

Non-coherent Modelling in Compositional Fault Tree Analysis

Septavera Sharvia, Yiannis Papadopoulos

Department of Computer Science, University of Hull, UK

{s.sharvia, y.i.papadopoulos} @ dcs.hull.ac.uk

Abstract: The inclusion of NOT gates in a fault tree creates a “non-coherent” structure in which not only
the failure of a component but also the negation of failure, i.e. the working state of the component, can

contribute to the undesirable effects on a system. This type of non-coherent modelling remains

controversial; its usefulness is still debated among academics, which explains why NOT gates have not

been included in the Fault Tree Handbook. In this paper, we review work on non-coherent fault trees and

highlight circumstances where non-coherent modelling is appropriate and useful. We then describe an

extension to HiP-HOPS (Hierarchically Performed Hazard Origin and Propagation Studies), a recently

proposed compositional safety analysis method, that enables model-based synthesis and analysis of non-

coherent fault trees. A small example is given to illustrate application of the extended method and

demonstrate how this type of non-coherent modelling can give a more precise and ultimately more

correct insight into failure behaviour. Copyright © 2008 IFAC.

1. INTRODUCTION AND BACKGROUND

Fault Tree Analysis (FTA) is undoubtedly a useful safety
analysis technique. However, in industrial practice, the

construction of fault trees remains a manual process which in

the context of large and complex systems becomes laborious,

expensive and error prone. Recently, a number of
compositional FTA techniques have emerged in which fault

trees are automatically produced from system models that

contain information about component failures and their

effects. Techniques include HiP-HOPS (Papadopoulos, et al,

2001), Components Fault Trees (CFT) (Kaiser et al, 2003),

and State-Event Fault Trees (SEFT) (Grunske et al, 2005).

The role of safety analysts in compositional FTA is redefined

as people are only required to provide the local failure

behaviour of components, while an automated tool takes that

information and determines how local failures propagate

through a system model to cause system-level effects. This
approach simplifies the assessment, and makes it possible to

perform multiple iterations of safety analysis, for example to

examine the effects of design modifications on system safety.

This new work on compositional FTA has so far been
limited to the synthesis and analysis of fault trees with

coherent structure, i.e. fault trees in which the failure logic is

composed of classical Boolean AND and OR gates. While

recent work has looked into extending this concept to support

state-based (Kaiser et al, 2004) and temporal safety analysis

(Walker and Papadopoulos, 2006) (Merle and Roussel, 2007)

the potential for synthesis and analysis of non-coherent fault

trees, i.e. fault trees which also contain NOT gates, has not

yet been explored. A possible explanation for this is that the

inclusion of NOT gates in fault trees implies that both the

failed and working state of components can contribute to the

failure of the system, a feature that traditionally has been seen
as an indication of poor design. In such circumstances, the

prevalent advice has been to revise the design rather than

resort to the need for non-coherent modelling. Beyond

conceptual objections to the use of NOT gates, it has also
been argued that the inclusion of NOT logic increases the

complexity of both qualitative and quantitative analysis of the

fault tree while providing little additional information.

Despite those strong objections, researchers have begun to
recognize the importance of incorporating NOT logic in fault

trees and a body of work has emerged in support of non-

coherent modelling. In section 2, we review arguments for

and against non-coherent fault trees highlighting cases where

the inclusion of NOT gates benefits failure modelling. In

section 3, we present an extension to HiP-HOPS that enables

compositional synthesis and analysis of non-coherent fault

trees. We discuss the type of non-coherent modelling enabled

within HiP-HOPS as well as state-of the art techniques for

analysis of non-coherent fault trees that have underpinned the

tool extension. In section 4, we give an example of
application of this approach and demonstrate how

compositional non-coherent failure modelling can help

analysts improve their insight into the behaviour of a system.

Finally in section 5 we draw conclusions.

2. NON-COHERENT MODELLING

The traditional view that NOT gates are not required in FTA
is largely based on the notion that the probability of a

negation of a failure event is always close to one which

means that such conditions can be safely ignored in

quantitative FTA. This view is challenged in (Johnston and

Matthews, 1983) where circumstances are presented in which

the assumption P (¬ A) ≈ 1, where A = failure event, does
not always hold. It is clear, for example, that this assumption

does not hold in conditions where the failure probability of a

component becomes significant enough and this is often the

case in conditions that exceed the operating specifications of

a component. In stormy weather, for instance, the probability
of an electrical power supply working is substantially lower

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 4138 10.3182/20080706-5-KR-1001.0318

than what would be required for that condition to be ignored

in quantitative FTA. In such cases, the omission of NOT

gates results in incorrect quantitative evaluations.

(Andrews, 2000) argues that the use of NOT gates is
especially important in the failure modelling of multitasking

systems. He discusses an example of such a system where a

coherent simplification of a fault tree could result in the

generation of misleading “false” minimal cut sets1. Andrews

shows that these “false” cut sets could be avoided with the

inclusion of NOT gates, which in this case are needed for

correct modelling.

Another argument against non-coherent modelling is that if
we allow the negation of component failures to cause system

failure, then we must also accept that the occurrence of

component failures can somehow prevent system failure. The

Fault Tree Handbook (Vesley, 1981) takes the view that

situations where component failures miraculously help

prevent system failure should not be included in fault trees as

they are very unlikely. However, Johnston and Matthews
(1983) show that this type of inclusion could be beneficial in

helping designers to identify potential preventive measures.

Take for example the following two conditions:

 OilLeakage = PipeImpaired (1)

 OilLeakage = PipeImpaired . ¬ FailureToSupplyOil (2)

Compared to its coherent simplification in (1), the non-
coherent representation in (2) helps a designer to identify

that, in circumstances where a pipe is damaged, shutting off

the oil supply to the pipe could prevent oil leakage. The

system could then be enhanced with an automatic mechanism

that shuts down the oil supply when an impaired pipe is

detected.

The need for negative failure logic also arises in
circumstances where an XOR gate is required, e.g. to indicate

that the co-existence of two failures is prohibited by system

boundaries. An XOR gate by definition implies a NOT gate

(because A⊕B = A . ¬ B + B . ¬ A), and therefore indirectly

leads to non-coherent modelling.

Another case for non-coherent modelling is that of a phased

mission system, or a system that goes through a sequence of

operational modes. In such a system, the success of a given

phase clearly depends on the success of the precursor phases.
Therefore the failure of a system (S) in a phase (A) can only

occur if failure (P) have been avoided in all precursor phases

(i.e. S=A. ¬ P).

Beeson (2002) shows that the prime implicant sets generated

from non-coherent fault trees can help to develop a repair
schedule for failed components if a system cannot be taken

1 A minimal cut set of a fault tree (or “prime implicant” for a

non-coherent fault tree) is the smallest combination of basic

events that results in system failure represented as top event

in the tree. A basic event is a leaf node, which represents a

component failure or the negation of failure (in prime

implicants), i.e. a component in working state.

off line for repair. For example, suppose that prime implicant

set A.B.¬C causes a catastrophic system failure. The set
shows that, in circumstances where A, B and C have failed, C

should be the last to be repaired in order to avoid system

failure. Note that the set also identifies potential design

improvements. It shows, for example, that additional

measures can be incorporated to prevent system failure, by

forcing failure of component C when A and B have failed.

This can be generalised as a particular type of hazard

mitigation strategy, where the act of forcing an additional

component failure makes it possible to prevent a system

failure, a condition known as achieving an “Island of
Success” (Johnston and Matthews, 1983). For example, if we

assume that HAZARD is caused by ¬A.B, then the condition
A.B represents an island of success that can be achieved by

forcing failure of A in conditions of failure of B. This

knowledge can only be gained via non-coherent modelling,

and is useful, because it suggests a (temporary at least)

mitigation measure against HAZARD. In the absence of this

in coherent modelling, a designer must simply assume that

failure of B by itself is sufficient to cause system failure, and

that nothing can be done in those circumstances.

Finally, there is a common misconception that the INHIBIT
gate can be used as a substitute of NOT. The INHIBIT gate

propagates an input failure (I) to its output only in the

presence of condition (C) and effectively yields a logical

result which is equivalent to [I.C]. Such a gate could indeed

be used in situations where C represents the working state or

negation of failure (F) of a component or subsystem.
However, in such cases the logical result of an INHIBIT gate

is simply equivalent to (I.¬F). Clearly, the problem remains:
any logical processing of such gates would still require non-

coherent modelling and calculation of prime implicants.

3. SYNTHESIS AND ANALYSIS OF NON-COHERENT

FAULT TREES

As the value of non-coherent failure modelling is
increasingly understood, it becomes important to enable this

type of modelling in contemporary developments in safety

analysis, such as the compositional FTA techniques which

have emerged since the late 90s.

HiP-HOPS is one of the first proposals for compositional
FTA which introduces a degree of automation and reuse in

safety analysis to address problems arising from the

increasing complexity of systems. In HiP-HOPS, the

topology of a system together with reusable local failure

specifications at component level are used to automatically

produce a set of fault trees and an FMEA (Failure Modes and

Effects Analysis) for the system. The technique is supported

by an automated tool which currently works in conjunction

with modelling tools like Matlab Simulink and ITI’s
Simulation X – but can also be interfaced to other modelling

packages.

To achieve synthesis of system level safety analyses, HiP-

HOPS defines a language for the description of failure
behaviour at component level. Using this language, the

failure behaviour of a component can be specified as a list of

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

4139

declarations of internal failure modes of the component

(internal malfunctions) and a list of declarations of deviations

of parameters as they can be observed at component outputs

(output deviations). Each internal malfunction is optionally

accompanied by quantitative data, e.g. a failure and a repair

rate if these are known. For each output deviation an

expression is given to describe causes as a logical

combination of internal malfunctions of the component and

similar deviations of parameters at component inputs (input

deviations). Analysts decide which input and output

deviations should be examined during the analysis. Although
these deviations will tend to vary across applications, they

would typically represent conditions such as the “omission”

or “commission”2 of an input or output parameter and

conditions such as the parameter being delivered at a higher

or lower value (“value failures”) or earlier or later than

expected (“timing failures”).

This specification of component failures and their local
effects can be stored in a library and is reusable for other

components of the same type. For the purposes of the work

describe here, the grammar of this specification has been

extended to include a NOT operator, which makes it possible

to perform non-coherent failure modelling at component

level. Negation can be applied either to internal malfunctions

or input deviations to suggest the complement of those

conditions in expressions that define the causes of output
deviations.

Using these new capabilities it is possible to express the

working state of a component as a negation of the disjunction

of all its failure modes. E.g. if a component has two failure
modes FM1 and FM2, its working state can be represented as

¬ (FM1 + FM2), or with the equivalent expression ¬ FM1. ¬
FM2. Similarly, if a component has a single failure mode FM

and handles two inputs IN1 and IN2 which we know that by

design cannot fail simultaneously, then it is possible to

specify that an omission of component output O1 is caused

by FM or an omission of exactly one input, i.e. that

O-O1 = FM + O-IN1. ¬ O-IN2 + O-IN2. ¬ O-IN1

 where “O-“stands for “Omission of”.

Once these local analyses (coherent or not) have been
inserted into the model, the structure of the model is then

used to automatically determine how local conditions

specified in the analyses propagate through connections in

the model and cause functional failures at the outputs of the
system. The global view of failure in the system is captured

in a set of non-coherent - if necessary - fault trees which are

automatically constructed by traversing the model of the

system backwards moving from the final elements of the

design, i.e. the actuators, towards system inputs and by

evaluating the failure expressions of the components

encountered during this traversal.

2
 An “omission” of output is a condition in which output is

not provided when there should be output according to the

design intention, while a “commission” of an output is a

condition is which output is generated inadvertently.

To enable synthesis of non-coherent fault trees, the original
fault tree synthesis algorithm was extended with the ability to

handle not only conditions that represent failures but also

conditions that represent the negation of such failures. The

fault trees synthesized using this approach show how

functional failures or malfunctions at the outputs of the

system are caused by logical combinations of component

failures or component working states. These fault trees may

share branches and basic events in which case they record

dependencies in the model and common causes of failure, i.e.

component failures that contribute to more than one system
failures. Thus, in general, the result of the fault tree synthesis

process is a network of interconnected fault trees which

record logical relationships between component states and

system failures.

In HiP-HOPS, the fault tree synthesis is followed by
qualitative analysis of the fault trees in which each fault tree

is logically reduced to sets of prime implicants. The objective

of this analysis is to remove the intermediate logic that

connects leaf nodes of the trees (basic events) to top events in

order to establish the direct contribution of component states

represented as basic events to the system failures represented

as top events. To achieve this, HiP-HOPS was extended with

an algorithm for qualitative analysis of non-coherent fault

trees.

3. 1. Analysis of Non-coherent Fault Trees

NOT gates can be located anywhere in the synthesized fault
trees: they can directly complement leaf nodes representing

component failure modes or intermediate events representing

deviations of control parameters; in the latter case each

deviation is underpinned by a branch recording the causes of

the deviation further upstream in the model as captured by

the fault tree synthesis algorithm. Before a fault tree can be

analyzed, NOT gates need to be “pushed” down the tree to
complement only component failure modes. This is achieved

via, recursive if necessary, application of De Morgan’s law,

as illustrated in Figure 1 below:

De Morgan’s law: ¬ (A.B) = ¬ A + ¬ B

 ¬ (A + B) = ¬ A . ¬ B

Figure 1: Pushing NOT gates down

When the above is achieved, the fault tree is ready for further

analysis and generation of prime implicant sets. Perhaps the

simplest algorithm for qualitative analysis of non-coherent

trees is a modification of a minimal cut sets algorithm known
as the “the simple prime implicant set algorithm” which is

described in (Worrel, 1981)). Although the algorithm does

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

4140

not always produce complete prime implicant sets, the

problem can be corrected and “hidden”3 sets can be identified

via application of the Consensus method as described in

(Quinne, 1955). Other algorithms for prime implicant

generation include the Set Equation Transformation System

(SETS) (Worrell and Stack, 1978), a top-down algorithm

employing dual fault trees proposed by (Kumamoto and

Henley, 1978) and the Binary Decision Diagram (BDD)

algorithm (Rauzy, 1993). The use of BDDs in particular is

one of the latest advancement in FTA, and one that has

received much research interest. In the analysis of coherent
models using BDDs, a fault tree is first converted into a

BDD, where each of the basic events of the tree is

represented as a node with two branches (branch 1 and 0,

corresponding to the component failure and working state

respectively). This traditional structure (known as structure-

function BDD), however, cannot be used in non-coherent

analysis. This is because a component x in a non-coherent

fault tree can contribute to a particular failure in its failed

state (referred to as “failure-relevant”, x) or working state

(referred to as “repair-relevant”, ¬x); or be excluded as a
cause of failure (irrelevant to the system failure). Hence the

two branches (failure and success) in a BDD node are no

longer sufficient to represent these three states.

To solve this problem, an extended Meta-products BDD was

introduced by (Rauzy and Dutuit, 1997) which associates two

variables (Px for “presence” and Sx for “Sign”) with every

component x. “Presence” of the variable x encodes its
relevancy (relevant or irrelevant) while “sign” of the variable

x encodes its type of relevancy (failure or repair relevant).

Another method for non-coherent fault tree analysis, called

the Consensus BDD, has been proposed in (Beeson, 2002). It
employs the Consensus law to encode “hidden” prime

implicant sets and introduces three branches to every BDD

node to distinguish the three possible states of a component

The Consensus law is given below:

Consensus Law: A.B + ¬ A.C = A.B + ¬ A.C + B.C [1]

And simply states that: if B causes system failure when A
fails and C causes system failure when A works, then the

combination of B and C inevitably cause system failure

regardless of the state of A. In such circumstances B.C is

known as the “hidden” prime implicant set that can be

identified by application of Consensus.

Research on analysis of coherent trees has shown that the
BDD approach can be more efficient than conventional FTA

methods. Hence the development of extensions for non-

coherent fault trees (including proposals such as the MPBDD

and Consensus BDD) is highly justified and still represents

an open area for research. For the purposes of this work, an

alternative approach that combines a modified classical BDD

3 The presence of biform events in non-coherent structure

potentially leads to the creation of “hidden”prime implicant

sets. An event is said to be monoform in a logical expression

written as sum of products if the event X occurs while the

negated event (¬ X) does not occur. Otherwise it is said to be
biform.

structure and iterated consensus (Sharvia, 2007) was

developed.

In its core, this new approach is an adaptation of the classic
coherent BDD analysis to non-coherent systems. Non-

coherent fault trees are still translated to BDDs. But unlike in

a structure-function BDD where a single node is used to

represent both the failed state of a component and its

negation (working state), here these two states are

represented in two separate nodes which are initially treated

as independent (as shown in figure 2). This enables the three

states (i.e. failed, working and irrelevant) to be distinguished

and a classic BDD structure with two branches in each node

to be retained. Although the “irrelevant” branch is duplicated,

the node representing the negated basic event (working state)

can be used where and when necessary without the need to
modify the classic BDD structure as in the MP-BDD or

Consensus BDD. The conversion from the fault tree to the

proposed BDD structure is done in the classical way of

coherent BDD analysis and the known BBD algorithm used

for minimal cut-sets still applies and can be used for prime

implicant generation.

One consequence of this approach is the possibility of hidden
prime implicant sets to arise as a result of treating the failed

and working state of a component as separate independent

nodes. This problem is overcome by extending this approach

with effective iterated consensus (see equation 1) which is

applied once initial sets are generated from the BDD. By

applying consensus and by removing any contradictions that

may arise in the process (of the type x .¬x = 0) the full
complete prime implicant sets can be obtained.

Figure 2 : Proposed BDD node structure

As an example, Figure 3 shows an example fault tree and

Figure 4 shows its equivalent BDD according to the proposed
conversion. From the BDD, prime implicant sets of “B.A +

¬A.C” can first be obtained using the algorithm for coherent
BDD analysis and then the hidden prime implicant “BC” is

added to the set by application of Consensus.

Figure 3: Example of non-coherent fault tree

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

4141

Figure 4 : Representation of sample fault tree in BDD

A detailed description of the algorithm is beyond the scope of
this paper. For the purposes of this work it suffices to

describe the principle and note that the algorithm has been

implemented and integrated in the HiP-HOPS tool which

now supports a new type of non-coherent compositional
failure modelling. An example follows which demonstrates

application of the approach to a small system.

4. EXAMPLE

Figure 5 illustrates a generic pattern of a primary-standby
configuration in which initially the function of the system is

provided by the primary component (A1) and when this fails

function is provided by the standby (A2). Using a generic

example means that the results of analysis shown here are

applicable to a wider class of systems that follow this

particular pattern. It can easily be imagined how specific

components and the failure modes of these components can

substitute the generic references made in the example.

Out is the system output, and is initially the output of
component A1. A1 performs a function on the outputs

provided by components S1 and S2, which in turn perform

functions on a common input In. M is a monitor that detects

an omission of output from A1 (O-A1) and activates the

standby component A2. In that case, the system output is

provided by A2 instead.

Figure 5: Simplified standby system

In this design, any single value failure or omission at the
output of S1 or S2 (V-S1, V-S2, O-S1, O-S2) causes a value

failure at the output of A1 or A2. On the other hand, omission

of both outputs from S1 and S2 causes omission of A1 or A2.

Two failures can be observed at the output of the system:

1. Omission failure (O-out): caused by omissions of output

of both A1 and A2 (O-A1.O-A2).

2. Value failure (V-out): caused by value failure of either

A1 or A2 (V-A1+O-A1.V-A2) depending on mode

The internal malfunctions of components are as follows:

S1 : Component S1 failed causing omission of output

V1 : Component S1 biased causing incorrect value at output

S2 : Component S2 failed causing omission of output

V2 : Component S2 biased causing incorrect value at output

A1 : Component A1 failed causing omission of output

A2 : Component A1 failed causing omission of output

In : Input generator failed causing Omission of input

M : Monitor M failed causing omission of output

In coherent analysis, the failure logic that links output
failures to internal malfunctions and input deviations for each

component can be described as follows:

Out: O-out = O-A1.O-A2

V-out = V-A1 + O-A1.V-A2

A1: O-A1 = A1 + O-S1.O-S2

V-A1 = V-S1+ V-S2 + O-S1 + O-S2

A2: O-A2 = O-M + A2 + O-S1.O-S2

V-A2 = V-S1+ V-S2 + O-S1 + O-S2
S1: O-S1 = S1 + O-I

V-S1 = V1

S2: O-S2 = S2 + O-I

V-S2 = V2

M: O-M = M

Input: O-I = In

By starting from the output of the system and by
progressively substituting in the expressions above conditions

that represent deviations of parameters with their causes,

coherent fault trees can be created that explain the causes of

two system failures: omission of output (O-out) and incorrect

system output (V-out)

O-out = O-A1.O-A2

 = (A1 + O-S1.O-S2).(O-M + A2 + O-S1.O-S2)

 = (A1 + S1.S2+ In).(M+A2+ S1.S2+ In)

 = A1.M + A1.A2 + In + S1.S2

V-out = V-A1 + O-A1.V-A2

= V-S1+ V-S2 + O-S1 + O-S2

= V1 + V2 + S1 + S2 + In

The result for O-out are as expected, i.e. omission of output is
caused by failure of both components A1 and A2, both

component S1 and S2, failure of primary and monitor in

which case the standby is not started, or omission of input.

The results for V-out are more interesting. They state, for

example, that a failure of either S1 or S2 (S1 + S2) will cause

an incorrect output V-out. Indeed, if one of these

components fails causing an omission of its output (i.e. O-S1,
O-S2) this in turn should cause a value failure because A1

and A2 rely on both inputs and inevitably produce incorrect

results (in applications such as vehicle braking applying

incorrect braking on demand may still be better than failing

to brake). However, if both S1 and S2 fail causing omission

of their outputs, this will cause omission of system output.

The problem is precisely this, that the current causes of V-out

indirectly include the possibility of S1 and S2 failures

occurring together (because S1 + S2 contains S1.S2) and this

is wrong. Furthermore, this cannot be corrected using

coherent modelling; to distinguish between the causes of an

omission (S1.S2) and the causes of a value failure we need to
express the latter by using a XOR gate and by making

references to the working states of components (S1⊕S2 =

S1.¬S2+ S2.¬S1). Of course using XOR gates means using
NOT gates and non-coherent modelling.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

4142

By applying non-coherent modelling in the failure logic of
A1 and A2, the fault tree for V-out becomes:

V-out = V-A1 +O-A1.V-A2

 = O-S1. ¬ O-S2 + ¬ O-S1.O-S2 + V-S1 + V-S2

 = (S1 + In).¬ (S2+In) + ¬ (S1+In). (S2+ In) + V1 + V2

 = S1.¬S2.¬In + S2.¬S1.¬In + V1 + V2

This accurate representation gives a correct and clear view of

the contribution of component failures to the system, as well
as helps to eliminate spurious causes. Note, for example, that

in coherent analysis, omission of input (In) is recorded as a

cause of value failure at the output of the system because it

causes omission of component S1,S2 output which in turn

can (but not always) cause such value failure. However, what

is overlooked here is that the omission of input can only

cause simultaneous omission of both S1 and S2, and as such,

it can only cause an omission of system output (O-out) and

NOT a value failure. This further inaccuracy is also corrected

in non-coherent analysis.

5. CONCLUSIONS

In this paper, we have given evidence in support of non-

coherent modelling in FTA and argued that this type of

modelling is important in the context of the compositional

FTA techniques which have emerged since the late 90s. We
have also described an extension that enables non-coherent

modelling in the context of HiP-HOPS, a technique that

enables a form of compositional, semiautomatic, model-

based FTA on complex systems. We have shown that, using

this extension, it is possible to analyse the failure behaviour

of a system more precisely, and obtain more accurate results

than those gained via coherent analysis. Through this

extension, the benefits of a more precise non-coherent

analysis can be combined with the benefits of automation and

potential reuse of component failure models inherent in HiP-

HOPS. In certain cases, non-coherent modelling will not only
indicate potential weaknesses in system design, but also

suggest subtle remedial measures.

Ultimately, the decision as to whether or not to use NOT

gates should strike a balance, among the need for precision
and correctness, the increased complexity in failure

modelling and the greater computational expenses involved.

However, in any case, the extension described in this paper

will enable a wider range of failure modelling capabilities to

be explored within compositional FTA techniques which will

further contribute, we hope, to the debate on non-coherent

modelling in the future.

ACKNOWLEDGEMENTS

This work was supported by the European Framework 6
Integrated Project SAFEDOR (IP-516278). The authors

would like to thank Martin Walker for his help.

REFERENCES

Andrews, J.D. (2000). To not or not to not. Proceedings of

the 18th international system safety conference.
Forte Worth, pp 267-275.

Beeson, S.C. (2002). Non-coherent fault tree analysis.

Loughborough University. UK.

Grunske, L., B. Kaiser, Y. Papadopoulos (2005). Model-

driven safety evaluation with state-event-based

component failure annotation. Lecture notes in

computer science 3489: pp 33-48, Springer. Berlin.

Johnston, B.D. and R.H. Matthews (1983). Non-coherent

structure theory: A review and its role in fault

tree analysis. United Kingdom Atomic Energy

Authority.

Kaiser, B. (2004). A fault-tree semantics to model software-

controlled systems Softwaretechnik-Trends 23(3),
Gesellschaft für Informatik (Hg.).

Kaiser, B., P.Liggesmeyer, O.Mackel (2003). A new

component concept for fault trees. Conferences in

research and practice in information

technology, 33. P.Lindsay & T. Cant, Eds. Canberra.

Kumamoto, H. and A. Henley (1978) Top-down algorithms

for obtaining prime implicant sets of non-coherent fault

tree. IEEE Transactions on reliability, R-27/4: pp

249.

Merle G. and J.-M. Roussel (2007). Algebraic modelling of

Fault Trees with Priority AND gates, DCDS'07, Paris,

France, pp 175-180.

Papadopoulos, Y., J.A. McDermid, R.Sasse, and G.Heiner

(2001). Analysis and synthesis of the behaviour of

complex programmable electronic systems in conditions.

Reliability engineering and system safety 71(3):

pp 229-247.

Quine, W.V (1955). A way to simplify truth function.

American mathematical monthly 62: pp 627-631

Rauzy, A., Y.Dutuit (1993). New algorithms for fault tree

analysis. Reliability engineering and system

safety 40: pp 203-211.

Rauzy, A., Y.Dutuit (1997). Exact and truncated

computations of prime implicants of coherent and non-

coherent fault tree. Reliability engineering and

system safety 58: pp 127-144.

Sharvia, S. (2007). Extending fault tree synthesis with

negative logic operator. MSc Thesis, University of

Hull, UK.
Vesely, W.E., F.F. Goldberg, N.H. Roberts, D.F. Haasl

(1981). Fault tree handbook, Washington D.C.,

USA. US NRC.

Walker, M. and Y.Papadopoulos (2006). PANDORA: The

time of Priority-AND gates. INCOM 2006, France: pp

237-242.

Worrell, R.B and D.W. Stack (1978). A SETS user

manual for the fault tree analyst. NUREG

CR_04651, Washington D.C., US NRC.
Worrell, R.B., D.W. Stack, B.L.Hulme (1981). Prime

implicants of non-coherent fault trees. IEEE

Transaction on reliability R-30/2 : pp 98-100.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

4143

