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Abstract: Lagged-product autocorrelation estimates have a small triangular bias. However, using them to 

compute an autoregressive model with the Yule-Walker method can give a strongly distorted spectral 

model in finite samples. The distortion is shown for examples where the reflection coefficients are not very 

close to one in absolute value. It will disappear asymptotically. An objective measure is presented to 

determine the smallest sample size for which the unbiased asymptotic theory is a fair approximation. 

�
1. INTRODUCTION 

The Yule-Walker (YW) equations describe the relation 

between the p autoregressive (AR) parameters and the first p 

lags of the autocorrelation function. The YW estimation 

method solves the AR parameters from the YW equations, 

with the lagged-product estimates substituted for the 

autocorrelations (Kay and Marple, 1981). The Levinson-

Durbin recursion is an efficient solution of the YW equations. 

For increasing AR orders, it computes reflection coefficients, 

which are defined as the negatives of the partial correlation 

coefficients (e.g. Kay and Marple, 1981; Stoica and Moses, 

1997; Broersen, 2006). The parameters of an AR model of an 

arbitrary order q can be computed from the first q reflection 

coefficients. Those in turn are completely determined by the 

first q lags of the autocorrelation function. 
 

Shaman and Stine (1988) showed that the bias of the YW 

method of AR estimation is given by the general terms for 

AR models, with an additional contribution caused by the 

triangular bias of the lagged-product autocorrelation estimate. 

They have given explicit expressions for the first two 

estimated AR parameters. The bias of the second parameter is 

a rational function of the parameters, which can become large 

if poles of the AR polynomial are close to one in absolute 

value. De Hoon et al. (1996) showed that the last parameter 

of order p never causes this extra bias for an AR( p) process. 

They related the magnitude of the bias to the condition 

number of the Toeplitz autocorrelation matrix, which 

contains only the estimated autocorrelations until order p – 1.  

 

Also the variance of AR estimates has been studied. The 

asymptotical theory gives identical results for all AR 

estimation methods. Well known AR estimation methods are 

the YW method, the method of Burg (1967), several least 

squares solutions and the maximum likelihood method (e.g. 

Kay and Marple, 1981; Stoica and Moses, 1997; Broersen, 

2006). Kay and Makhoul (1983) derived asymptotic 

expressions for the variance of estimated reflection 

coefficients, for orders up to the true AR order. Explicit 

expressions were given for AR processes until order 3 and an 

efficient recursive procedure can compute that variance for 

higher order AR processes. Broersen (2006) showed that 

empirical finite-sample approximations for the variance of 

estimated parameters depend on the method of AR 

estimation. He used the empirical variances in a finite-sample 

order selection criterion that is adapted to the estimation 

method. It turned out that the finite-sample selection criterion 

for the YW estimation method was almost identical with the 

asymptotic AIC criterion of Akaike (1974). A detailed 

theoretical analysis of Wensink and Dijkhof (2003) derived 

the expectations of the squared reflection coefficients in 

small samples of a white noise signal. They determine the 

variance of the reflection coefficients of general AR 

processes for all orders higher than the true AR order, which 

is important for a finite-sample order selection criterion.  

 

The triangular bias turned out to be important if a reflection 

coefficient of any order lower than the true process order p is 

close to +1 or –1. If the true reflection coefficient of order m, 

less than the true order, is given by 1 – m/N, where N is the 

sample size, the bias in the estimated reflection coefficient of 

order m + 1 will be 50 % (Erkelens and Broersen, 1997). The 

condition number of de Hoon et al. (1996) for the true 

autocorrelation function is independent of the number of 

observations N. On the other hand, the triangular bias of the 

lagged-product estimates diminishes with N and vanishes 

asymptotically. Therefore, no critical value for that condition 

number can be given. AR models estimated with the YW 

method are asymptotically unbiased. Hence, processes with a 

high condition number may give a large bias in finite 

samples, but the bias will disappear for growing sample sizes. 

 

This paper presents examples with heavy YW bias, although 

the poles are not very close to the unit circle or the reflection 

coefficients are not close to unity. The bias can be computed 

by applying the triangular autocorrelation bias to the true 

autocorrelation function, and solving the YW equations with 

that bias. An objective measure is given that determines the 

minimum sample size for which the influence of the bias in 

the Yule-Walker method is not greater than the inaccuracy 

due to the estimation variance of the AR parameters. 
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2.  AR ESTIMATES WITH THE YULE-WALKER 

METHOD 

A discrete-time AR( p) process is a time series xn that can be 

written as (e.g. Kay and Marple, 1981; Priestley, 1981; Stoica 

and Moses, 1997; Broersen, 2006) 

1 1 ,n n p n p nx a x a x H� �� � �  ""  (1) 

where Hn is a purely random process with mean zero and 

variance VH
2. In theory, any stationary stochastic process with 

a continuous spectral density can be written as an exact 

AR(f) process. In practice, finite order models are sufficient 

because high order parameters tend to be small. The poles of 

the AR( p) process are the roots of the AR polynomial A(z): 
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Processes are called stationary if the poles are strictly within 

the unit circle. The parametric power spectrum h(Z ) of the 

AR( p) model is for – S < Z  d S  computed with  
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The normalized spectrum 3(Z ) is defined as the spectrum 

divided by the variance of the signal:  

� � � � 2/ .xhI Z Z V  (4) 

The autocovariance r(q) and the normalized autocorrelation 

!(q) at lag q are defined for a signal with mean value zero by 
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All lags of the infinitely long true autocorrelation function of 

an AR( p) process are determined by p true AR parameters 

with the YW equations, given by (Kay and Marple, 1981): 
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Different efficient numerical methods have been developed to 

solve the YW equations. Recursive algorithms compute the 

reflection coefficients for increasing orders. The first m 

reflection coefficients are determined by the first m lags of 

the true AR autocorrelation function, for all m. Afterward, 

parameters for arbitrary AR orders q can be found from the 

first q reflection coefficients; see Stoica and Moses (1997). 

Equation (6) can also be used for indexes q greater than p, to 

extrapolate the autocorrelation function. The same relations 

(6) can be used to compute parameters from correlations and 

vice versa. They relate true or estimated AR parameters with 

true or estimated autocorrelations, respectively. Broersen 

(2007) showed that efficiently estimated AR parameters serve 

as an efficient estimator for the autocovariance function. 

 

To obtain a positive semi-definite lagged-product (LP) 

estimator for the autocorrelation function of N observations 
xn, the estimator for lag q should be biased and is given by 
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Likewise, the positive semi-definite LP estimator for the 

autocovariance at lag q uses the divisor N for N – q 

contributions. This gives the triangular bias 1 – q / N: 

1

1
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The bias of the normalized autocorrelation in (7) has some 

additional terms given by Broersen (2007). Those terms arise 

from the expectation of quotients, but they are not important 

for the sequel. The theoretical expectation of the influence of 

the triangular bias on the biased values of the AR(p) model 

parameters ai,b can be evaluated by substituting the biased 

expectations of the autocovariances in the YW relations (6): 
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The YW method of AR estimation has this expectation ai,b 

because it substitutes LP estimates (7) in (6) to compute the 

AR parameters âi of an AR( p) model with the p equations 

1
ˆ ˆ ˆˆ ˆ( ) ( 1) ( ) 0 , 1 .LP LP p LPq a q a q p q pU U U� � � � �  d d"  (10) 

Extended YW equations for q > p describe the parametric 

estimator for the continuation of the autocorrelation function. 

 

The usual accuracy measure for time series models is the 

squared error of prediction PE, which can be computed by 

using estimated parameters to predict a fresh realization of xn: 

1 1
ˆ ˆ ˆn n p n px a x a x� � � � �"" . (11) 

The PE is defined as the long-term average of � �2ˆn nx x� . Fresh 

or new data xn have been generated with the same process 

equation (1), but they have not been used to estimate the 

parameters. Both the true and the estimated parameters values 

are known in Monte Carlo simulation experiments. For these 

particular situations where the true parameters are known, 

Broersen (2006) showed that the expectation of the PE can be 

computed without generating new data by using 
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where Â(z) denotes an estimated AR polynomial. He derived 

an efficient algorithm to compute the PE of (12). The model 

error ME for has been defined for AR models by scaling the 

PE with VH
2 and by multiplying with the sample size as 
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The argument of the ME is left if no confusion is possible. 

The expectation of the ME for unbiased efficiently estimated 

AR models of orders K, greater than or equal to the true order 

p, equals K. The variance of each estimated parameter has a 

minimal contribution 1 to the ME expectation. The Cramér-

Rao bound for the ME of an AR( p) process is given by p. 

 

n
 (7) 

The condition number � of the Toeplitz correlation matrix R 

with the elements r (0) until r (p - 1) has been used by de 

Hoon et al. (1996) to classify the sensitivity of an AR process 

to the YW bias. It is defined as  
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where a b is some matrix norm, like the largest singular value. 

The norm is computed for the expectation of the auto-

correlation matrix and is independent of the sample size N. 
 

An objective measure for the quality of AR models estimated 

with the YW method for a given sample size N is found by 

calculating the biased expectations of the autocovariances 

with (8), the parameters ai,b of the biased AR(p) model Â(z) 

with (9) and finally the ME(Â,A) with (13). The asymptotical 

expectation of this ME(Â,A) is zero. A critical sample size for 

which the bias is no longer considered significant is defined 

to be ME(Â,A) = p. That is the sample size where the bias 

error becomes of the same magnitude as the variance error 

that is caused by efficiently estimating the p parameters of 

the AR model. This limit for ME(Â,A) seems to be a little bit 

arbitrary. However, equal bias and variance contributions are 

known from the derivation of the order selection criteria of 

Akaike (1974) as an estimator for the Kullback-Leibler index. 

Therefore, this choice has a firm statistical background. 

3.  FINITE-SAMPLE  AR  THEORY 

Kay and Marple (1981) describe many existing methods for 

AR estimation. The method of YW was the first; the method 

of Burg (1967) has nice properties and is often used for AR 

estimation in practice. The asymptotical theory for the 

residual variance sq
2 and the prediction error PE(q) do not 

depend on the estimation method. The residual variance is 

most easily expressed as a function of the reflection 

coefficients. For an AR model of order 0, the expectation of 

s0
2 is given by r(0), the variance of the process xn. For any 

arbitrary order q, the residual variance sq
2 is given by 

�2 2 2
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where ki is the true or the estimated reflection coefficient of 

order i. If true reflection coefficients are substituted in (15), 

their value is zero for orders greater than the true p and the 

residual variance gives the final value sp
2 = VH

2. For estimated 

values of ki, the residual variance will keep decreasing above 

the true order p because of the estimation variance of ki. 
 

A simple explanation for the triangular bias of the YW AR 

method has been given by Erkelens and Broersen (1997). The 

residual variance sq
2 appears in the denominator of the 

Levinson-Durbin recursion to compute the reflection 

coefficient for the order q + 1 (Kay and Marple, 1981; Stoica 

and Moses, 1997). Suppose that a true kq has the unbiased 

value 1– 1/N. A small bias of the magnitude 1/N would give 

it the biased value 1– 2/N. Substitution of the unbiased and of 

the biased values for kq in (1- kq
2) gives the approximations 

2/N and 4/N, respectively. A small bias of magnitude 1/N in a 

reflection coefficient kq makes a difference of a factor 2 in the 

residual variance sq
2. The error in sq

2 propagates to all higher 

AR orders because (15) is in the denominator of Levinson-

Durbin recursion for the computation of successive reflection 

coefficients. The triangular bias propagation is always 

influential if one of the true reflection coefficients of an order 

lower than the true order p is close to unity, with a distance 

less than 1/N. However, for any value kq = 1 - /, with a very 

small /, the finite-sample influence of the bias disappears 

asymptotically if the sample size N is much greater than 1/ /. 
 

If the order K is at least the true order p, the asymptotical AR 

expectations for unbiased models are determined by  
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K
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This result can be applied in practice with a reasonable 

accuracy if K is less then 0.1N. For still higher AR orders, 

Broersen (2006) showed that finite-sample theory gives an 

improved accuracy. That theory is based on approximations 

for the variance of reflection coefficients estimated from 

finite samples of a white noise process. The asymptotical 

variance 1/N is replaced by empirical finite-sample variance 

coefficients. Broersen (2006) gives the approximations 
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for YW and Burg estimates, respectively. YW variances are 

smaller than the asymptotical value 1/N because of the 

triangular bias in the autocorrelation function. In contrast, 

Burg variances are greater because each new Burg reflection 

coefficient is estimated from a shorter filtered signal.  
 

The finite-sample expressions for sK
2 and PE(K) become 
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By substituting the YW or the Burg variance coefficients for 

vi,. , different results are obtained for the estimation methods. 
 

The residual variance sq
2 is known for practical data for all 

orders q, because it has been minimized to compute the AR 

parameters. However, PE(q) is not known. A finite-sample 

approximation uses the known sq
2 to estimate the prediction 

accuracy in practice with the finite-sample criterion FSC(q) 
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This approximation can be computed for N given data xn. It 

has a strong relation with the final prediction error FPE of 

Akaike (1974) that has been used in his first order selection 

criterion. It may be used for all model orders q, independent 

of the true AR order. The values of sq
2 and FSC(q) are mainly 

determined by the true values of the reflection coefficients for 

model orders less than the true order and by (19) and (20) for 

higher orders. The expectation of FSC(q) for higher model 

orders is given by EFS[PE(q)]. For finite samples, it depends 

on the estimation method if q is greater than about N/10. 
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4.  YULE-WALKER METHOD APPLIED TO AR(4) 

To demonstrate the bias propagation, an AR(4) example with 

four equal reflection coefficients has been studied. This 

example has the advantage that all unbiased true reflection 

coefficients are the same and the bias for different orders can 

be compared easily. The triangular bias of (8) is applied to 

the true autocorrelation function for N = 100 and the biased 

values for the reflection coefficients are found by substituting 

those biased correlations in (9). As it is hardly illustrative to 

derive the analytical expressions for this example, numerical 

values are presented as a function of the true reflection 

coefficients. Table 1 gives the true value k, the four biased 

reflection coefficients and the two measures: ME(Â,A) and �.  

 

Table 1. True reflection coefficient k and expectations for the 

biased ones for an AR(4) process generated with four equal 

true reflection coefficients k. The ME of the biased AR(4) 

model as computed with (9) and the condition number � are 

given for N = 100 and for different values of the true k. 

 

true biased   expectations   
k k1 k2 k3 k4 ME(Â,A) � 

0.2 0.198 0.196 0.193 0.190 0.02 2.5 

0.4 0.396 0.391 0.381 0.365 0.3 8.2 

0.6 0.594 0.581 0.547 0.452 5.7 43.6 

0.7 0.693 0.673 0.599 0.361 33.0 135.3 

0.8 0.792 0.757 0.574 0.050 213.1 616.8 

0.9 0.891 0.813 0.268 -0.296 1451.1 6896.5 

.99 0.980 0.492 -0.304 0.193 1.8 106 9.6 106

 

The first reflection coefficient has a bias of the magnitude 

1/N for all true values of the reflection coefficient k. Higher 

orders q have a bias that is only close to q/N for k = 0.2; the 

strongest bias is found for the highest orders. Finally, the true 

value k = 0.99 = 1–1/N gives already a theoretical bias of 50 

% for the second reflection coefficient k2.  

 

It is remarkable how the bias propagates to higher orders for 

values of k much smaller than 1– p/N, which are rather far 

from the unit circle. Moderate values of the condition number 

� lead already to strong biases and low condition numbers do 

not always guarantee a small bias. The example with k = 0.7 

demonstrates that the moderate condition number 135.3 can 

give a significant model error ME. The demand that the 

ME(Â,A) is less than 4 is only met for k < 0.578 in this AR(4) 

example, with � = 35.1 as the condition number. The sample 

size N should be greater than 6 000 000 to obtain the reduced 

bias influence ME(Â,A) < 4 for k = 0.9; the theoretical value 

for the biased k4 would be 0.8997 then. The variance 

influence will become really small for very high N only. 

However, the bias influence is still vanishing asymptotically. 

 

This is also demonstrated in Table 2. The values of k4(biased) 

and ME(Â,A) of the AR(4) model are given for increasing N. 

Due to the multiplication in the ME with the sample size in 

(13), the influence of the bias grows for N less than 1000. It 

decreases proportional to 1/N for N greater than about 100000 

in this example with 4 equal true reflection coefficients. ME 

becomes equal to the model order 4 for N is about 6 000 000. 

Table 2.  The expectation of the biased reflection coefficient 

of order 4 and the corresponding model error ME(Â,A) of the 

bias in (9) for an AR(4) process with four equal true 

reflection coefficients 0.9, as a function of sample size N. 
 

N k4(biased) ME(Â,A) 
102 -0.296 1451.1 

103 0.063 4200.9 

104 0.720 1866.4 

105 0.880 236.5 

106 0.898 24.2 

107 0.900 2.43 
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Fig. 1.  The estimated accuracy FSC(q) of (21) and the 

theoretical accuracy EFS[PE(q)] of (20) for AR models 

estimated from a single realization of N = 100 observations of 

an AR(4) process with 4 equal true reflection coefficients 0.4.  

 

The model accuracy can be determined for estimated models 

of increasing orders. Software is available to estimate many 

AR models and to select the best model order automatically 

(Broersen, 2002). Fig. 1 gives results for an AR(4) example 

with equal true reflection coefficients 0.4 where the bias is 

not influential. Both YW and Burg AR estimates are shown. 

The estimated accuracies FSC(q) are computed with (21) and 

further the theoretical finite-sample expectations for unbiased 

models computed with (20) are presented for the two 

methods. Both methods follow their expectations. The YW 

lines become flattened at higher orders due to the triangular 

autocorrelation bias of (8) at high correlation lags, but that 

has no further negative influence on the accuracy because all 

true parameters are zero for orders greater than 4. The results 

for Burg and YW are very close for model orders less than 

N/10, but differences become noticeable for higher orders. 

5.  YULE-WALKER METHOD APPLIED TO AN AR(7) 

EXAMPLE 

The YW bias has two important properties. The first is that 

the bias is only strong after a previous significant reflection 

coefficient. No bias is found if all reflection coefficients are 

small.  The second  is that it cannot be  compensated by using 
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Table 3.  The true parameters ai of an AR(7) process, the 

reflection coefficients ki and the biased expectations; N = 100. 

 

order i ai ki ki (biased) 
1 -1.90 -0.37 -0.366 

2 3.46 0.85 0.830 

3 -3.68 -0.33 -0.267 

4 3.59 0.77 0.607 

5 -2.26 -0.32 0.057 

6 1.21 0.70 0.145 

7 -0.30 -0.30 0.267 

8  0 -0.081 

9  0 -0.180 

10  0 0.034 

 

higher model orders with additional AR parameters. The 

influence of the bias is demonstrated with 100 observations 

of an AR(7) example. The true parameters, reflection 

coefficients and their biased expectations are given in Table 

3. The bias is small for the first two reflection coefficients 

and increases for higher orders due to the rather high value of 

k2. It is shown that the bias also has influence on the 

parameters of orders higher than the true order 7. Due to the 

triangular bias, all reflection coefficients belonging to the true 

biased autocorrelation function are non-zero. Therefore, the 

triangularly biased YW model gets the theoretical order � for 

all true p. However, the values are small for high orders and 

all true biased reflection coefficients above order 9 are less 

than 0.1 for N = 100; above order 16 they are less than 0.01.  

 

The best AR model order to be selected with the AIC 

criterion of Akaike (1974) for estimates with the YW method 

can be computed theoretically. The reduction of the residual 

variance is given by (15) and that can be used in AIC. The 

best order that can be selected for biased YW models would 

become 9 in this true AR(7) example. The AR(8) model of 

one order higher would be the best order for selection with 

AIC if the first extra reflection coefficient would be greater 

than 1/¥N. The AR(9) model of two orders higher is the best 

if the last reflection coefficient is greater than 1/¥N and the 

expected sum of squares of the last two biased reflection 

coefficients is greater than 2/N. In this example with N = 100, 

their sum of squares is 0.039 and fulfils this requirement.  

 

The theoretical optimal order of the biased model becomes 

higher than the true order due to the triangular bias. However, 

the differences are small and the comparison between the true 

and the true biased model are made for the AR(7) model. The 

model error ME(Â,A) is 117.4 for this example, with Â(z) and 
A(z) as the triangularly biased polynomial of (9) and the true 

AR(7) polynomial, respectively. The condition number � is 

14547. This AR(7) example would require 125000 

observations before the condition ME(Â,A) = 7 is met. 

 

The AR(7) example can be characterized by its poles, which 

are given in Fig. 2. The true complex conjugated poles are at 

the radii 0.953, 0.940 and 0.936. All biased complex poles 

are much further away from the unit circle, at radii 0.886, 

0.859 and 0.858. Also the angles of the poles are shifted, 

which will cause a shift of the frequencies of spectral peaks.  
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Fig. 2.  Poles of true and biased AR(7) process, where the 

theoretical triangular AR(7) bias is computed for N = 100. 

 

The large displacement of the pole on the real axis will give a 

biased spectrum, which is much too large at high frequencies. 

 

The accuracy of AR models of different orders is given in 

Fig. 3. The estimated model accuracy of the Burg method is 

close to the theoretical white noise expectation for orders 7 

and higher. Lower order models have a larger ME value 

because not all truly non-zero parameters are included. The 

Burg models of orders higher than 6 are unbiased. The 

influence of the triangular bias on the YW estimates is very 

great. It is seen that the accuracy may still become somewhat 

better for orders higher than 7; theoretically, the best order 

should be  9 for the  estimates with  triangular bias. However,  
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Fig. 3.  The estimated accuracy FSC(q) of (21) and the 

theoretical accuracy EFS[PE(q)] of (20) for AR models 

estimated from N = 100 AR(7) observations, as a function of 

the model order. The strong bias of the Yule-walker estimates 

gives a very large difference with the theoretical finite-

sample accuracy that does not take the bias into account. 
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Fig. 4.  The estimated and the theoretical spectra of AR 

models estimated from N = 100 AR(7) observations with the 

Burg and the YW method. The order 7 was selected both for 

Burg and for YW estimates in this simulation run. 

 

the general shape of the YW model accuracy looks like the 

theoretical shape of unbiased models, with the same tendency 

to become flattened at very high orders. Order selection 

between the YW candidates cannot select an accurate model, 

because all YW models are poor. The bias propagates to all 

higher order models. AR models with Burg are much better. 

 

The estimated spectra of the Burg and YW method are 

compared with the true and with the expectation of the biased 

spectrum in Fig. 4. The shift of the real pole to the left causes 

the distortion of the estimates at higher frequencies. The shift 

of the complex poles away from the unit circle makes the 

three spectral peaks less strong for the YW estimates. The 

Burg estimates are a close approximation to the true 

spectrum; the YW estimates approximate the biased true 

spectrum. The YW estimate of AR order N – 1 approximately 

gives the periodogram as spectral estimate. The periodogram 

suffers from the same triangular bias. Hence, it will globally 

follow the biased spectrum in Fig. 4. However, the variations 

around the true curve are much greater. As indicated in Fig. 

3, YW models of all higher orders have the bias error that 

was already present in the YW estimate of the true order 7.  

 

The average model qualities ME of YW and Burg estimates, 

both with selected AR orders, have been determined in 1000 

simulation runs. The average ME for YW was 102.3 and for 

Burg the ME value was 10.7. The quality of estimated Burg 

models with the automatically selected model orders of the 

ARMAsel program of Broersen (2006) is rather close to the 

Cramér-Rao lower bound 7 for the ME of an AR(7) process. 

This average quality includes the uncertainty of order 

selection; the average quality of AR(7) Burg models was 8.8. 

 

Not all processes with poles close to the unit circle are very 

sensitive for the triangular bias of the Yule-Walker method. 

As an example, take the AR(7) process with all true 

parameters zero, except a7 that is equal to 0.7. All 7 poles 

would be at the equal radius 0.95 then. The triangular bias 

moves them all to 0.94 for N = 100, at almost the same angles 

as the true AR(7) process. The poles of this second example 

are closer to the unit circle than the poles of Fig. 2. However, 

the influence of the bias is very much smaller, with ME(Â,A) 

equal to 0.47 and with the condition number � = 5.7.  

6. CONCLUDING REMARKS 

Biased lagged-product autocorrelation estimates are used for 

the Yule-Walker method of AR parameter estimation. The 

small triangular autocorrelation bias can cause a significant 

bias of the AR parameters and its spectrum in finite samples. 

The model error is introduced as an objective measure to 

quantify the significance of the triangular bias. It determines 

the smallest sample size where properties are asymptotic.  

The triangular bias modifies the true order to � for all biased 

AR(p) processes. The best approximating model order may 

become higher than the true order p and depend on the 

sample size. The locations and the height of spectral peaks 

may be changed considerably by the Yule-Walker bias. Burg 

estimates are preferred and do not have those problems. 
 

REFERENCES 
 

Akaike, H. (1974). A new look at the statistical model 

identification. IEEE Trans. Autom. Control, AC-19, 716-

723. 

Broersen, P.M.T. (2002). ARMASA Matlab toolbox, 2002, 

[Online], Available at 

www.mathworks.com/matlabcentral/fileexchange.  

Broersen, P.M.T. (2006). Automatic Autocorrelation and 
Spectral Analysis. London, U.K.: Springer-Verlag. 

Broersen, P.M.T. (2007). Historical misconceptions in 

autocorrelation estimation. IEEE Trans. on 
Instrumentation and Measurement, 56, 1189-1197. 

Burg, J.P. (1967). Maximum entropy spectral analysis. Proc 
37th Meeting Soc. of Exploration Geophysicists, 6 pp. 

Erkelens, J.S. and P.M.T. Broersen (1997). Bias propagation 

in the autocorrelation method of linear prediction. IEEE 
Trans. on Speech and Audio Processing, 5, 116-119. 

Hoon, M.J.L. de, T.H.J.J. van der Hagen, H. Schoonewelle 

and H. van Dam (1996). Why Yule-Walker should not be 

used for autoregressive modelling. Ann.Nucl. Energy, 23, 

1219-1228. 

Kay, S. and J. Makhoul (1983). On the statistics of the 

estimated reflection coefficients of an autoregressive 

process. IEEE Trans.Acoust., Speech,  Signal Process., 
ASSP-31, 1447-1455. 

Kay, S.M. and S.L. Marple (1981). Spectrum analysis-a 

modern perspective, Proc. IEEE, 69, 1380-1419. 

Priestley, M.B. (1981). Spectral Analysis and Time Series. 

London, U.K.: Academic Press. 

Shaman, P. and R.A. Stine (1988). The bias of autoregressive 

coefficient estimators. Journal of the American Statistical 
Association, 83, 842-848. 

Stoica, P. and R. Moses (1997). Introduction to Spectral 
Analysis. Prentice Hall, Upper Saddle River, NJ. 

Wensink, H. E. and W.J. Dijkhof (2003). On finite sample 

statistics for Yule-Walker estimates. IEEE Trans. on 
Information Theory, 49, 509-516. 

     

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

2749


