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Abstract: The inclusion of NOT gates in a fault tree creates a “non-coherent” structure in which not only 
the failure of a component but also the negation of failure, i.e. the working state of the component, can 

contribute to the undesirable effects on a system. This type of non-coherent modelling remains 

controversial; its usefulness is still debated among academics, which explains why NOT gates have not 

been included in the Fault Tree Handbook. In this paper, we review work on non-coherent fault trees and 

highlight circumstances where non-coherent modelling is appropriate and useful. We then describe an 

extension to HiP-HOPS (Hierarchically Performed Hazard Origin and Propagation Studies), a recently 

proposed compositional safety analysis method, that enables model-based synthesis and analysis of non-

coherent fault trees. A small example is given to illustrate application of the extended method and 

demonstrate how this type of non-coherent modelling can give a more precise and ultimately more 

correct insight into failure behaviour. Copyright © 2008 IFAC. 

 

1. INTRODUCTION AND BACKGROUND 

Fault Tree Analysis (FTA) is undoubtedly a useful safety 
analysis technique. However, in industrial practice, the 

construction of fault trees remains a manual process which in 

the context of large and complex systems becomes laborious, 

expensive and error prone. Recently, a number of 
compositional FTA techniques have emerged in which fault 

trees are automatically produced from system models that 

contain information about component failures and their 

effects. Techniques include HiP-HOPS (Papadopoulos, et al, 

2001), Components Fault Trees (CFT) (Kaiser et al, 2003), 

and State-Event Fault Trees (SEFT) (Grunske et al, 2005). 

The role of safety analysts in compositional FTA is redefined 

as people are only required to provide the local failure 

behaviour of components, while an automated tool takes that 

information and determines how local failures propagate 

through a system model to cause system-level effects. This 
approach simplifies the assessment, and makes it possible to 

perform multiple iterations of safety analysis, for example to 

examine the effects of design modifications on system safety.  

This new work on compositional FTA has so far been  
limited to the synthesis and analysis of fault trees with 

coherent structure, i.e. fault trees in which the failure logic is 

composed of classical Boolean AND and OR gates. While 

recent work has looked into extending this concept to support 

state-based (Kaiser et al, 2004) and temporal safety analysis 

(Walker and Papadopoulos, 2006) (Merle and Roussel, 2007) 

the potential for synthesis and analysis of non-coherent fault 

trees, i.e. fault trees which also contain NOT gates, has not 

yet been explored. A possible explanation for this is that the 

inclusion of NOT gates in fault trees implies that both the 

failed and working state of components can contribute to the 

failure of the system, a feature that traditionally has been seen 
as an indication of poor design. In such circumstances, the 

prevalent advice has been to revise the design rather than 

resort to the need for non-coherent modelling. Beyond 

conceptual objections to the use of NOT gates, it has also 
been argued that the inclusion of NOT logic increases the 

complexity of both qualitative and quantitative analysis of the 

fault tree while providing little additional information.   

Despite those strong objections, researchers have begun to 
recognize the importance of incorporating NOT logic in fault 

trees and a body of work has emerged in support of non-

coherent modelling. In section 2, we review arguments for 

and against non-coherent fault trees highlighting cases where 

the inclusion of NOT gates benefits failure modelling. In 

section 3, we present an extension to HiP-HOPS that enables 

compositional synthesis and analysis of non-coherent fault 

trees. We discuss the type of non-coherent modelling enabled 

within HiP-HOPS as well as state-of the art techniques for 

analysis of non-coherent fault trees that have underpinned the 

tool extension. In section 4, we give an example of 
application of this approach and demonstrate how 

compositional non-coherent failure modelling can help 

analysts improve their insight into the behaviour of a system. 

Finally in section 5 we draw conclusions. 

2. NON-COHERENT MODELLING  

The traditional view that NOT gates are not required in FTA 
is largely based on the notion that the probability of a 

negation of a failure event is always close to one which 

means that such conditions can be safely ignored in 

quantitative FTA. This view is challenged in (Johnston and 

Matthews, 1983) where circumstances are presented in which 

the assumption   P (¬ A) ≈ 1, where A = failure event, does 
not always hold. It is clear, for example, that this assumption 

does not hold in conditions where the failure probability of a 

component becomes significant enough and this is often the 

case in conditions that exceed the operating specifications of 

a component. In stormy weather, for instance, the probability 
of an electrical power supply working is substantially lower 
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than what would be required for that condition to be ignored 

in quantitative FTA. In such cases, the omission of NOT 

gates results in incorrect quantitative evaluations.   

(Andrews, 2000) argues that the use of NOT gates is 
especially important in the failure modelling of multitasking 

systems. He discusses an example of such a system where a 

coherent simplification of a fault tree could result in the 

generation of misleading “false” minimal cut sets1. Andrews 

shows that these “false” cut sets could be avoided with the 

inclusion of NOT gates, which in this case are needed for 

correct modelling. 

Another argument against non-coherent modelling is that if 
we allow the negation of component failures to cause system 

failure, then we must also accept that the occurrence of 

component failures can somehow prevent system failure. The 

Fault Tree Handbook (Vesley, 1981) takes the view that 

situations where component failures miraculously help 

prevent system failure should not be included in fault trees as 

they are very unlikely. However, Johnston and Matthews 
(1983) show that this type of inclusion could be beneficial in 

helping designers to identify potential preventive measures. 

Take for example the following two conditions:  

   OilLeakage = PipeImpaired                       (1) 

   OilLeakage = PipeImpaired . ¬ FailureToSupplyOil     (2) 

Compared to its coherent simplification in (1), the non-
coherent representation in (2) helps a designer to identify 

that, in circumstances where a pipe is damaged, shutting off 

the oil supply to the pipe could prevent oil leakage. The 

system could then be enhanced with an automatic mechanism 

that shuts down the oil supply when an impaired pipe is 

detected.  

The need for negative failure logic also arises in 
circumstances where an XOR gate is required, e.g. to indicate 

that the co-existence of two failures is prohibited by system 

boundaries. An XOR gate by definition implies a NOT gate 

(because A⊕B = A . ¬ B + B . ¬ A), and therefore indirectly 

leads to non-coherent modelling.  

Another case for non-coherent modelling is that of a phased 

mission system, or a system that goes through a sequence of 

operational modes. In such a system, the success of a given 

phase clearly depends on the success of the precursor phases. 
Therefore the failure of a system (S) in a phase (A) can only 

occur if failure (P) have been avoided in all precursor phases 

(i.e. S=A. ¬ P). 

Beeson (2002) shows that the prime implicant sets generated 

from non-coherent fault trees can help to develop a repair 
schedule for failed components if a system cannot be taken 

                                                
1 A minimal cut set of a fault tree (or “prime implicant” for a 

non-coherent fault tree) is the smallest combination of basic 

events that results in system failure represented as top event 

in the tree. A basic event is a leaf node, which represents a 

component failure or the negation of failure (in prime 

implicants), i.e. a component in working state. 

off line for repair. For example, suppose that prime implicant 

set A.B.¬C causes a catastrophic system failure. The set 
shows that, in circumstances where A, B and C have failed, C 

should be the last to be repaired in order to avoid system 

failure.  Note that the set also identifies potential design 

improvements. It shows, for example, that additional 

measures can be incorporated to prevent system failure, by 

forcing failure of component C when A and B have failed. 

This can be generalised as a particular type of hazard 

mitigation strategy, where the act of forcing an additional 

component failure makes it possible to prevent a system 

failure, a condition known as achieving an “Island of 
Success” (Johnston and Matthews, 1983). For example, if we 

assume that HAZARD is caused by ¬A.B, then the condition 
A.B represents an island of success that can be achieved by 

forcing failure of A in conditions of failure of B. This 

knowledge can only be gained via non-coherent modelling, 

and is useful, because it suggests a (temporary at least) 

mitigation measure against HAZARD.  In the absence of this 

in coherent modelling, a designer must simply assume that 

failure of B by itself is sufficient to cause system failure, and 

that nothing can be done in those circumstances. 

Finally, there is a common misconception that the INHIBIT 
gate can be used as a substitute of NOT. The INHIBIT gate 

propagates an input failure (I) to its output only in the 

presence of condition (C) and effectively yields a logical 

result which is equivalent to [I.C]. Such a gate could indeed 

be used in situations where C represents the working state or 

negation of failure (F) of a component or subsystem. 
However, in such cases the logical result of an INHIBIT gate 

is simply equivalent to (I.¬F). Clearly, the problem remains: 
any logical processing of such gates would still require non-

coherent modelling and calculation of prime implicants. 

3. SYNTHESIS AND ANALYSIS OF NON-COHERENT 

FAULT TREES 

As the value of non-coherent failure modelling is 
increasingly understood, it becomes important to enable this 

type of modelling in contemporary developments in safety 

analysis, such as the compositional FTA techniques which 

have emerged since the late 90s.  

HiP-HOPS is one of the first proposals for compositional 
FTA which introduces a degree of automation and reuse in 

safety analysis to address problems arising from the 

increasing complexity of systems. In HiP-HOPS, the 

topology of a system together with reusable local failure 

specifications at  component level are used to automatically 

produce a set of fault trees and an FMEA (Failure Modes and 

Effects Analysis) for the system. The technique is supported 

by an automated tool which currently works in conjunction 

with modelling tools like Matlab Simulink and ITI’s 
Simulation X – but can also be interfaced to other modelling 

packages.   

To achieve synthesis of system level safety analyses, HiP-

HOPS defines a language for the description of failure 
behaviour at component level. Using this language, the  

failure behaviour of a component can be specified as a list of 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

4139



     

declarations of internal failure modes of the component 

(internal malfunctions) and a list of declarations of deviations 

of parameters as they can be observed at component outputs 

(output deviations). Each internal malfunction is optionally 

accompanied by quantitative data, e.g. a failure and a repair 

rate if these are known. For each output deviation an 

expression is given to describe causes as a logical 

combination of internal malfunctions of the component and 

similar deviations of parameters at component inputs (input 

deviations). Analysts decide which input and output 

deviations should be examined during the analysis. Although 
these deviations will tend to vary across applications, they 

would typically represent conditions such as the “omission” 

or “commission”2 of an input or output parameter and 

conditions such as the parameter being delivered at a higher 

or lower value (“value failures”) or earlier or later than 

expected (“timing failures”). 

This specification of component failures and their local 
effects can be stored in a library and is reusable for other 

components of the same type. For the purposes of the work 

describe here, the grammar of this specification has been 

extended to include a NOT operator, which makes it possible 

to perform non-coherent failure modelling at component 

level. Negation can be applied either to internal malfunctions 

or input deviations to suggest the complement of those 

conditions in expressions that define the causes of output 
deviations.  

Using these new capabilities it is possible to express the 

working state of a component as a negation of the disjunction 

of all its failure modes. E.g. if a component has two failure 
modes FM1 and FM2, its working state can be represented as 

¬ (FM1 + FM2), or with the equivalent expression ¬ FM1. ¬ 
FM2. Similarly, if a component has a single failure mode FM 

and handles two inputs IN1 and IN2 which we know that by 

design cannot fail simultaneously, then it is possible to 

specify that an omission of component output O1 is caused 

by FM or an omission of exactly one input, i.e. that  

O-O1 = FM + O-IN1. ¬ O-IN2 + O-IN2. ¬ O-IN1  

 where “O-“stands for “Omission of”.   

Once these local analyses (coherent or not) have been 
inserted into the model, the structure of the model is then 

used to automatically determine how local conditions 

specified in the analyses propagate through connections in 

the model and cause functional failures at the outputs of the 
system. The global view of failure in the system is captured 

in a set of non-coherent - if necessary - fault trees which are 

automatically constructed by traversing the model of the 

system backwards moving from the final elements of the 

design, i.e. the actuators, towards system inputs and by 

evaluating the failure expressions of the components 

encountered during this traversal.  

                                                
2
 An “omission” of output is a condition in which output is 

not provided when there should be output according to the 

design intention, while a “commission” of an output is a 

condition is which output is generated inadvertently.  

To enable synthesis of non-coherent fault trees, the original 
fault tree synthesis algorithm was extended with the ability to 

handle not only conditions that represent failures but also 

conditions that represent the negation of such failures. The 

fault trees synthesized using this approach show how 

functional failures or malfunctions at the outputs of the 

system are caused by logical combinations of component 

failures or component working states. These fault trees may 

share branches and basic events in which case they record 

dependencies in the model and common causes of failure, i.e. 

component failures that contribute to more than one system 
failures. Thus, in general, the result of the fault tree synthesis 

process is a network of interconnected fault trees which 

record logical relationships between component states and 

system failures. 

In HiP-HOPS, the fault tree synthesis is followed by 
qualitative analysis of the fault trees in which each fault tree 

is logically reduced to sets of prime implicants. The objective 

of this analysis is to remove the intermediate logic that 

connects leaf nodes of the trees (basic events) to top events in 

order to establish the direct contribution of component states 

represented as basic events to the system failures represented 

as top events. To achieve this, HiP-HOPS was extended with 

an algorithm for qualitative analysis of non-coherent fault 

trees.  

3. 1. Analysis of Non-coherent Fault Trees   

NOT gates can be located anywhere in the synthesized fault 
trees: they can directly complement leaf nodes representing 

component failure modes or intermediate events representing 

deviations of control parameters; in the latter case each 

deviation is underpinned by a branch recording the causes of 

the deviation further upstream in the model as captured by 

the fault tree synthesis algorithm. Before a fault tree can be 

analyzed, NOT gates need to be “pushed” down the tree to 
complement only component failure modes. This is achieved 

via, recursive if necessary, application of De Morgan’s law, 

as illustrated in Figure 1 below:  

De Morgan’s law: ¬ (A.B) = ¬ A + ¬ B 

                              ¬ (A + B) = ¬ A . ¬ B 

 

Figure 1: Pushing NOT gates down 

When the above is achieved, the fault tree is ready for further 

analysis and generation of prime implicant sets. Perhaps the 

simplest algorithm for qualitative analysis of non-coherent 

trees is a modification of a minimal cut sets algorithm known 
as the “the simple prime implicant set algorithm” which is 

described in (Worrel, 1981)). Although the algorithm does 
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not always produce complete prime implicant sets, the 

problem can be corrected and “hidden”3 sets can be identified 

via application of the Consensus method as described in 

(Quinne, 1955). Other algorithms for prime implicant 

generation include the Set Equation Transformation System 

(SETS) (Worrell and Stack, 1978), a top-down algorithm 

employing dual fault trees proposed by (Kumamoto and 

Henley, 1978) and the Binary Decision Diagram (BDD) 

algorithm (Rauzy, 1993). The use of BDDs in particular is 

one of the latest advancement in FTA, and one that has 

received much research interest. In the analysis of coherent 
models using BDDs, a fault tree is first converted into a 

BDD, where each of the basic events of the tree is 

represented as a node with two branches (branch 1 and 0, 

corresponding to the component failure and working state 

respectively). This traditional structure (known as structure-

function BDD), however, cannot be used in non-coherent 

analysis. This is because a component x in a non-coherent 

fault tree can contribute to a particular failure in its failed 

state (referred to as “failure-relevant”, x) or working state 

(referred to as “repair-relevant”, ¬x); or be excluded as a 
cause of failure (irrelevant to the system failure). Hence the 

two branches (failure and success) in a BDD node are no 

longer sufficient to represent these three states. 

To solve this problem, an extended Meta-products BDD was 

introduced by (Rauzy and Dutuit, 1997) which associates two 

variables (Px for “presence” and Sx for “Sign”) with every 

component x. “Presence” of the variable x encodes its 
relevancy (relevant or irrelevant) while “sign” of the variable 

x encodes its type of relevancy (failure or repair relevant).  

Another method for non-coherent fault tree analysis, called 

the Consensus BDD, has been proposed in (Beeson, 2002). It 
employs the Consensus law to encode “hidden” prime 

implicant sets and introduces three branches to every BDD 

node to distinguish the three possible states of a component 

The Consensus law is given below: 

Consensus Law:  A.B + ¬ A.C = A.B + ¬ A.C + B.C   [1] 

And simply states that: if B causes system failure when A 
fails and C causes system failure when A works, then the 

combination of B and C inevitably cause system failure 

regardless of the state of A. In such circumstances B.C is 

known as the “hidden” prime implicant set that can be 

identified by application of Consensus.  

Research on analysis of coherent trees has shown that the 
BDD approach can be more efficient than conventional FTA 

methods. Hence the development of extensions for non-

coherent fault trees (including proposals such as the MPBDD 

and Consensus BDD) is highly justified and still represents 

an open area for research. For the purposes of this work, an 

alternative approach that combines a modified classical BDD 

                                                
3 The presence of biform events in non-coherent structure 

potentially leads to the creation of “hidden”prime implicant 

sets. An event is said to be monoform in a logical expression 

written as sum of products if the event X occurs while the 

negated event (¬ X) does not occur. Otherwise it is said to be 
biform.  

structure and iterated consensus (Sharvia, 2007) was 

developed.  

In its core, this new approach is an adaptation of the classic 
coherent BDD analysis to non-coherent systems. Non-

coherent fault trees are still translated to BDDs. But unlike in 

a structure-function BDD where a single node is used to 

represent both the failed state of a component and its 

negation (working state), here these two states are 

represented in two separate nodes  which are initially treated 

as independent (as shown in figure 2). This enables the three 

states (i.e. failed, working and irrelevant) to be distinguished 

and a classic BDD structure with two branches in each node 

to be retained. Although the “irrelevant” branch is duplicated, 

the node representing the negated basic event (working state) 

can be used where and when necessary without the need to 
modify the classic BDD structure as in the MP-BDD or 

Consensus BDD. The conversion from the fault tree to the 

proposed BDD structure is done in the classical way of 

coherent BDD analysis and the known BBD algorithm used 

for minimal cut-sets still applies and can be used for prime 

implicant generation. 

One consequence of this approach is the possibility of hidden 
prime implicant sets to arise as a result of treating the failed 

and working state of a component as separate independent 

nodes. This problem is overcome by extending this approach 

with effective iterated consensus (see equation 1) which is 

applied once initial sets are generated from the BDD. By 

applying consensus and by removing any contradictions that 

may arise in the process (of the type x .¬x = 0) the full 
complete prime implicant sets can be obtained.  

 

 

Figure 2 :  Proposed BDD node structure  

As an example, Figure 3 shows an example fault tree and 

Figure 4 shows its equivalent BDD according to the proposed 
conversion. From the BDD, prime implicant sets of “B.A + 

¬A.C” can first be obtained using the algorithm for coherent 
BDD analysis and then the hidden prime implicant “BC” is 

added to the set by application of Consensus.  

 

 

Figure 3: Example of non-coherent fault tree 
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Figure 4 : Representation of sample fault tree in BDD  

A detailed description of the algorithm is beyond the scope of 
this paper. For the purposes of this work it suffices to 

describe the principle and note that the algorithm has been 

implemented and integrated in the HiP-HOPS tool which 

now supports a new type of non-coherent compositional 
failure modelling. An example follows which demonstrates 

application of the approach to a small system. 

4. EXAMPLE 

Figure 5 illustrates a generic pattern of a primary-standby 
configuration in which initially the function of the system is 

provided by the primary component (A1) and when this fails 

function is provided by the standby (A2). Using a generic 

example means that the results of analysis shown here are 

applicable to a wider class of systems that follow this 

particular pattern. It can easily be imagined how specific 

components and the failure modes of these components can 

substitute the generic references made in the example.  

Out is the system output, and is initially the output of 
component A1. A1 performs a function on the outputs 

provided by components S1 and S2, which in turn perform 

functions on a common input In. M is a monitor that detects 

an omission of output from A1 (O-A1) and activates the 

standby component A2. In that case, the system output is 

provided by A2 instead. 

 

Figure 5: Simplified standby system 

In this design, any single value failure or omission at the 
output of S1 or S2 (V-S1, V-S2, O-S1, O-S2) causes a value 

failure at the output of A1 or A2. On the other hand, omission 

of both outputs from S1 and S2 causes omission of A1 or A2. 

Two failures can be observed at the output of the system:  

1.  Omission failure (O-out): caused by omissions of output 

of both A1 and A2 (O-A1.O-A2).  

2.  Value failure (V-out): caused by value failure of either 

A1 or A2 (V-A1+O-A1.V-A2) depending on mode  

The internal malfunctions of components are as follows:  

S1 : Component S1 failed causing omission of output 

V1 : Component S1 biased causing incorrect value at output  

S2  : Component S2 failed causing omission of output  

V2 : Component S2 biased causing incorrect value at output  

A1 : Component A1 failed causing omission of output 

A2 : Component A1 failed causing omission of output  

In : Input generator failed causing Omission of input 

M  : Monitor M failed causing omission of output 

In coherent analysis, the failure logic that links output 
failures to internal malfunctions and input deviations for each 

component can be described as follows: 

Out:  O-out = O-A1.O-A2  

V-out = V-A1 + O-A1.V-A2 

A1:   O-A1 = A1 + O-S1.O-S2  

V-A1 = V-S1+ V-S2 + O-S1 + O-S2  

A2:  O-A2 = O-M + A2 + O-S1.O-S2  

V-A2 = V-S1+ V-S2 + O-S1 + O-S2 
S1:  O-S1 = S1 + O-I   

V-S1 = V1 

S2:   O-S2 = S2 + O-I 

V-S2 = V2 

M:    O-M = M 

Input: O-I = In 
 

By starting from the output of the system and by 
progressively substituting in the expressions above conditions 

that represent deviations of parameters with their causes, 

coherent fault trees can be created that explain the causes of 

two system failures: omission of output (O-out) and incorrect 

system output (V-out) 

O-out  = O-A1.O-A2 

 = (A1 + O-S1.O-S2).( O-M + A2 + O-S1.O-S2) 

 = (A1 + S1.S2+ In ).(M+A2+ S1.S2+ In)  

 = A1.M + A1.A2 + In + S1.S2 

V-out  = V-A1 + O-A1.V-A2  

= V-S1+ V-S2 + O-S1 + O-S2 

= V1 + V2 + S1 + S2 + In       

The result for O-out are as expected, i.e. omission of output is 
caused by failure of both components A1 and A2, both 

component S1 and S2, failure of primary and monitor in 

which case the standby is not started, or omission of input.  

The results for V-out are more interesting. They state, for 

example, that a failure of either S1 or S2 (S1 + S2) will cause 

an incorrect output V-out.  Indeed, if one of these 

components fails causing an omission of its output (i.e. O-S1, 
O-S2) this in turn should cause a value failure because A1 

and A2 rely on both inputs and inevitably produce incorrect 

results (in applications such as vehicle braking applying 

incorrect braking on demand may still be better than failing 

to brake). However, if both S1 and S2 fail causing omission 

of their outputs, this will cause omission of system output. 

The problem is precisely this, that the current causes of V-out 

indirectly include the possibility of S1 and S2 failures 

occurring together (because S1 + S2 contains S1.S2) and this 

is wrong. Furthermore, this cannot be corrected using 

coherent modelling; to distinguish between the causes of an 

omission (S1.S2) and the causes of a value failure we need to 
express the latter by using a XOR gate and by making 

references to the working states of components (S1⊕S2 = 

S1.¬S2+ S2.¬S1). Of course using XOR gates means using 
NOT gates and non-coherent modelling.      
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By applying non-coherent modelling in the failure logic of 
A1 and A2, the fault tree for V-out becomes:  

V-out  = V-A1 +O-A1.V-A2 

     = O-S1. ¬ O-S2 + ¬ O-S1.O-S2 + V-S1 + V-S2 

     = (S1 + In).¬ (S2+In) + ¬ (S1+In). (S2+ In) + V1 + V2 

     = S1.¬S2.¬In + S2.¬S1.¬In + V1 + V2 

This accurate representation gives a correct and clear view of 

the contribution of component failures to the system, as well 
as helps to eliminate spurious causes. Note, for example, that 

in coherent analysis, omission of input (In) is recorded as a 

cause of value failure at the output of the system because it 

causes omission of component S1,S2 output which in turn 

can (but not always) cause such value failure. However, what 

is overlooked here is that the omission of input can only 

cause simultaneous omission of both S1 and S2, and as such, 

it can only cause an omission of system output (O-out) and 

NOT a value failure. This further inaccuracy is also corrected 

in non-coherent analysis.  

5. CONCLUSIONS  

In this paper, we have given evidence in support of non-

coherent modelling in FTA and argued that this type of 

modelling is important in the context of the compositional 

FTA techniques which have emerged since the late 90s. We 
have also described an extension that enables non-coherent 

modelling in the context of HiP-HOPS, a technique that 

enables a form of compositional, semiautomatic, model-

based FTA on complex systems. We have shown that, using 

this extension, it is possible to analyse the failure behaviour 

of a system more precisely, and obtain more accurate results 

than those gained via coherent analysis. Through this 

extension, the benefits of a more precise non-coherent 

analysis can be combined with the benefits of automation and 

potential reuse of component failure models inherent in HiP-

HOPS. In certain cases, non-coherent modelling will not only 
indicate potential weaknesses in system design, but also 

suggest subtle remedial measures.  

Ultimately, the decision as to whether or not to use NOT 

gates should strike a balance, among the need for precision 
and correctness, the increased complexity in failure 

modelling and the greater computational expenses involved. 

However, in any case, the extension described in this paper 

will enable a wider range of failure modelling capabilities to 

be explored within compositional FTA techniques which will 

further contribute, we hope, to the debate on non-coherent 

modelling in the future.  
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