig 1:  A 3-D view of a performance comparison between the 

centralised and decentralised MPC  
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Fig 2: A 3-D view of the towing forces computed by the 

decentralised algorithm. 

6. CONCLUSIONS 

 The main advantage of the proposed scheme is that the on-

line optimization of a large-scale multi-agent system can be 

converted to that of several small-scale systems, thus can 

significantly reduce the computational complexity while 

keeping satisfactory performance.  The method is also 

capable of handling communication delays and failure. The 

design parameters for each agent can tuned separately, which 

provides more flexibility for the analysis and applications.  

The convergence, stability and performance of the distributed 

control scheme provide a better understanding of the 

algorithm. 
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Fig 3:  The number of iterations at each sample to converge 

to centralised MPC solution. 
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