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Abstract: Recently, we introduced an adaptive control design for linearly parameterized multi-
input nonlinear systems admitting a known Control Lyapunov Function (CLF) that depends
on the unknown system parameters. The main advantage of that design is that it overcomes
the problem where the estimation model becomes uncontrollable although the actual system is
controllable. However, the resulted adaptive control design is quite complicated and, moreover, it
exhibited poor transient behaviour in various applications. In this paper, we propose and analyze
a new computationally efficient adaptive control design that overcomes the aforementioned
shortcomings. The proposed design is based on an adaptive optimization algorithm proposed
recently by the author, which makes sure that the parameters to be optimized (which correspond
to the controller parameters in this paper) are modified so as to both lead to a decrease of the
function to be minimized and satisfy a persistence of excitation condition. The main advantage
of the proposed adaptive control design is that it can produce arbitrarily good transient
performance outside the regions of the state space where the system becomes uncontrollable. It
is also worth noticing that the class of systems where the proposed algorithm is applicable is
more general than that of our previous work.

Keywords: Adaptive Optimization, Multivariable Adaptive Control, Control Lyapunov
Functions, Persistence of Excitation

1. INTRODUCTION

Despite the recent advances in the theory of adaptive
control of nonlinear systems, the problem of designing an
efficient adaptive controller for general nonlinear systems
remains an open issue. Probably the main problem in
adaptive control design of nonlinear systems and espe-
cially in the case of multi-input systems, is the problem
where the estimation of the input vector-field (or of a
transformation of it) becomes non-invertible (in which case
the estimation model becomes uncontrollable) although
the inverse of the input-vector field or its transformation
does exist. For this reason, most adaptive control designs
impose strict assumptions on the controlled system such as
that the sign of the input-vector field (which corresponds
to the sign of the high-frequency gain in the case of linear
systems) is known [7, 9, 3]; we note that the extension
of such an assumption to multi-input systems even in the
case where the system is linear is a very complicated issue
(see e.g. [13] and section 9.7 of [2] for a discussion on the
extension of the assumption on knowledge of the sign of
the high-frequency gain of SISO linear systems to MIMO
linear systems). Moreover, even in the case of single-input
linear or nonlinear systems the removal of the assumption
on the knowledge of the sign of the input vector-field leads
in most cases to the deployment of Nussbaum-type adap-
tive controllers which may produce very poor transient
performance (see e.g. [15]).

In [4] we proposed an adaptive control design that removed
the assumption on the knowledge of the sign of the input
vector-field. The approach of [4] was applicable to systems
satisfying

ẋ= ϑ̄f̄(x) + ϑ̄ḡ(x)u

∂V

∂x

τ

(x)ϑ̄ḡ(x) = 0 =⇒ ∂V

∂x

τ

(x)ϑ̄f̄(x) < 0, ∀x 6= 0

V (x) = a(ϑ̄)τv(x) (1)

where x ∈ ℜnx , u ∈ ℜnu denote the vectors of system
states and control inputs, respectively, ϑ̄ ∈ ℜn×L̄ is a
matrix of unknown constant parameters and f̄ : ℜnx 7→
ℜL̄, ḡ : ℜnx 7→ ℜL̄×nu denote known, at-leastC1 functions;
the function V denotes a smooth, positive definite, radially
unbounded, Control Lyapunov Function (CLF) for the sys-
tem that is calculated as the vector product of the known
smooth vector function v(x) and the vector function a(ϑ̄)
that depends on the vector ϑ̄ of unknown parameters. It
is worth noticing that multi-input linearly parameterized
feedback linearizable systems belong to the family (1) as
shown in [4]. Moreover, as shown in [11], the family (1)
also includes stabilizable systems with polynomial vector
fields, in which case the CLF function V (x) = a(ϑ̄)τv(x)
can be constructed by using Sums-of-Squares optimization
methods.

It is worth noticing that no assumption about the sign(s)
of the input-vector field ϑ̄ḡ(x) was made in [4]. However,
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the adaptive control design of [4] results even in the
case where it is applied to linear MIMO systems into a
very complicated controller; moreover, the controller of [4]
exhibited poor transient behavior in various applications
tested in our lab, which was mainly due to the rapid
switching of the controller.

In this paper we present a computationally efficient adap-
tive control design that overcomes the above mentioned
shortcomings of the control design of [4]. The proposed
design is applicable to – the more general than (2) – class
of systems, described as follows:

ẋ= ϑ̄f̄(x) + ϑ̄ḡ(x)u (2)

∂V

∂x

τ

(x)ϑ̄ḡ(x) = 0 =⇒ ∂V

∂x

τ

(x)ϑ̄f̄(x) < 0, ∀x 6= 0 (3)

V (x) = v(ϑ̄, x)

where V denotes a smooth, positive definite, radially
unbounded CLF for the system and v denotes a smooth
known function that depends nonlinearly on the unknown
parameters ϑ̄. The proposed design is based on an adaptive
optimization algorithm proposed recently by the author
(see [6, 5]) which makes sure that the parameters to be
optimized (which correspond to the controller parameters
in this paper) are modified so as to both lead to a decrease
of the function to be minimized (which corresponds to
the CLF V in this paper) and satisfy a persistence of
excitation condition. The main advantage of the proposed
adaptive control design is that it can produce arbitrarily
good transient performance outside the regions of the state
space where the system becomes uncontrollable.

1.1 Notation

Z,ℜ denote the sets of nonnegative integers and real
numbers, respectively. For a vector x ∈ ℜn, |x| denotes the
Euclidean norm of x (i.e., |x| =

√
xτx), while for a matrix

A ∈ ℜn2

, |A| denotes the induced matrix norm of A. A
function f is said to be Cm, where m is a positive integer,
if it is uniformly continuous and its first m derivatives
are uniformly continuous. In denotes the n-dimensional
identity matrix.

2. THE PROPOSED ALGORITHM

Since – by (3) – system (2) is stabilizable it makes sense
to assume that there exists a known controller – param-
eterized by a vector of unknown controller parameters –
that solves the stabilization problem. More precisely, we
will assume the following:

(A1) For any positive constant η and any compact subset
X ⊂ ℜnx , there exists an, at-least C1, bounded for
bounded x, known vector function π : ℜnx 7→ ℜnu×nθ

satisfying the following: there exists a vector θ∗ ∈
ℜnθ such that the closed-loop system (2) solutions
with u = π(x)θ∗ and initial state x(0) = x0 satisfy
supt∈[0,∞) |x(t)| < ∞ and lim supt→∞ |x(t)| < η for any
x0 ∈ X .

It is not difficult for someone to see that (3) implies (A1).
To see this note that from (3) we have that there exists
a – probably discontinuous at a set of zero Lebesque

measure – controller u = k(x) such that the closed-loop
system (2) with u = k(x) is stable for any bounded initial
condition x(0) = x0 and, moreover, its solutions converge
to zero asymptotically. Then, if the function π is chosen
so that it belongs to a Universal Approximation (UA)
family (e.g. π can be a polynomial function of x), standard
results based on approximation theory (see e.g. [8] and
the references therein) can be used to establish that, for
any positive constant cη there exists a vector θ∗ such that
supx∈X̄ |k(x) − π(x)θ∗| < cη for any compact subset X̄ ⊂
ℜnx . Control Lyapunov function arguments [12, 10] can be
then applied to establish that, if cη is sufficiently small, the
controller u = π(x)θ∗ satisfies (A1) for η depending on the
approximation constant cη, provided that X ⊂ X̄ and the
distance between the boundaries of X and X̄ is sufficiently
large, so that the closed-loop solutions under u = π(x)θ∗

satisfy x(t) ∈ X̄ , ∀t. Note also that (A1) reduces the
problem of finding a controller stabilizing system (2) into
the problem of finding a vector θ or a vector sequence
θ(t) such that the controller u(t) = π(x(t))θ(t) guarantees
supt∈[0,∞) |x(t)| <∞ and lim supt→∞ |x(t)| < η.

Note that contrary to the controller u = k(x) mentioned
above which provides with globally stable closed-loop
solutions, the controller u = π(x)θ∗ of (A1) provides
with semi-global closed-loop stability. In the sequel we
will assume that all initial conditions x(0) = x0 belong to
the compact subset X . Moreover, we will assume that the
subset X̄ over which condition supx∈X̄ |k(x)−π(x)θ∗ | < cη
holds, is sufficiently large so that it contains not only the
solutions x(t) under the controller u = π(x)θ∗ but also the
the solutions x(t) under the proposed adaptive controller.

Since V is smooth and f̄ , ḡ are at-least C1, it can be seen
that following lemma holds:

Lemma 1. Assumption (A1) implies the existence of pos-
itive constants ǫi, i = 1, 2, 3 such that the following
condition holds, for all x ∈ X̄ ,

∣

∣

∣

∣

∂V

∂x

τ

(x)ϑ̄¯̄g(x)

∣

∣

∣

∣

< ǫ1 and |x| > ǫ3 > η ⇒
∂V

∂x

τ

(x)ϑ̄f̄(x) < −ǫ2
(1)

where ¯̄g(x) = ḡ(x)π(x).

Proof. The proof is a directly corollary of Lemma 1 of
[4].

Let us define the uncontrollable region of (2) to be the
subset U defined according to

U =

{

x ∈ ℜnx : |x| > ǫ3 and

∣

∣

∣

∣

∂V

∂x

τ

(x)ϑ̄¯̄g(x)

∣

∣

∣

∣

< ǫ1

}

From condition (1) we have that that as long as x(t) ∈ U ,
the choice θ(t) = 0 (or θ(t) being small enough) guarantees
that V (t) is decreasing.

We will also need the following assumption regarding
system (2).

(A2) f̄ , ḡ are bounded for bounded x.

2.1 Input vector-field preprocessing

It is no loss of generality to assume that the constant ǫ1 in
(1) is as large as desired. If this is not the case we can
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always employ a precompensator of the form u = Kū
where K is a user-defined large positive constant and
ū is the “new” control input; then the proposed design
can be applied to the transformed – after applying the
precompensator u = Kū – system (2) with ḡ 7→ ḡK, u 7→ ū
and ǫ1 7→ Kǫ1.

Also, for reasons that will be made clear later on, we
wish the entries ¯̄gij(x) of the matrix function ¯̄g(x) to be
bounded away from zero. Since this will not be always
the case, we transform the system (2) under the controller
u = π(x)θ into the equivalent system

ẋ= ϑf(x) + ϑg(x)θ + ε(x, θ) (2)

= ϑφ(x, θ) + ε(x, θ)

where the entries gij(x) of g(x) satisfy |gij(x)| ≥ ǭ, ∀x,
the function f(x) is defined according to ϑf(x) = ϑ̄f̄(x)
and |ε(x, θ)| < c1ǭ |θ|, where ǭ is a user-defined positive
constant and c1 is a finite positive constant independent
of x, θ and ǭ. The above transformation can be easily
performed as follows: for all entries ¯̄gij(x) that satisfy
|¯̄gij(x)| ≥ ǭ, ∀x, we set gij(x) = ¯̄gij(x), while for those
entries ¯̄gij(x) that cross zero, we correspond two entries
gij(x) and gij′ (x) such that gij(x) = ¯̄gij(x) if ¯̄gij(x) ≥ ǭ
and gij(x) = ǭ, otherwise, and similarly, gij′(x) = ¯̄gij(x)
if ¯̄gij(x) ≤ −ǭ and gij′(x) = −ǭ, otherwise. Obviously

the new parameter matrix ϑ satisfies ϑ ∈ ℜn×L, where
L ≤ 2L̄ and, moreover, we can easily construct nx

matrices Πi ∈ {0, 1}L̄×L (note that the matrices Πi are
not uniquely defined) such that ϑ̄i = Πiϑ

i and, moreover,

for any vector ϑ̂i satisfying
∣

∣

∣
ϑ̂i − ϑi

∣

∣

∣
< δ then, we have

that
∣

∣

∣
Πiϑ̂

i − ϑ̄i
∣

∣

∣
< c̄δ for some finite positive constant c̄

independent of δ; here ϑi, ϑ̄i denote the column vectors
that correspond to the i-th row of ϑ and ϑ̄, respectively.

2.2 Adaptive estimator

The proposed adaptive control scheme updates the control
vector θ every ∆t time-units; in other words, if tk =
tk−1 + ∆t, t0 = 0, k ∈ Z denote the time-instances
at which the controller vector is updated, then we have
that θ(t) remains constant in the intervals t ∈ [t+ℓ−1, tℓ).
In order to calculate the updates of the control vector
θ(t) the proposed adaptive control design makes use of
an adaptive estimator described as follows: Let θℓ−1 =
θ(t), t ∈ [t+ℓ−1, tℓ) denote the updates of θ(t) at t = t+ℓ−1

and ψi
ℓ, ζ

i
ℓ be defined as follows:

ψi
ℓ =

tℓ
∫

t=tℓ−1

fi(x(s))ds, ζi
ℓ =

tℓ
∫

t=tℓ−1

gi(x(s))ds

where fi(x), gi(x) denote the i-th column of f(x), g(x),
respectively. Then, at each time-instant tk an estimate

ϑ̂(t+k ) ≡ ϑ̂k is calculated so as to satisfy for i ∈ {1, . . . , nx},

ϑ̂i
k = argmin

ϑ̂i

k
∑

ℓ=ℓk

(

xi(tℓ) − xi(tℓ−1) − ϑ̂i
(

ψi
ℓ + ζi

ℓθℓ−1

)

)2

(3)

where ϑ̂i
k denotes the column vector that corresponds to

the i-th row of ϑ̂k and

ℓk = min{1, k − L− Th}
with Th being a nonnegative user-defined constant. The

next lemma establishes convergence of ϑ̂k − ϑ under a
persistence of excitation condition.

Lemma 2. If the matrix Ψi
k defined as

Ψi
k =

[

ψi
k−L+1 + ζi

k−L+1θk−L+1, . . . , ψ
i
k + ζi

kθk

]

(4)

satisfies

rank
(

Ψi
k

)

= L, ∀k ≥ L, ∀i ∈ {1, . . . , nx} (5)

and, moreover, supℓ∈{ℓk−1,...,k} |x(tℓ)| < ∞ and

supℓ∈{ℓk−1,...,k−1} |θℓ| then, the parameter estimation error

ϑ̃k = ϑ− ϑ̂k satisfies
∣

∣

∣
ϑ̃k

∣

∣

∣
≤ c2ǭ sup

ℓ∈{ℓk−1,...,k−1}

|θℓ| (6)

for some finite positive constant c2 that depends on
supℓ∈{ℓk−1,...,k} |x(tℓ)|.

Proof. Let Φk =
∑k

ℓ=ℓk

(

ψi
ℓ + ζi

ℓθℓ

) (

ψi
ℓ + ζi

ℓθℓ

)τ
. It can

be easily seen that since Ψi
k is full rank for k ≥ L then

Φ−1
k exists for k ≥ L and, moreover, the solution of (3)

satisfies

ϑ̂i
k = Φ−1

k Φkϑ
i + Φ−1

k

k
∑

ℓ=ℓk

ε̄i
ℓ

(

ψi
ℓ + ζi

ℓθℓ

)τ

= ϑi + Φ−1
k

k
∑

ℓ=ℓk

ε̄i
ℓ

(

ψi
ℓ + ζi

ℓθℓ

)τ
,

ε̄i
ℓ =

tℓ
∫

t=tℓ−1

εi(x(s), θℓ−1)ds

from which we readily obtain (6), by using |ε(x, θ)| <
c1ǭ |θ|.

2.3 The proposed controller

The proposed controller update scheme is as follows:

θ(t+k ) = arg min
±θ

(j)

k
,j∈{1,...,nθ}

˙̂
V

(±j)

k (7)

˙̂
V

(±j)

k =
∂v

∂x

τ

(ˆ̄ϑk, xk)ϑ̂τ
kφ(xk,±θ(j)k )

where xk = x(tk), the rows ˆ̄ϑ
i

k of ˆ̄ϑk are obtained by using

ˆ̄ϑ
i

k = Πiϑ̂
i
k and θ

(j)
k are nθ zero-mean random vectors in

{−αk, αk}nθ satisfying
∣

∣

∣

[

θ
(1)
k , . . . , θ

(nθ)
k

]
∣

∣

∣

−1

<
Ξ

αk

(8)

where αk is user-defined positive sequence and Ξ is a finite
positive number independent of αk. It can be seen [1, 14, 6]

that a choice θ
(j)
k = αk∆

(j)
k , where ∆

(j)
k are Bernoulli
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random or Bernoulli-like vectors in {−1,+1}nθ satisfies
(8).

To understand the rationale behind the proposed algo-
rithm note that

V̇ =
∂V

∂x

τ

(x)(ϑf(x) + ϑg(x)θ + ε(x, θ))

=
∂V

∂x

τ

(x) (ϑφ(x, θ) + ε(x, θ)) (9)

Apparently, the variables
˙̂
V

(±j)

k denote the estimates –

produced using the adaptive estimator (3) – of V̇ (t+k )

under the choice θ(t+k ) = ±θ(j)k . In other words, the

choice for θ(t+k ) according to (7) corresponds to the one,

among all ±θ(j)k , that leads to the maximum estimated
decrease of V . As it will be seen in the proof of the main
result of this paper, condition (8) is crucial to make sure
that this aforementioned maximum estimated decrease is
non-negligible; moreover, as it will be seen in the next

Lemma, the random choice for θ
(j)
k , in combination with

the fact that by design gij(x) are bounded away from zero,
guarantee that the regressor matrix φ(x, u) is persistently
exciting.

Lemma 3. If αk > 0, ∀k ∈ Z then condition (5) of Lemma
2 holds with probability 1.

Proof. For the sake of contradiction let us assume that
the matrix Ψi

k is not full-rank for k ≥ L. Then there exists
a non-zero vector b such that

bτ
(

ψi
ℓ + ζi

ℓθℓ

)

= 0, ∀ℓ ∈ {k − L+ 1, . . . , k}
It is not difficult for someone to see that since θℓ are ran-
dom vectors in {−αℓ, αℓ}nθ and by design (see subsection
II.A) the entries of the vector ζℓ are bounded away from
zero, the term ψi

ℓ,1+ζ
i
ℓ,1θℓ,1 6= 0 for all ℓ ∈ {k−L+1, . . . , k}

with probability 1; then the above equality implies that,
∀ℓ ∈ {k − L+ 1, . . . , k},

b1 = − 1

ψi
ℓ,1 + ζi

ℓ,1θℓ,1

nθ
∑

j=2

bj
(

ψi
ℓ,j + ζi

ℓ,jθℓ,j

)

w. p. 1

Since θℓ are random vectors the probability of b1 to satisfy
all k above equations is zero, which concludes the proof.

We are ready to establish the main result of this paper.

Theorem 4. Let (A1), (A2) hold and assume that the
design constant ǭ as well as the sampling interval ∆t
are sufficiently small and ǫ1 is sufficiently large. Then,
for arbitrary ᾱ > 0, there exist finite positive constants
β0, β1, β2 with β1, β2 satisfying

1

4nθ

ǫ1β1 >λ1 + λ2ǭβ2 + λ3ǭβ
2
2 + ᾱ (10)

for some finite positive constants λ1, λ2, λ3 independent of
ǭ, such that if αk satisfies

0 < αk ≤ β0 if k < L

β1 ≤ αk ≤ β2 if

∣

∣

∣

∣

∂v

∂x

τ

(ˆ̄ϑk, xk)ϑ̂kg(xk)

∣

∣

∣

∣

≥ ǫ̂1

and k ≥ L

0 < αk ≤ − ¯̄α+ ǫ2√
nθǫ1

if

∣

∣

∣

∣

∂v

∂x

τ

(ˆ̄ϑk, xk)ϑ̂kg(xk)

∣

∣

∣

∣

< ǫ̂1

and k ≥ L

(11)

where ¯̄α is a positive design constant satisfying ¯̄α < ǫ2,
and ǫ̂1 is a positive design constant satisfying

1

4
ǫ1 ≤ ǫ̂1 ≤ 1

2
ǫ1 (12)

then, the proposed adaptive control scheme (3), (7), (8)
guarantees that the closed-loop solutions are bounded and,
moreover,

lim sup
t→∞

|x(t)| ≤ ǫ3, with probability 1 (13)

and, moreover,

V̇ (t+k ) <

{

−ᾱ if xk 6∈ U
− ¯̄α if xk ∈ U (14)

Proof. Note that the solutions of the closed-loop system
are continuous in the intervals [t+k , tk+1) and thus – since
these intervals have non-negligible length – it can be
established (similar to e.g. theorem 2 of [4]) that there
exists a time-interval [0, ω) of maximal length on which
the closed-loop system possesses a unique Caratheodory
solution. Note also that since the functions f̄(x), ḡ(x), π(x)
are at least C1 and – from (A1), (A2) – bounded for
bounded x, it is not difficult for someone to see that there
exists a positive constant β0 such that if αk ≤ β0, k < L
then x(t) ∈ X̄ , t ∈ [0, tL) and, moreover, the distance
between x(tL) and the boundary of X̄ is sufficiently large.

We now concentrate on the case where k ≥ L. We consider
the following cases for all |x| > ǫ3, x ∈ X̄ :

(C1) xk 6∈ U and
∣

∣

∣

∂v
∂x

τ
(ˆ̄ϑk, xk)ϑ̂kg(xk)

∣

∣

∣
≥ ǫ̂1. Let

V̇
(±j)
k =

∂V

∂x

τ

(xk)
[

ϑ̄f̄(xk) ± ϑ̄¯̄g(xk)θ
(j)
k

]

By using (8) and xk 6∈ U , it is not difficult for someone
to see that

min
j∈{1,...,nθ}

∂V

∂x

τ

(xk)ϑ̄¯̄g(xk)
[

±θ(1)k , . . . ,±θ(nθ)
k

]

< − 1

nθ

ǫ1αk

Therefore,

min
j∈{1,...,nθ}

V̇
(±j)
k <

∂V

∂x

τ

(xk)ϑ̄f̄(xk) − 1

nθ

ǫ1αk (15)

Note also that

V̇
(±j)
k − ˙̂

V
(±j)

k =
∂v

∂x

τ

(ϑ̄, xk) ×
(

ϑφ(xk,±θ(j)k ) + ε(xk,±θ(j)k )
)

−∂v
∂x

τ

(ˆ̄ϑk, xk)ϑ̂kφ(xk,±θ(j)k )

=

(

∂v

∂x

τ

(ϑ̄, xk) − ∂v

∂x

τ

(ˆ̄ϑk, xk)

)

ϑφ(xk,±θ(j)k )

+
∂v

∂x

τ

(ϑ̄, xk)ε(xk,±θ(j)k )

+
∂v

∂x

τ

(ˆ̄ϑk, xk)ϑ̃kφ(xk,±θ(j)k )

Using lemmas 2 and 3 and |ε(x, θ)| < c1ǭ |θ| we
directly obtain that the above inequality may be
rewritten as

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

5068



V̇
(±j)
k − ˙̂

V
(±j)

k ≤ c3ǭ sup
ℓ∈{ℓk−1,...,k−1}

|θℓ|a1(x[tℓk−1,tk))

+c4ǭa2(x[tℓk−1,tk)) (16)

× sup
ℓ∈{ℓk−1,...,k−1}

|θℓ|
∣

∣

∣
θ
(j)
k

∣

∣

∣

where ai(x[tℓk−1,tk)), i = 1, 2 are nonnegative terms

satisfying ai(x[tℓk−1,tk)) < supt∈[tℓk−1,tk) |ki(x(t))|
with ki, i = 1, 2 being radially unbounded functions
wrt their arguments and ci, i = 3, 4 are finite positive
constants independent of x(t) and θ(t).

Combining (15) and (16) and using the fact that
θℓ ∈ {−αℓ, αℓ}nθ ⇒ |θℓ| =

√
nθαℓ, we readily obtain

that

1

nθ

ǫ1αk >
∂V

∂x

τ

(xk)ϑ̄f̄(xk) (17)

+c3ǭa1(x[tℓk−1,tk))
√
nθ sup

ℓ∈{ℓk−1,...,k−1}

αℓ

+c4ǭa2(x[tℓk−1,tk))nθαk sup
ℓ∈{ℓk−1,...,k−1}

αℓ

+ᾱ =⇒

arg min
j∈{1,...,nθ}

V̇
(±j)
k ≡ arg min

j∈{1,...,nθ}

˙̂
V

(±j)

k

and V̇ (t+k ) < −ᾱ (18)

where ᾱ is a positive constant.

(C2) xk ∈ U and
∣

∣

∣

∂v
∂x

τ
(ˆ̄ϑk, xk)ϑ̂kg(xk)

∣

∣

∣
< ǫ̂1. By using

Lemma 1 we obtain

V̇ (t+k )<−ǫ2 +
√
nθǫ1αk

from which we have that

0<αk <
− ¯̄α+ ǫ2√
nθǫ1

=⇒ (19)

−ǫ2 < V̇ (t+k ) < − ¯̄α < 0 (20)

(C3) xk 6∈ U and
∣

∣

∣

∂v
∂x

τ
(ˆ̄ϑk, xk)ϑ̂kg(xk)

∣

∣

∣
< ǫ̂1. By using

lemmas 2 and 3 it can be seen that,
∣

∣

∣

∣

∂V

∂x

τ

(xk)ϑ̄¯̄g(xk) − ∂v

∂x

τ

(ˆ̄ϑk, xk)ϑ̂kg(xk)

∣

∣

∣

∣

≤ c5ǭ sup
ℓ∈{ℓk−1,...,k−1}

|θℓ| (21)

where c5 is a positive constant that depends on
supℓ∈{ℓk−1,...,k} |xℓ|. Therefore, if (12) holds and

ǭ is sufficiently small we have that (C3) never
takes place as long as and supℓ∈{ℓk−1,...,k} |xℓ| <

∞, supℓ∈{ℓk−1,...,k−1} |θℓ| <∞.

(C4) xk ∈ U and
∣

∣

∣

∂v
∂x

τ
(ˆ̄ϑk, xk)ϑ̂kg(xk)

∣

∣

∣
≥ ǫ̂1. By using (21)

it can be readily seen that if ǭ is sufficiently small and
(12) holds, then

∣

∣

∣

∣

∂V

∂x

τ

(xk)ϑ̄¯̄g(xk)

∣

∣

∣

∣

>
1

4
ǫ1 (22)

Then, by replacing in (C1) the constant ǫ1 by 1/4ǫ1
and using the same arguments as in (C1), we obtain

1

4nθ

ǫ1αk >
∂V

∂x

τ

(xk)ϑ̄f̄(xk)

+c3ǭa1(x[tℓk−1,tk))
√
nθ sup

ℓ∈{ℓk−1,...,k−1}

αℓ

+c4ǭa2(x[tℓk−1,tk))nθαk sup
ℓ∈{ℓk−1,...,k−1}

αℓ

+ᾱ =⇒ (23)

V̇ (t+k ) < −ᾱ (24)

In conclusion, from the analysis in (C1)-(C4) above we
have that, if (23) and (19) hold for finite αk (note that (23)
implies that the weaker condition (17) also holds) and ǭ is

sufficiently small, then either V̇ (t+k ) < −ᾱ or V̇ (t+k ) < − ¯̄α
for all tk ∈ [0, ω), |x(tk)| ≥ ǫ3; therefore if (23) and (19)
hold for finite αk and ∆t is sufficiently small (wrt ᾱ, ¯̄α) we
have – since V is smooth and f̄ , ḡ, π are at least C1 – that
V̇ (t) is negative for all t ∈ [0, ω), |x(tk)| ≥ ǫ3. On the other
hand, as long as x(t), t ∈ [0, tk) is bounded, it is easy to see
that there exist a sequence of finite αk satisfying conditions
(23) and (19) (provided that ǭ is sufficiently small wrt
ǫ1). Therefore, we can establish there exists a sequence of
finite αk such that all closed-loop signals are bounded and
(13) holds by using a standard cyclic argument, i.e., the

fact that x(t+L ) is bounded leads to V̇ (t) being negative

for a time-interval [t+L , T1) of non-negligible length (unless

|x(t)| < ǫ3 in [t+L , T1)) which in turns implies that x(T+
1 )

is bounded and, so on. The proof is concluded by noticing
that (14) implies (23) and (19) provided that β1, β2 satisfy
the following:

1

4nθ

ǫ1β1 >
∂V

∂x

τ

(xk)ϑ̄f̄(xk) + c3ǭa1(x[tℓk−1,tk))
√
nθβ2

+c4ǭa2(x[tℓk−1,tk))nθβ
2
2 + ᾱ, ∀k ∈ Z

which, in turn, is satisfied 1 if (10) is satisfied for appro-
priately defined λ1, λ2, λ3.

Some remarks are in order:

• The condition “with probability 1” in (13) can be
removed if a rank test is performed at each tk to the
matrices Ψi

k (defined in (4)); in the zero-probability
case where one of this matrices has rank less than
min{k, L} a different choice of random vectors θ

(j)
k

should be generated until rank(Ψi
k) = min(k, L) for

all i. However, it has to be emphasized that a rank test
is computationally expensive since it requires O(L3)
computations.

• The proposed scheme guarantees arbitrarily good
transient performance outside the regions of the state
space where the system becomes uncontrollable (i.e.
for xk 6∈ U). To see this, notice that the larger are

the design terms αk for tk :
∣

∣

∣

∂v
∂x

τ
(ˆ̄ϑk, xk)ϑ̂kg(xk)

∣

∣

∣
≥

ǫ̂1 and k ≥ L, the larger is the constant ᾱ in (14),
and thus the “more negative” is the time-derivative
V̇ (t+k ). On the other hand, the terms αk for tk :
∣

∣

∣

∂v
∂x

τ
(ˆ̄ϑk, xk)ϑ̂kg(xk)

∣

∣

∣
≥ ǫ̂1 and k ≥ L can be made

arbitrarily large, since from (10) we have that the

1 It is not difficult for someone to see that an upper bound of
the terms a1(x[tℓk−1,tk) and a2(x[tℓk−1,tk)) can be found that it

is independent of ǭ; to see this, notice that V̇ (t+
k

) < 0 for all
k ≥ L : x(tk) 6= 0 and therefore we have that V (t) ≤ V̄ , ∀t ≥ tk
where V̄ denotes a finite positive constant that depends on β0, L

and ∆t and thus x(t) ≤ X̄, ∀t ≥ tk where, similarly to V̄ , X̄ is a
finite positive constant that depends on β0, L and ∆t.
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bounds β1, β2 – and thus αk – can be made arbitrarily
large by choosing ǭ sufficiently small.

3. CONCLUSIONS

In this note a computationally efficient adaptive control
design for a general class of nonlinear multi-input systems
has been proposed and analyzed. Among the advantages
of the proposed design is that it can guarantee arbitrarily
good transient performance outside the regions of the
state space where the system becomes uncontrollable, by
increasing the magnitude of the constant ᾱ defined in the
proof of Theorem 4.

It is worth noticing that the analysis concentrates in
the ideal case of parametric uncertainties. Our current
research involves the extension of the results of this paper
to the case of non-parametric uncertainties such as unmod-
eled nonlinearities/dynamics and exogenous disturbances,
as well as the on-line calculation of the constants βi of
Theorem 4.
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