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Abstract: To compensate for heave motion, which has an adverse impact on the response of a
drill-string or a riser, passive and active devices are usually used. Active heave compensators,
whose control system is an essential part, allow conducting operations under more extreme
weather conditions than passive ones. This paper presents a constructive method to design a
nonlinear controller for an active heave compensation system using an electro-hydraulic system
driven by a double rod actuator. The control development is based on Lyapunov’s direct method
and disturbance observers.
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1. INTRODUCTION

Both vertical and horizontal motions of a drilling vessel/rig
have adverse effects on the riser(s) connecting between
the rig and the well at the sea bed, Sarpkaya [1981].
The horizontal motion of the rig (hence the upper end of
the risers) are often controlled by a dynamic positioning
system in deep-water applications. Based on linear and
nonlinear control theories, a number of control techniques
for dynamic positioning systems has been proposed in lit-
erature, see for example Fossen and Strand [2001], Do et al.
[2002] and references therein. However, in these papers the
vertical (heave) motion of the rig, which directly changes
the tension in the riser, is completely ignored. To reduce
the effect of the heave motion of the rig, an active heave
compensation system is often used in combination with
a passive riser compensator to provide a stable position
of the crown block referred to seabed. While controlling
dynamic positioning systems receives a lot of attention,
control of active heave compensation systems has received
much less attention from researchers. In Korde [1998],
a control system based on linear control techniques is
proposed for an active heave compensation system on drill-
ships. Recently, active control of heave compensated cranes
or module handling systems during the water entry phase
of a subsea installation is studied in Johansen et al. [2003].
In this work, a concept referred to as wave synchronization
is introduced, where the main idea is to utilize a wave
amplitude measurement in order to compensate directly
for the water motion due to waves inside the moonpool.
In Skaare and Egeland [2006], the authors proposed a
parallel force/position controller for the control of loads
through the wave zone in marine operations. Their con-
troller achieved a significant improvement of the minimum
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value of the wire tension over the wave synchronization
approach which was used in Johansen et al. [2003]. De-
signing a high performance controller for an active heave
compensation system is a challenging task due to the fact
that the force acting between the riser/drill-string and
the active heave compensation unit is difficult to model
accurately.

This paper proposes a nonlinear controller for an active
heave compensation system using an electro-hydraulic
system driven by a double rod actuator to minimize the
effect of the heave motion of the vessel on the response of
the riser. A disturbance observer is developed to estimate
the force acting on the piston of the hydraulic system,
and the heave acceleration of the vessel. This disturbance
observer is then implemented in the control design. The
control development and stability analysis are based on
Lyapunov’s direct method. This paper is a short version
of Do and Pan [2007].

2. PROBLEM FORMULATION AND
PRELIMINARIES

2.1 Problem formulation

We consider an active heave compensation system depicted
in Figure 1. It consists of an electro-hydraulic system
driven by a double rod actuator. The riser connects to
the piston of the hydraulic system via a ball joint. Hence
there is no bending moment. The hydraulic system’s house
is fixed to the vessel/rig. The heave motion of the vessel/rig
is denoted by z(t), which is coordinated in the earth-
fixed frame, OEXEYEZE . Let xH , which is coordinated
in the vessel body-fixed frame, be the displacement of
the cylinder rod (piston) of the hydraulic system, i.e.
the motion of the piston with respect to the vessel in
the vertical direction. The mathematical formulation and
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Fig. 1. Representative structure of an active heave com-
pensation system

control design in this paper is generic. Hence they also
work for one or more hydraulic systems.

To regulate the distance from the upper end of the riser
to the seabed, it is obvious that we want to keep the sum
|xH(t)+z(t)−L| as small as possible, where L is a constant,
which is preset to achieve the desired pretension of the
riser. This is done in the calibration process when the
riser system is installed. Let iH be the current input to
the hydraulic system. Then the control objective can be
described as designing the control input iH to drive the
cylinder rod in such a way that |xH(t) + z(t) − L| is kept
as small as possible. The mathematical model consisting
of the piston/rod, the actuator or the cylinder, and the
servovalve dynamics can be written as

ẍH =
AHCH3

mH
P̄H − bH

mH
ẋH +

1

mH
∆̃(t, xH , z, ẋH , ż),

˙̄PH = −4βHeAH

VHCH3
ẋH − 4βHeCHT

VH
P̄H +

4βHeCHDWHCH4x̄Hv

VH
√

ρH

√
CH3

√

P̄HS − sgn(x̄Hv)P̄H ,

˙̄xHv = − 1

τHv
x̄Hv +

kHv

τHvCH4
iH (1)

where mH is the mass of the rod of the hydraulic system,
PH = P1 − P2 is the load pressure of the cylinder with
P1 and P2 being the pressures in the upper and lower
compartments of the cylinder, see Figure 1, AH is the ram
area of the cylinder, bH represents the combined coefficient
of the modeled damping and viscous friction forces on the
cylinder rod, ∆̃(t, xH , z, ẋH , ż) denotes the force acting on
the rod from the riser or drill-string, VH is the total volume

of the cylinder and the hoses between the cylinder and the
servovalve, βHe is the effective bulk modulus, CHT is the
coefficient of the total internal leakage of the cylinder due
to pressure, QH is the load flow, QH is the load flow, xHv

is the spool displacement of the servovalve, CHD is the
discharge coefficient, WH is the spool valve area gradient,
PHS is the supply pressure of the fluid, sgn denotes the
standard signum function, ρH is density of the oil, τHv

and kHv are the time constant and gain of the servovalve
respectively, iH is the current input to the hydraulic sys-
tem, P̄H = PH

CH3
and x̄Hv = xHv

CH4
where CH3 and CH4 are

scaling constants to avoid numerical error and facilitating
the control gain tuning process since PH is usually very
large and τHv is usually very small, and P̄HS = PHS

CH3
. It

is noted that there would be a force from the riser acting
on the cylinder rod in the horizontal plane. This force will
affect the motions in sway and surge. However, in this
paper we do not consider the sway and surge motions,
which are considered in a dynamic positioning system. For
stabilization/tracking control of the hydraulic system (1)
without using disturbance observers but the ”concept of
dominating the size of disturbances”, the reader is referred
to Yao et al. [2001] and references therein. We now restate
the control objective as follows:

Control objective. Under the assumption that z(t) and

∆̃(t, xH , z, ẋH , ż) and their derivatives are bounded, design
the control input iH to regulate the distance from the
upper end of the riser to seabed, i.e. to keep the sum
|z(t)+xH(t)−L| as small as possible, where L is a constant
which is preset to achieve a desired tension in the riser.

2.2 Preliminaries

Since we assume that ∆̃(t, xH , z, ẋH , ż) and ż(t) are not
available for the control design, we present in this subsec-
tion a disturbance observer, which will be used in the con-
trol design in the next section. In addition, discontinunity

of the term
√

P̄HS − sgn(x̄Hv)P̄H in (1) causes difficulty
in the control design. Therefore, we also present a p-times
differentiable signum function to approximate the signum
function in (1).

Disturbance observer Consider the following system

ẋ = f(x) + u + d(t, x) (2)

where x ∈ R
n, f(x) is a vector of known functions of x, u is

the control input vector, and d(t, x) is a vector of unknown
disturbances. We assume that there exists a nonnegative
constant Cd such that ‖ḋ(t, x)‖ ≤ Cd. Now we want to
design the control input u to stabilize the system (2) at
the origin. It is obvious that if we can design a distur-

bance observer, d̂(t, x), that estimates d(t, x) sufficiently
accurately, then the control input u is straightforwardly

designed as u = −κx − f(x) − d̂(t, x) with κ a positive
definite matrix. The disturbance observer is given in the
following lemma.

Lemma 1. Consider the following disturbance observer
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d̂(t, x) = ξ + ρ(x)

ξ̇ = −K(x)ξ − K(x)(f(x) + u + ρ(x)) (3)

where K(x) = ∂ρ(x)
∂x , ρ(x) is chosen such that the matrix

K(x) is positive definite for all x ∈ R
n. The disturbance

observer (3) guarantees that the disturbance observer error

de(t, x) = d(t, x) − d̂(t, x) exponentially converges to a
ball centered at the origin. The radius of this ball can
be made arbitrarily small by adjusting the function ρ(x).
In the case Cd = 0, the disturbance observer error de(t, x)
exponentially converges to zero.

Proof. We calculate the derivative of de(t, x) as follows

ḋe(t, x) = ḋ(t, x) − (ξ̇ + ρ̇(x))

= −K(x)de(t, x) + ḋ(t, x). (4)

Consider the Lyapunov function Ve = 1
2dT

e de whose first
time derivative along the solutions of (4) satisfies (we
here drop arguments t and x of de(t, x) for simplicity of
presentation)

V̇e = −0.5dT
e (K(x) + KT (x))de + dT

e ḋ. (5)

Since K(x) is a positive definite matrix, there exists a
positive constant ̟ such that

dT
e

(

K(x) + KT (x)
)

de ≥ ̟dT
e de, ∀x ∈ R. (6)

Substituting (6) into (5) results in

V̇e ≤ −(̟ − 2ε)Ve + C2
d/(4ε) (7)

where we have used |dT
e (t, x)ḋ(t, x)| ≤ ε‖de(t, x)‖ +

1
4ε‖ḋ(t, x)‖ with ε a positive constant such that ̟ − 2ε

is strictly positive. From (7) and Ve = 1
2dT

e de, we have the
disturbance error de(t, x) exponentially converges to a ball

centered at the origin with the radius Rde =
√

1
2ε(̟−2ε)Cd

as long as the solutions x(t) exist. The existence of the
solutions x(t) is to be guaranteed by the design of the
control input u. Since ̟ can be chosen arbitrarily large by
choosing the function ρ(x), Rde can be made arbitrarily
small. In the case Cd = 0, the radius Rde = 0 meaning
that the disturbance error de(t, x) exponentially converges
to zero.2

p-times differentiable signum function: A scalar function
h(x, a, b) is called a p-times differentiable signum function
if it enjoys the following properties

1) h(x, a, b) = −1 if −∞ < x ≤ a,

2) h(x, a, b) = 1 if x ≥ b,

3) − 1 < h(x, a, b) < 1 if a < x < b, (8)

4) h(x, a, b) is p times differentiable with respect to x

where p is a positive integer, x ∈ R+, and a and b are
constants such that a < 0 < b. Moreover, if the function
h(x, a, b) is infinite times differentiable with respect to x,
then it is called a smooth signum function.
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Fig. 2. A twice differentiable signum function.

Lemma 2. Let the scalar function h(x, a, b) be defined as

h(x, a, b) = 2

∫ x

a
f(τ − a)f(b − τ)dτ

∫ b

a
f(τ − a)f(b − τ)dτ

− 1 (9)

where the function f(y) is defined as follows

f(y) = 0 if y ≤ 0 and f(y) = yp if y > 0 (10)

with p being a positive integer. Then h(x, a, b) is a p times
differentiable signum function. Moreover, if f(y) = yp

in (10) is replaced by f(y) = e−1/y then property 4) is
replaced by 4’) h(x, a, b) is a smooth signum function.

Proof. See Do [2007].

With materials presented in this subsection, for the pur-
pose of control design in the next section we rewrite the
entire system (1) as follows:

ẋ1 = x2,

ẋ2 = θ21x3 − θ22x2 + ∆(t, x1, x2, z, ż),

ẋ3 = −θ31x2 − θ32x3 + θ33g3(x3, x4),

ẋ4 = −θ41x4 + θ42iH (11)

with x1 = xH , x2 = ẋH , x3 = P̄H , x4 = x̄Hv, and

θ21 =
AHCH3

mH
, θ22 =

bH

mH
,

∆(t, x1, x2, z, ż) =
1

mH
∆̃(t, xH , z, ẋH , ż),

θ31 =
4βHeAH

VHCH3
, θ32 =

4βHeCHT

VH
,

θ33 =
4βHeCHDWHCH4

VH
√

ρH

√
CH3

, θ41 =
1

τHv
, θ42 =

kHv

τHvCH4
,

g3(x3, x4) = x4

√

P̄HS − h(x4, a, b)x3 (12)

where we have used the p-times differentiable signum
function h(x4, a, b) to replace the signum function sgn(x4).

3. CONTROL DESIGN

A close look at (11) shows that (11) is of a strick-feedback
form, Krstic et al. [1995]. Therefore, we will use the
backstepping technique to design the control input iH to
achieve the control objective. The control design consists
of 4 steps. At steps 1 and 2, we will use the disturbance ob-
server presented in Subsection 2.2.1 to design an estimate
for ż(t) and ∆(t, x1, x2, z, ż), respectively.
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3.1 Step 1

We consider the first equation of the entire system (11)
where the state x2 is considered as a control. Define

x1e = x1 + z(t) − L, x2e = x2 − α1 (13)

where α1 is a virtual control of x2. Differentiating both
sides of the first equation of (13) along the solutions of the
second equation of (13) and the first equation of (11) gives

ẋ1e = α1 + x2e + w (14)

where w := ż(t). From (14) and the disturbance observer
design proposed in Subsection 2.2.1, we design the virtual
control α1 and the estimate ŵ of w as follows:

α1 = −k11x1e − ŵ, ŵ = ξ1 + k12x1e,

ξ̇1 = −k12ξ1 − k12(x2e + α1 + k12x1e) (15)

where k11 and k12 are positive constants. The above
disturbance observer is an application from Subsection
2.2.1 with ρ(x) = k12x. Using (14) and (15), we have

ẋ1e = −k11x1e + x2e + we, ẇe = −k12we + ẇ (16)

where we = w− ŵ. It is of interest to note that the virtual
control α1 is a smooth function of x1e and ξ1.

3.2 Step 2

At this step, we consider the second equation of the entire
system (11) where the state x3 is considered as a control.
As such, we define

x3e = x3 − α2 (17)

where α2 is a virtual control of x3. Now differentiating
both sides of the second equation of (13) along the solu-
tions of the second equation of (11), (15) and (16) gives

ẋ2e = θ21(x3e + α2) − θ22(x2e + α1) + ∆ −
∂α1

∂x1e
(−k11x1e + x2e + we) −

∂α1

∂ξ1
ξ̇1. (18)

From (18), we choose the virtual control α2 and an
estimate of the disturbance ∆ as follows

α2 =
1

θ21

(

− x1e − k21x2e + θ22(x2e + α1) +

∂α1

∂x1e
(−k11x1e + x2e) +

∂α1

∂ξ1
ξ̇1 − ∆̂

)

,

∆̂ = ξ2 + k22x2e,

ξ̇2 = −k22ξ2 − k22

(

θ21(x3e + α2) − θ22(x2e + α1) −

∂α1

∂x1e
(−k11x1e + x2e) −

∂α1

∂ξ1
ξ̇1

)

(19)

where k21 and k22 are positive constants. It is again noted
that the above disturbance observer is an application from
Subsection 2.2.1 where we took ρ(x) = k22x. Using (18)
and (19), we have

ẋ2e = −x1e − k21x2e + θ21x3e −
∂α1

∂x1e
we + ∆e,

∆̇e = −k22∆e + k22
∂α1

∂x1e
we + ∆̇ (20)

where ∆e = ∆ − ∆̂. It is noted that the virtual control
α2 is a smooth function of x1e, ξ1, x2e and ξ2.

3.3 Step 3

At this step, we consider the third equation of the entire
system (11) where g3(x3, x4) is considered as a control. As
such, we define

x4e = g3(x3, x4) − α3 (21)

where α3 is a virtual control of g3(x3, x4). Now differen-
tiating both sides of (17) along the solutions of the third
equation of (11), (15), (16) and (20), and choosing the
virtual control α3 as

α3 =
1

θ33

(

− θ21x2e − k31x3e + θ31x2 + θ32x3 +
∂α2

∂x1e

×(−k11x1e + x2e) +
∂α2

∂ξ1
ξ̇1 +

∂α2

∂x2e
(−x1e − k21x2e + θ21x3e) +

∂α2

∂ξ2
ξ̇2

)

(22)

where k31 is a positive constant, result in

ẋ3e = −θ21x2e − k31x3e + θ33x4e −
(

∂α2

∂x1e
− ∂α2

∂x2e

∂α1

∂x1e

)

we −
∂α2

∂x2e
∆e. (23)

It is noted that the virtual control α3 is a smooth function
of x1e, ξ1, x2e, ξ2, x3e since x2 = x2e+α1 and x3 = x3e+α2.

3.4 Step 4

The actual control input iH will be designed. Differen-
tiating both sides of (21) along the solutions of the last
equation of the entire system (11), and choosing the actual
control iH as follows

iH =
1

θ42
∂g3

∂x4

(

− θ33x3e − k41x4e + θ41x4 −
∂g3

∂x3
(−θ31x2

−θ32x3 + θ33g3(x3, x4)) +
∂α3

∂ξ1
ξ̇1 +

∂α3

∂ξ2
ξ̇2

+
∂α3

∂x1e
(−k11x1e + x2e) +

∂α3

∂x2e
(−x1e − k21x2e +

θ21x3e) +
∂α3

∂x3e
(−θ21x2e − k31x3e + θ33x4e)

)

(24)

where k41 is a positive constant, result in

ẋ4e = −θ33x3e − k41x4e −
(

∂α3

∂x1e
− ∂α3

∂x2e

∂α1

∂x1e
− ∂α3

∂x3e
×

∂α2

∂x1e
+

∂α3

∂x3e

∂α2

∂x2e

∂α1

∂x1e

)

we −
(

∂α3

∂x2e
− ∂α3

∂x3e

∂α3

∂x2e

)

∆e.

(25)

Since PHS − |PH | = CH3(P̄Hs − |x3|) ≥ ǫ1 and ∂g3

∂x4
=

√

P̄HS − x3h(x4a, b) − x3x4
∂h(x4,a,b)

∂x4

2
√

P̄HS−x3h(x4a,b)
, from properties

of the p-times differentiable signum function h(x4, a, b),
we can see that there exists a strictly positive constant
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ǫ2 such that | ∂g3

∂x4
| ≥ ǫ2. This means that the control iH

given in (24) is well-defined. The control design has been
completed. We now state the main result of the paper in
the following theorem.

Theorem 1. Assume that z(t) and ∆̃(t, xH , z, ẋH , ż) and
their derivatives are bounded, the control input iH given
in (24) and the disturbance observers given in (15) and
(19) solve the control objective. In particular, the closed
loop system consisting of (16), (20), (23) and (25) is
forward complete, and the error x1e(t) = x1(t) + z(t) − L
exponentially converges to a small value. This value can
be made arbitrarily small by choosing sufficiently large
control and observer gains k11, k12, k21, k22, k31, and k41.
If the derivatives of z(t) and ∆̃(t, xH , z, ẋH , ż) are zero, the
active heave compensation error x1e(t) = x1(t) + z(t) − L
exponentially converges to zero.

Proof For convenience, we rewrite the closed loop system
consisting of (16), (20), (23) and (25) as follows:

ẋ1e = −k11x1e + x2e + we,

ẋ2e = −x1e − k21x2e + θ21x3e − φ1we + ∆e,

ẋ3e = −θ21x2e − k31x3e + θ33x4e − φ2we − φ3∆e,

ẋ4e = −θ33x3e − k41x4e − φ4we − φ5∆e,

ẇe = −k12we + ẇ,

∆̇e = −k22∆e + k22φ1we + ∆̇ (26)

where

φ1 =
∂α1

∂x1e

, φ2 =

(

∂α2

∂x1e

−
∂α2

∂x2e

∂α1

∂x1e

)

, φ3 =
∂α2

∂x2e

φ4 =

(

∂α3

∂x1e

−
∂α3

∂x2e

∂α1

∂x1e

−
∂α3

∂x3e

∂α2

∂x1e

+
∂α3

∂x3e

∂α2

∂x2e

∂α1

∂x1e

)

φ5 =

(

∂α3

∂x2e

−
∂α3

∂x3e

∂α3

∂x2e

)

. (27)

From the expressions of α1, α2 and α3, see (15), (19) and
(22), there exist nonnegative constants Ai, i = 1, ..., 5 such
that

|φi| ≤ Ai, i = 1, ..., 5. (28)

To investigate stability of the closed loop system (26), we
consider the following Lyapunov function candidate

V =
1

2

(

x2
1e + x2

2e + x2
3e + x2

4e + δ1w
2
e + δ2∆

2
e

)

(29)

where δ1 and δ2 are positive constants to be picked later.

Differentiating both sides of (29) along the solutions of
(26), and using (28), we have

V̇ ≤ −k11

2
x2

1e −
k21

2
x2

2e −
k31

2
x2

3e −
k41

2
x2

4e −
(

δ1k12 −

1

2k11
− A2

1

k21
− A2

2

k31
− A2

4

k41
− δ1ǫ1 −

k22A1δ2

4ǫ2

)

w2
e

−
(

δ2k22 −
1

k21
− A2

3

k31
− A2

5

k41
− ǫ2k22A1δ2

)

∆2
e +

δ1

4ǫ1
ẇ2 +

δ2

4ǫ3
∆̇2 (30)

where ǫi, i = 1, 2, 3 are positive constants to be picked.
Now for chosen control gains k11, k21, k31, k41, k12 and
k22, we can always pick the positive constants δ1, δ2 and
ǫi, i = 1, 2, 3 such that

(

δ1k12 −
1

2k11

−
A2

1

k21

−
A2

2

k31

−
A2

4

k41

− δ1ǫ1 −
k22A1δ2

4ǫ2

)

≥
γ1

2
,

(

δ2k22 −
1

k21

−
A2

3

k31

−
A2

5

k41

− ǫ2k22A1δ2

)

≥
γ2

2
(31)

where γ1 and γ2 are positive constants. Substituting (31)
into (30) results in

V̇ ≤ −cV + λ (32)

where c is some positive constant and λ is a nonnegative
constant. Solving the differential inequality (32) shows
that V exponentially converges to a ball centered at the
origin with the radius RV = λ/c. This implies that the
closed loop system is forward complete. Convergence of
V implies that all the errors xie, i = 1, ..., 4, and we and
∆e exponentially converge to a ball centered at the origin

with a radius Re =
√

λ
c min(1,δ1,δ2)

. Moreover, in the case

where the derivatives of the disturbances w and ∆ can
be ignored, we have λ = 0. This means that all the state
errors xie, i = 1, ..., 4, and the disturbance observer errors
we and ∆e exponentially converge zero. 2

4. SIMULATIONS

The parameters of the hydraulic system are taken based
on Yao et al. [2001] as follows: mH = 1000kg,AH =
0.65m2, bH = 40N/(m/s), 4βHe/VH = 4.53 × 108N/m5,
CHD = 2.21 × 10−14m5/Ns, CHDwH/

√
ρ = 3.42 ×

10−5m3
√

Ns, PHS = 10342500Pa, kHv = 0.0324, τHv =
0.00636. The scale factors are taken as CH3 = 6 ×
105, CH4 = 5 × 10−7 to scale PHS down and τHv up
as discussed in Subsection 2.1. The riser parameters are
taken from Korde [1998] as follows: length L = 3832m,
diameter dr = 0.14m, density ρr = 8200kg/m3, Young’s
modulus Er = 2×108kg/m2, initial tension Tor = 100KN .

Therefore, the force (disturbance), ∆̃ acting from the riser
to the piston of the hydraulic system is Korde [1998]:

∆̃ = Tor + ErAr

(

Nm
∑

n=1

∓nπCn + δ
)

(33)

with Cn being generated by

C̈n + cdĊn +
ErArn

2π2

ρrL2
Cn = ∓ 2

nπ

(

cdδ̇ + δ̈
)

(34)

where δ = z − xH − L, Ar =
πd2

r

4 , the damping coefficient

cd = 0.01m3/s, and the notation ∓ takes the positive sign
if n = 2, 4, 6, ... and the negative sign if n = 1, 3, 5, ..., and
Nm is number of modes. The vertical (heave) motion of
the vessel z(t) can be represented as a sum of sinusoids
at different frequencies, amplitudes and phases as follows,
see Fossen [1994] and Lloyd [1998]:

z(t) = L +

Nw
∑

i=1

(

Awikwi sin(wwit − ϕwi)
)

(35)

where L is included since z(t) is coordinated in the earth-
fixed frame, the amplitude Awi, coefficient kwi, frequency
wwi, phase ϕwi of the wave ith are given by

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

5063



0 10 20 30 40 50 60
−0.5

0

0.5

Time [s]

E
rr

o
r 

X
1
e
 [

m
]

0 10 20 30 40 50 60
−5

0

5
x 10

4

Time [s]

∆
,

∆

h
a
t

∆

∆

hat

Fig. 3. Simulation result with disturbance observers.

wwi = wm +
wm − wM

Nw

i, Swi =
1.25

4

w4
o

w5

wi

H2

swe
−1.25

(

wo
wwi

)4

Awi =

√

2Swi

wmi − wMi

Nw

, kwi =
w2

wi

9.8
, ϕwi = 2πrand(). (36)

In (36), the minimum and maximum wave frequencies
are wm = 0.2rand/s, wM = 2.5rand/s; the two-parameter
Bretschneider spectrum Swi is used with the significant
wave height Hsw = 4m; the modal frequency is wo = 2π

Tw

with the period Tw = 7.8; Nw = 10; and rand() is
a random number between 0 and 1. The control and
disturbance observer gains are chosen as k11 = 2, k12 =
15, k21 = 4, k22 = 25, k31 = 8, k41 = 12. In the simulations,
we take the number of modes in (33) as Nm = 5, and
initial values of Cn in (34) are zero. To illustrate the
effectiveness of the disturbance observers, we simulate the
proposed controller in two cases. In the first case, the
disturbance observers are switched on. The simulation
result is presented in Figure 3. In Figure 3, the top sub-
figure plots the error x1e, the bottom sub-figure plots the
disturbance ∆ and its estimate ∆̂. From the bottom sub-
figure, we can see that the disturbance observer estimates
the disturbance ∆ quite well. This results in pretty small
error x1e. It is noted that the error x1e does not converge
to zero as said Theorem 1 because ∆ and z̈(t) are time-
varying. In the second case, the disturbance observers are
switched-off. The simulation result is presented in Figure
4. From this figure, we can see that when the disturbance
observers are switched-off, the error x1e is pretty large.
This is because the controller does not compensate for the
disturbances via the disturbance observers.
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Fig. 4. Simulation result without disturbance observers.

5. CONCLUSION

A nonlinear controller has been designed for the active
heave compensation system. One of the keys to success
in the proposed method is the use of the disturbance
observers, which are then properly embedded in the con-
trol design procedure. The heave velocity and the force
acting between the riser/drill-string and the active heave
compensation unit were well estimated by the disturbances
observers.
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