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Abstract: An application of the modified second-order sliding mode (SOSM) algorithms to a PID 
controller tuning is presented. The proposed method utilizes the opportunity of exciting test oscillations in 
the controller-process loop at the frequency corresponding to a desired phase lag of the process. This 
allows for this frequency to become the phase crossover frequency in the closed-loop system with a PID 
controller if the tuning rules are formulated as non-parametric rules in terms of the “ultimate frequency” 
and “ultimate gain”. The use of those properties results in designing a simple tuning method that provides 
the desired stability of the system. A simple test that involves measurements of the amplitude and of the 
frequency of the self-excited oscillations and non-parametric tuning rules that provide desired gain 
margins exactly are presented. 

 

1. INTRODUCTION 

PID control is the main type of control used in the process 
industries. PID controllers are usually implemented as 
configurable software modules within the distributed control 
systems (DCS). The DCS software is constantly evolving 
providing the developers and process control engineers with a 
number of new features. One of most useful features is the 
controller autotuning functionality. This trend can be seen in 
the new releases of such popular DCS as Honeywell 
Experion PKS® and Emerson DeltaV®. The practice of the 
use of a number of autotuning algorithms shows that many of 
them do not provide a satisfactory performance if the process 
is subject to noise, variable external disturbance or nonlinear. 
On the other hand the simplest algorithms such as closed-
loop tuning method proposed by Ziegler and Nichols (1942) 
and the relay feedback test (Astrom & Hagglund, 1984) 
provide a satisfactory performance in those conditions despite 
the inherent relatively low accuracy of those methods. The 
explanation of this phenomenon lies in the area of analysis of 
the parametric versus non-parametric tuning. Apparently, the 
use of an underlying model of the process in a parametric 
method (not fully matching to the actual process dynamics) 
that usually has three or higher number of parameters may 
result in the significant deterioration of the identification-
tuning accuracy if the test conditions are affected by noise, 
disturbances or nonlinearities. Only the most basic 
characteristics of the system, such as the ultimate gain and 
ultimate frequency (Ziegler & Nichols, 1942), remain almost 
unaffected in those conditions. 

However, the use of only two measurements cannot ensure 
sufficient accuracy of tuning. For that reason, in practice, 
tuning almost always includes the steps of trial end error that 
follow the step of autotuning. Therefore, a trade-off between 
the accuracy and reliability of tuning (which also translates 
into accuracy) is apparent. The cause of the relatively low 
accuracy of the referenced (and other) non-parametric 

methods is well known. This is the use of only two 
measurements of the test over the process. Yet, it is also 
known that a satisfactory accuracy of identification for most 
processes can be achieved if at least a three-parameter model 
is used (Astrom & Hagglund, 1995). 

There is one more factor that also contributes to the issue of 
accuracy. This is the widely accepted statement that the most 
important test point for the subsequent tuning is the phase 
cross-over frequency, i.e. the point in which the phase 
characteristic of the process is -180° (frequency ωπ). Yet, if 
the controller that is used to control this process is of PI-type 
(the most common option) then in the open-loop dynamics 
containing the PI controller the frequency ωπ is lower than 
the frequency ωπ of the closed-loop tests (Ziegler & Nichols, 
1942) or (Astrom & Hagglund, 1984). The parametric 
methods of tuning that utilize the relay feedback test are also 
based on the measurements of the process characteristics at 
this frequency and do not account for the change of this 
frequency due to the controller introduction. Therefore, the 
choice of the test frequency and the means of generating this 
frequency of oscillations are considered in the paper. 

The paper is organized as follows. At first the problem of 
selection of the test point on the frequency response of the 
process is analyzed. After that a modified relay feedback test 
that provides generation of the oscillations at a given point of 
the phase response of the process is proposed. Finally, tuning 
rules that provide a higher accuracy of non-parametric tuning 
in comparison with (Ziegler & Nichols, 1942) and (Astrom & 
Hagglund, 1984) are derived. 

2. EFFECT OF TEST POINT SELECTION ON STABILITY 
OF CLOSED-LOOP SYSTEM 

Consider the following motivating example, which illustrates 
how the introduction of the controller may affect the results 
of identification and tuning. 
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Example 1. Let us assume that the certain process is given by 
the following transfer function (Note: this process model is 
used in a number of works as a test model for the subsequent 
approximation; see (Kaya & Atherton, 2001) for example): 
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Find the first order plus dead time (FOPDT) approximating 
model to the process (1): 
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where Kp is the process static gain, Tp is the time constant, 
and τ is the dead time, so that both (1) and (2) produce the 
same ultimate gain and ultimate frequency in the closed-loop 
test (Ziegler & Nichols, 1942) or the same values of the 
amplitude and the ultimate frequency in the relay feedback 
test (Astrom & Hagglund, 1984). (Note: strictly speaking, the 
values of the ultimate frequency in tests (Ziegler & Nichols, 
1942) and (Astrom & Hagglund, 1984) are slightly different. 
The frequency of the oscillations generated in the relay 
feedback test does not exactly correspond to the phase 
characteristic of the process –180○, which follows from the 
relay systems theory (Tzypkin, 1984), (Boiko, 2005)). 
Obviously, this problem has infinite number of solutions, as 
there are three unknown parameters of (2) and only two 
measurements obtained from the test. Assume for simplicity, 
that the value of the process static gain is known: Kp=1, and 
determine Tp and τ. Those parameters can be found from 
equation )()(ˆ

ππ ωω jWjW pp = , where ωπ is the frequency 
that corresponds to the phase characteristic value –180○: 

πωπ −=)(arg jWp . The value of ωπ is 0.283, which gives 

)0,498.0()( jjW p −=πω , and the FOPDT approximation is: 
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The Nyquist plots of the process (1) and its approximation (3) 
are depicted in Fig. 1. The point of intersection of the two 
plots (denoted as Ω0) is also the point of intersection with the 
real axis. Also πω=Ω0  for both process dynamics (1) and 

(3), and therefore )()(ˆ
00 Ω=Ω jWjW pp . 

If the designed controller is of proportional type then the 
stability margins (gain margins) for processes (1) and (3) are 
the same. However, if the controller is of PI type then the 
stability margins for (1) and (2) are different. Let us illustrate 
that. Design the PI controller given by the following transfer 
function: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

sT
KsW

c
cc

11)( , (4) 

using the tuning rules (Ziegler & Nichols, 1942). This results 
in the following transfer function of the controller: 

⎟
⎠
⎞

⎜
⎝
⎛ +=

s
sWc 76.17

11803.0)( , (5) 

 

Fig. 1. Nyquist plots for process (1) and FOPDT approximation (3) 

 

Fig. 2. Nyquist plots for open-loop system with PI controller and process 

The Nyquist plots of the open-loop systems containing the 
process (1) or its approximation (3) and the controller (5) are 
depicted in Fig. 2. It follows from the Ziegler-Nichols tuning 
rules that the mapping of point Ω0 in Fig. 1 into point Ω0 in 
Fig. 2 is done via clockwise rotation of vector )( 0ΩjWp

r
 by 

the angle o25.11
28.0

1arctan =
⋅

=
π

ψ  and multiplication of 

its length by such value, so that its length becomes equal to 
0.408. However, for the system containing the PI controller, 
the points of intersection of the Nyquist plots of the open-
loop system and of the real axis are different for the system 
with process (1) and with process approximation (3). They 
are shown as points Ω1 and Ω2 in Fig. 2. The mapping of 
those points to the Nyquist plots of the process and its 
approximation is shown in Fig. 1. The stability margins of the 
systems containing a PI controller are not the same any more. 
It is revealed as different point of intersection of the plots and 
of the real axis in Fig. 2. In fact the position of vector 
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 is fixed, but this vector does 
not reflect on the stability of the system, and as we can see in 
Fig. 2, the gain margin of the system containing the FOPDT 
approximation of the process is higher than the one of the 
system with the original process. 

The considered example enlightens a fundamental problem of 
all methods of identification-tuning based on the 
measurements of process response in the critical point (Ω0). 
This problem is the shift of the critical point due to the 
introduction of the controller. The question that naturally 
follows from the given analysis is whether the test point can 
be selected in a different way, so that the introduction of the 
controller would shift this point to the real axis. And if this is 
possible then what the test should be to ensure the 
measurements in the desired test point. 

Address the first question first. Assume that we can design a 
certain test, so that we can assign the test point at the desired 
phase lag of the process ϕ=Ω )(arg 0jW p , where ϕ is a 

given quantity, and measure )( 0ΩjW p  in this point. 
Consider the following example. 

Example 2. Let the plant be the same as in Example 1. 
Assume that the introduction of the controller will be 
equivalent to the mapping similar to the mapping described 
above – the vector of the frequency response of the open-loop 
system in the point 0Ω  will be a result of clockwise rotation 

of the vector )( 0ΩjW p
r

 by a known angle and multiplication 

by a certain known factor: )()()( 000 ΩΩ=Ω jWjWjW pcol
rrr

. 
Also assume that the controller will be the same as in 
Example 1 (for illustrative purpose - because the tuning rules 
are not formulated yet). Therefore, let us find the values of Tp 
and τ for the transfer function (2) (we still assume Kp=1) that 
ensure that the equality )()(ˆ

00 Ω=Ω jWjW pp  holds, where 
ooo 75.16825.11180)(arg 0 −=+−=ΩjWp  (the angle is 

selected considering the subsequent clockwise rotation by 
11.25○). Therefore, 263.00 =Ω , and 

)103.0,532.0()( 0 jjW p −−=Ω . The matching FOPDT 
approximation of the process is 
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One can notice that both the time constant and the dead time 
in (6) are smaller than in (3). Application of controller (5) 
shifts the point 0Ω  of intersection of )( 0ΩjW p  and 

)(ˆ
0ΩjWp  to the real axis. This point remains the point of 

intersection of the two Nyquist plots. Therefore, the gain 
margin of both systems: with the original process and with 
the approximated process are the same. 

Consider now the problem of the design of the test that can 
ensure matching the actual and approximating processes in 
the point corresponding to a specified phase lag. 

3. CLOSED-LOOP TEST VIA MODIFIED SUB-OPTIMAL 
ALGORITHM 

Consider the following discontinuous control: 
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where max1 βσ=Δ , min2 βσ−=Δ , maxσ  and minσ are last 
“singular” points of the error signal (Fig. 3) corresponding to 
last maximum and minimum values of )(tσ  after crossing 
the zero level, β is a positive constant parameter. 

 

Fig. 3. Relay feedback test 

The algorithm (7) is similar to the so-called “generalized sub-
optimal” algorithm used for generating a second-order sliding 
mode in systems of relative degree two (Bartolini, 1997), 
(Bartolini, 2003). The difference between the two is that the 
generalized sub-optimal algorithm involves an advance 
switching but the proposed algorithm involves a delayed 
switching of the relay in comparison with the ideal relay. Let 
the reference signal r(t) be zero in Fig. 3. Let us show that in 
the steady mode, the motions in the system Fig. 3, where the 
control is given by (7) are periodic. 

Apply the describing function (DF) method (Atherton, 1975) 
to the analysis of motions in Fig. 3. Assume that the steady 
mode is periodic, and after that prove that this is a valid 
assumption by finding the parameters of this periodic motion. 
If the motions in the system are periodic then maxσ  and 

minσ  represent the amplitude of the oscillations: 

minmax σσ −==a , which can be represented by the 
equivalent hysteresis value of the relay 

minmax21 βσβσ −==Δ=Δ=Δ . The DF of the hysteretic 
relay is given as follows 

2

2 414)(
a
hj

aa
haN

ππ
Δ

−⎟
⎠
⎞

⎜
⎝
⎛ Δ

−= , Δ>a  (8) 

However, system Fig.3 with control (7) is not a conventional 
relay system. This system has the hysteresis value that is 
unknown a-priori and depends on the amplitude value: 

aβ=Δ . Therefore, (8) can be rewritten as follows: 
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The relay feedback test will generate oscillations in the 
system under control (7). We shall refer to that test as to 
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“modified relay feedback test”. Parameters of the oscillations 
can be found from the harmonic balance equation: 
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where a0 is the amplitude of the periodic motions, and the 
negative reciprocal of the DF is given as follows: 
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Finding a periodic solution in system Fig.3 with control (7) 
has a simple graphic interpretation (Fig. 4) as finding the 
point of intersection of the Nyquist plot of the process and of 
the negative reciprocal of the DF, which is a straight line that 
begins in the origin and makes a counterclockwise angle 

βψ arcsin=  with the negative part of the real axis. 

In the problem of analysis, frequency Ω0 and amplitude a0 are 
unknown variables and are found from the complex equation 
(10). In the problems of identification and tuning, frequency 
Ω0 and amplitude a0 are measured from the modified relay 
feedback test, and on the basis of the measurements obtained 
either parameters of the underlying model are calculated (for 
parametric tuning) or tuning parameters are calculated 
immediately from Ω0 and a0 (for non-parametric tuning). 

Reviewing again Example 2, we can note that if, for example, 
Ziegler-Nichols tuning rules are supposed to be applied, and 
the subsequent transformation via introduction of the PI 
controller involving clockwise rotation by angle 

o25.11
28.0

1arctan =
⋅

=
π

ψ  is going to be applied, then 

parameter β of the controller for the modified relay feedback 
test should be 195.025.11sin == oβ . 

 

Fig. 4. Finding a periodic solution 

The modified relay feedback test also allows for the exact 
design of the gain margin. Since the amplitude of the 
oscillations a0 is measured from the test, the process gain at 

frequency Ω0 can be obtained as follows: 
h

a
jW p 4

)( 0
0

π
=Ω , 

which after introduction of the controller will become the 

process gain at the critical frequency. Therefore, if the tuning 
rules are given in the format: 
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where c1 and c2 are parameters that define the tuning rule, 
then the frequency response of the controller at Ω0 becomes 
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and for obtaining the gain margin γ  (γ >1) parameter c1 

should be selected as ⎟
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considered example, if we keep parameter c2 the same as in 
(Ziegler & Nichols, 1942): c2=0.8, then to obtain, for 
example, gain margin γ=2 tuning parameter c1 for the 
modified relay feedback test should be selected c1=0.49. Any 
process regardless of the actual dynamics will have gain 
margin γ=2 (6dB) exactly (within the framework of the 
filtering hypothesis of the DF method). 

4. NON-PARAMETRIC TUNING RULES 

Given a large variety of possible process dynamics, it is 
very difficult to formulate certain universal rules for tuning. 
In practice of process control, tuning rules that provide a less 
aggressive response than the one provided by IAE, ITAE 
criteria or Ziegler-Nichols formulas (or other rules) are 
widely used. This trend is reflected in the review of the 
modern PID control (Astrom & Hagglund, 2006). Let us 
consider the PI controller only, and only the rules given in the 
format of the proportional dependence of the controller gain 
on the ultimate gain and of the integral time constant on the 
period of the oscillations in the modified relay feedback test – 
as given by formula (12). Considering the fact that the 
frequency-domain characteristics of all loops tuned via the 
modified relay feedback test will be very consistent (the gain 
margin is the same), let us analyze the time-domain 
characteristics of the loops with different process dynamics 
and generate the tuning rules that provide the best 
consistency of the time-domain characteristics. 

Let us use the FOPDT model as the implied process 
dynamics for the purpose of optimal selection of the 
coefficients c1 and c2. Analysis of the time-domain 
performance of FOPDT processes with different ratios 
between the dead time and the time constant (subject to the 
same value of the gain margins) would allow us to find the 
optimal tuning rules. Within the time domain, it would be 
difficult to compare such characteristics as settling time or 
other measures of speed of response – due to the difference in 
time constants of different processes. The only parameter that 
can be used as a “universal” characteristic (in that sense) is 
the value of the overshoot in the step response. Therefore, let 
us find the overshoot values of the step responses of a series 
of FOPDT dynamics with dead time to time constant ratio 
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ranging as follows ]5.1;3.0[/ =pTτ , subject to equal gain 

margins in those loops, by varying gain margin and 
parameter c2 values. The noted dependence is presented in 
Fig. 5, where gain margin ]4;2[∈γ  and parameter 

]3.3;3.0[2 ∈c . 

 

Fig. 5. Difference between maximum and minimum overshoot [%] for 
proposed closed-loop test 

 

Fig. 6. Difference between maximum and minimum overshoot [%] for 
conventional relay feedback test (note different from Fig. 5 scale) 

One can see that at lower values of parameter c2 the 
difference between the maximum and minimum overshoots 
can be high, which does not allow using too low values. On 
the other hand, higher values of parameter c2 result in the 
decrease of the integral action of the controller, which may 
not be acceptable. With respect to the dependence on the gain 
margin, higher values of the gain margin lead to a smaller 
overshoot, and to a higher consistency of the step response 
for various pT/τ  ratios. 

A similar plot for the case of the conventional relay 

feedback test is presented in Fig. 6 for comparison. In that 
case the gain margins are not equalized by respective 
selection of parameter β, and the difference between the 
maximum and the minimum overshoots is about three times 
of the former. Analysis of the data presented in Fig. 5 shows 
that for satisfactory consistency of the step response 
(difference between maximum and minimum overshoots is 
lower than 10%) the gain margin and the value of c2 should 
not be smaller than certain values. In particular, for γ=2 
c2≥1.1; γ=2.5 c2≥0.7; γ=3 c2≥0.6; γ=3.5 c2≥0.5, and γ=4 
c2≥0.5. Therefore, the recommended settings for non-
aggressive tuning with expected overshoot 0-3.3% might be 
γ=3 c2=0.7, which results in the following tuning rules: 

0
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As follows from formula (13) the PI controller would 
introduce the lag at the frequency 0Ω  equal to 

o81.12
2
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modified relay feedback test should be 
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5. EXAMPLES 

Example 3. Consider the following four transfer functions 
(Fig. 7) that were used as representative process models in 
(Kaya & Atherton, 2001). Apply the modified relay feedback 
test in the first case with parameter 222.0=β  and tuning 
rules (14), which correspond to γ=3, and in the second case 

with 
a
hKc π

449.0=  and the same rule for Tc, which 

corresponds to γ=2, to those processes. The step responses of 
the tuned loops to the set point change (denoted as “s.p.”) and 
to the disturbance application (denoted as “disturbance”) are 
presented in Fig. 7. The graphs presented demonstrate a 
satisfactory loop performance in a conservative approach 
(γ=3) and in a more aggressive loop tuning (γ=2). The 
performance of the loops is in agreement with the design 
criteria selected: the desired gain margin.  

6. CONCLUSIONS 

A method of non-parametric tuning of a PI controller based 
on the modified relay feedback test and inspired by one of the 
second-order sliding mode algorithms is presented in the 
paper. The proposed method involves two parameter 
measurements from the modified relay feedback test, and the 
calculations similar to the ones as per Ziegler-Nichols 
formulas. It is proved that the proposed method ensures the 
desired value of the gain margin exactly (subject to the 
assumptions of the describing function method). It is shown 
that the proposed approach ensures an equalizing effect with 
respect to the time-domain characteristics of a variety of 
possible process dynamics – due to providing the same gain 
margin for all possible processes. Despite the consideration 
of only PI controller, the proposed method can easily be 
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extended to the case of the PID control, and respective tuning 
rules can be obtained. The proposed method was 
implemented on a Honeywell TPS DCS as a module 
programmed in CL and successfully used for loop tuning.  
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Fig. 7. Step response of the processes of Example 3. 
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