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Abstract: This paper presents a tutorial-level introduction to the technical aspects of unmanned 
autonomous systems. We emphasize a system engineering perspective on the conceptual design and 
integration of both the components used in unmanned systems, including the locomotion, sensors, and 
computing systems needed to provide inherent autonomy capability, and the algorithms and architectures 
needed to enable control and autonomy, including path-tracking control and high-level planning strategies. 
Concepts are illustrated using case study examples from robotic and unmanned system developed by the 
author and his colleagues. 

 

1. INTRODUCTION 

This paper presents a basic introduction to the technical 
aspects of unmanned and autonomous systems. Our 
perspective is that one must take a systems engineering 
approach to develop an unmanned, autonomous system and 
the paper is organized to emphasize our viewpoint. Thus we 
consider first application-driven conceptual design of 
autonomous systems. Next we consider the components 
needed to implement an unmanned system and how these 
components are integrated together, including: power and 
drive train components for locomotion, electro-mechanical 
and computational system elements, proprioceptive sensors, 
environmental sensors for self-sensing, localization, and 
perception. We then consider architectures to integrate and 
coordinate the algorithms in an unmanned system, including 
servo-level and path-tracking controllers, based on actuator 
modelling and system-level kinematics, as well as navigation, 
motion planning, and intelligent behaviour generation using 
high-level planning techniques based on searching. The ideas 
presented in the paper are generally applicable to all types of 
unmanned systems, but we will focus on autonomous 
unmanned ground systems, using case study examples of real 
systems developed by the author and his colleagues. We 
conclude the paper with comments on research opportunities 
and challenges in autonomous unmanned systems1.  

2. WHAT IS AN UNMANNED SYSTEM? 

What is an unmanned system? Is it the same as an unmanned 
vehicle? Is an unmanned system a robot? Is a robot an 
unmanned system? Is an unmanned system an autonomous 
system? What is an autonomous system? What about 
unmanned sensors? What about mobile sensors? What about 
tele-presence or tele-operation? What about teams of 
unmanned vehicles, or swarms? All of these terms and phrases 

                                                 
1 Due to the tutorial nature of this paper, all reference citations 
are collected at the end of the paper. 

 

appear in the literature with a variety of meanings, but often 
used synonymously.  

To establish a framework, let us begin with the word “robot.” 
From Wikipedia™ we learn that the word “robot” was 
introduced in Rossum's Universal Robots, a 1921 science 
fiction play by Karl Čapek. In this play a factory makes 
artificial people that are called robots, which can be mistaken 
for humans. In more recent times, people think of “robots” as 
either manipulator arms or systems with human-like motion or 
features, such as the Kuka or Asimov robots shown in Fig. 1. 

    

Fig. 1. Industrial manipulator made by KUKA (photo credited 
to) and Asimov robot made by Sony (photo from web). 

Again referring to Wikipedia™, one definition is that “… a 
robot is a mechanical or virtual, artificial agent. A robot is 
usually an electro-mechanical system, which, by its 
appearance or movements, conveys a sense that it has intent or 
agency of its own. A robot may have the following properties: 
it is not natural/has been artificially created; it can sense its 
environment; it can manipulate things in its environment; it 
has some degree of intelligence, or ability to make choices 
based on the environment, or automatic control or pre-
programmed sequence; it is programmable; it can move with 
one or more axes of rotation or translation; it can make 
dexterous coordinated movements; it appears to have intent or 
agency.” 

These descriptors of robots are useful and provide some ideas 
about how to define an unmanned or autonomous system. The 
key distinction is that while people often associate the word 
robot with a manipulator arm or a humanoid-type system, we 
want to consider a broader class of systems that admit a 
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variety of locomotion capabilities as well as autonomous 
behaviour capabilities. To this end, let us define:  

Unmanned system: any electro-mechanical system with 
the capability to carry out a prescribed task or portion of 
a prescribed task automatically, without human 
intervention. 

Such systems can be autonomous, able to act alone to follow 
some plan or script while adapting to changes in the 
environment. However, we will also allow the descriptor 
“unmanned system” to be applied to tele-operated or tele-
manipulated systems as well, meaning those systems that can 
be operated remotely by a human. A sub-class of unmanned 
systems are unmanned vehicles: a vehicle that does not 
contain a person. In the remainder of this paper we will use 
the phrases unmanned system, unmanned vehicle, autonomous 
system, and robotics system interchangeable, but will focus 
primarily on unmanned vehicles in our examples. It should 
also be noted that most unmanned systems are intended to 
deploy a payload (sensor or actuator). 

Unmanned vehicles can come in several flavours: 

• Unmanned land (or ground) vehicles (UGV), which 
come in all varieties, but which can often be 
categorised as either wheeled, tracked, or novel. 

• Unmanned air vehicles (UAV), which may be fixed-
wing, rotary-wing, or ducted fan. 

• Unmanned maritime vehicles, which may be 
underwater vehicles (UUV) or surface vessels 
(USV).  

Collectively we will refer to UxVs where “x” can mean 
ground, air, underwater, or surface. Examples of typical, 
currently- fielded UxVs are shown in Fig. 2. It is also common 
to identify so-called unattended ground sensors (UGS) as an 
unmanned system.  

 

Fig. 2. Example UxVs (photos taken from the web). 

We conclude this section by noting that recent research trends 
have extended beyond single-entity autonomy to address the 
cooperative autonomy that can emerge when collections of 
unmanned systems are deployed to work together. For 
example, the SwardBot™ developed by the company IRobot 

and studied at MIT (shown in Fig. 3), can demonstrate 
flocking behaviour typical of swarms found in nature when 
programmed with the right algorithms. In a related example, 
Fig. 4 depicts the idea of meta-swarms that can result when 
different types of UxVs work together inside the so-called 
global information grid (GiG). We will not address swarming 
or networked UxVs in the remainder of the paper, but will 
focus only on single-entity autonomy. 

 

Fig. 3. Swarming  (photo credit http://www.irobot.com). 

 

Fig. 4. Networked UxVs. 

3. HOW DO YOU MAKE A UxV? 

First, we can note that all UxVs have common elements: 
mechanical components (drive, power, chassis), electronics 
and computational resouces, sensing/mission payloads, 
communication systems, control systems, smart algorithms for 
perception and decision-making, and ways to interface to 
user.2 These components are depicted in Fig. 5.  

In considering the components of an unmanned autonomous 
system, we take the point of view that there are two key 
aspects of unmanned vehicles and autonomy: 

1. Inherent physical capabilities built into the system.  

2. Intelligent control to exploit these capabilities.  

By inherent physical capabilities built into the system, we 
mean mechanisms for mobility and manipulation, power, 
sensors for perception, both proprioceptive (meaning self- 

                                                 
2 While it may seem an oxymoron to talk about a user 
interface for an unmanned vehicle, practically speaking all 
unmanned vehicles or autonomous systems exist for a purpose 
defined by humans. Thus we must have a way to deploy and 
monitor autonomous systems. 
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sensing) and external sensors, and computational resources. 
By intelligent control to exploit these capabilities, we refer to 
algorithms that include machine-level control, perception 
algorithms, reasoning, decision-making, learning, and human-
machine interfaces. 

In the remainder of this section we will discuss some of the 
individual components shown in Fig. 5. First, however, we 
note that all unmanned systems should be developed from the 
perspective of its concept of operations (CONOPS). For 
instance, Fig. 6 shows an unmanned vehicle intended for 
autonomous orchard spraying operations. Fig. 7 shows the 
OmniDirectional Inspection System (ODIS) intended for 
under-vehicle surveillance. Clearly the requirements for the 
individual subsystems of each vehicle are different. Once a 
CONOPS has been defined, then systems engineering is used 
to flow-down requirements for subsystems. A common 
mistake in robotic vehicle development is to not begin the 
process with a clearly stated CONOPS. 

4. INHERENT CAPABILITIES OF UNMANNED 
SYSTEMS 

In this section we discuss the inherent capabilities needed in 
unmanned systems and in the next section we discuss 
algorithms that exploit these inherent capabilities. Much of 
our discussion will use the ODIS robot as an illustrative case 
study. Thus we begin the section with an overview of ODIS. 

4.1 ODIS CONOPS 
 
The ODIS robot shown in Fig. 7 is only 3.75 inches tall and 
has three wheels, each with the same smart wheel ODV 
capability described in the next subsection. Using GPS, 
odometry, and on-board sensors, ODIS can navigate though a 
parking area either, a) going from stall to stall, inspecting any 
vehicles that it finds, or, b) going to a prescribed location and 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 5. Components of unmanned autonomous systems. 

 

Fig. 6. Autonomous orchard spraying tractor. 

 

Fig. 7. ODIS robot. 

inspecting any vehicles it finds in that location. Once a vehicle 
is found to be in a parking stall some form of inspection may 
be carried out. After deciding to inspect a vehicle, ODIS 
characterizes the vehicle, finding bumper and tire locations, 
and then autonomously travels under the vehicle, sending 
streaming video back to the operator station for analysis.  
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4.2 System Engineering Concepts for UxVs  

Based on the motivating UxVs CONOPS, a system 
engineering approach can be taken to define requirements for 
the subsystems of the system. In the case of the ODIS vehicle, 
the overall specifications shown in Fig. 8 were articulated 
based on the CONOPS. 
 

 
 

Fig. 8 ODIS specifications. 
 

From these specifications, the design process proceeded to 
consider the mechanical aspects of locomotion and power, 
vehicle electronics (also called vetronics), and sensors. Other 
subsystems included the chassis design. Fig. 9 depicts how 
theses subsystem can be viewed as “wrapping” around each 
other. We discuss each subsystem separately. 

 
 

Fig. 9 ODIS components. 
 

Locomotion: Except for unattended ground sensors, most 
unmanned systems must move. The primary locomotion 
systems used in most UxVs are: 

• UGV: wheels and tracks. UGVs are further classified 
by their steering type (e.g., Ackerman, skid steer, 
unicycle, omni-directional, or novel). 

• UAV: fixed wing, rotary wing, VTOL. 

• USV/UUV: propeller based, jetted. 

In general the motion and locomotion aspects of an unmanned 
vehicle are not remarkably different from those of their 
manned counterparts. Thus the design of motion and 
locomotion system becomes “only” an engineering task. 

Sometime a novel mechanical concept for locomotion might 
become the basis of an unmanned system, rather than a 
motivating CONOPS. For example, Fig. 10 shows the original 
“smart wheel” concept developed at Utah State University. 
Also shown is the ODIS version of the smart wheel assembly. 
This USU-developed mobility capability has two or three 
independent degrees of freedom: drive, steering with infinite 
rotation, and height (in some robots). Multiple smart wheels 
on a chassis creates a “nearly-holonomic” or omni-directional 
(ODV) vehicle. Fig. 11 shows some of the ODV robots built 
using the smart wheel. 

 

Fig. 10. USU smart wheel. 

 

Fig. 11.ODV robots. 

Power: Another important consideration in unmanned vehicle 
locomotion design is the system’s power source. Power for 
UxVs is one of the technology’s limiting issues. Many robots, 
especially in hobbyist or academic and research lab settings, 
are battery-based systems, using lead-acid, nickel-metal 
hydride, lithium-ion, or silver-zinc batteries. In larger, more 
“real-world” systems, however, it is more common to find 
combustion engine-based power sources, including both 
gasoline and diesel. Recently there have been examples of fuel 
cells being used in robots, as well as novel ideas such as the 
notion of energy scavenging. Another aspect to consider when 
addressing power is the so called “power budget,” which can 
be obtained by analyzing a power distribution block diagram 
such as the one for ODIS shown in Fig. 12. 

Vehicle electronics and computational capability: When 
designing a UxV one must identify all computational 
processes that are required and then allocate these 
requirements across multiple processors. A critical 
consideration will be the particular data sources that drive the 
computational algorithms and the interface requirements 
associated with those data sources (e.g., RS-232/485 serial,. 
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Fig. 12.ODIS power distribution diagram. 

CAN, Ethernet, USB, Analog, Digital, etc.). Figs. 13-15 
illustrate the vetronics design for the ODIS vehicle, with Fig. 
13 showing the high-level block diagram, Fig. 14 showing 
how to describe the I/O of the master processor, and Fig. 15 
showing similar detail for a lower-level wheel node processor 

 

Fig. 13.Vetronics architecture. 

 

Fig. 14. Master node. 

Chassis: UxV design can be a “chicken-and-egg” problem. 
While on the surface chassis development seems to be a 
standard mechanical engineering problem, the design cannot 

 

Fig. 15. Wheel node. 

be done in a vacuum without consideration of other issues. In 
particular, the tradeoffs between layout (e.g., vehicle size), 
vehicle speed/torque, battery capacity, and weight become 
paramount. A bigger motor give more speed and torque, but 
takes up more space and requires more battery, which makes 
the vehicle heavier, which makes it need more power, which 
requires a bigger motor, which … Clearly all the teams 
working on the UxV design must collaborate. To this end it is 
useful to develop layout diagrams such as that shown in Fig. 
16 and weight budgets calculations such as shown in Fig. 17. 
Another important aspect often overlooked is the design and 
layout of cables. Fig. 18 shows the final ODIS chassis layout. 

 

Fig. 16. ODIS vetronics layout. 

 

Fig. 17. ODIS weight budget. 

Sensors: The ODIS robot was equipped with a full range of 
sensors. Fig. 19 depicts the external sensors that ODIS uses to 
understand its environment. We will not discuss the design 
and selection of these sensors in detail here. The interested 
reader can refer to the references in the bibliography. 
However, we do note two points. First, Fig. 19 and Fig 13 
both emphasize that it is common to have separate processing 
boards for individual sensors. Such a “system-of-systems” 
approach makes it easy to quickly design new platforms. 
Second, a useful design technique for sensor selection is to use  
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Fig. 18. Final ODIS chassis layout. 

what we call a “sensor influence map,” which shows the range 
and coverage of each sensor based on its placement on the 
robot. Fig. 20 shows the ODIS sensor placement map. 

In addition to sensors used to perceive the external 
environment, UxVs need so-called “properioceptive sensors.” 
These are sensors that allow the unmanned system to measure 
information about its own internal state, that is, self-status 
sensors.  Such sensors can include: 

 

Fig. 19. ODIS external sensors. 

 

Fig. 20. Sensor influence map for ODIS. 

• Localization sensors such as a fiber optic gyro (FOG,  
similar to a compass) and GPS. 

• Sensors to aid in localization, including wheel 
encoders for odometry or dead-reckoning 
computations (relative encoders for wheel speed and 
absolute encoders for steering angle).  

• Vehicle health sensors, such as current sensors on 
each motor, temperature sensors for the motors and 
inside the chassis, battery voltage sensors, and 
accelerometers to measure stresses. 

Sensors are important for UxVs not only for self-sensing and 
localization, but also for safety. Taking as an example an 
autonomous tractor, safety scenarios include stopping the 
vehicle if: 

• Tractor leaves field boundary or deviates from path. 

• Unavoidable obstacle within given threshold. 

• Communication disrupted or lost. 

• GPS dropout corrupts position information. 

• Computer failures occur. 

Some safeguards to ensure that such vehicle halt actions occur 
include the use of a sensor suite for detecting vehicle path 
obstructions, a redundant radio link to protect against wireless 
communication dropout or corruption, and the use of 
odometry to complement/supplement GPS. Fig. 21 shows 
some of the awarenenss issues that must be addressed by the 
sensor suite. 

 

Fig. 21. Safety awareness issues. 

In the case of the autonomous tractor, these issues were 
addressed through the use of a three-tiered proximity detection 
system, whose sensor influence map is shown in Fig. 22. 

We conclude by commenting on localization. Localization 
(where am I?) is arguably the most fundamental problem 
autonomous systems. It is defined as the technique through 
which a robot is able to update its position (and also 
orientation) in the world. In outdoor unmanned systems, one 
might suppose that GPS solves the problem. However, it is 
often the case that GPS signals are lost or denied. Thus, more 
sophisticated techniques using cameras, maps, and statistical 
inference strategies, such as SLAM (simultaneous localization 
and mapping), are active areas of research.  
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Fig. 22. Proximity detection system. 

4.3 Scope Creep and Design Evolution 

Inevitably, all projects experience either scope creep, in which 
the customer keeps changing things and/or adding to the 
requirements, or product evolution, in which the system is 
enhanced or changed in fundamental ways, or both! In the 
case of the ODIS project, after the autonomous unmanned 
vehicle was developed, the customer requested a tele-
operated-only version (subsequently named the ODIS-T). 
Later, a different customer requested another full-up 
autonomous version to be used for semi-autonomous 
operation (ODIS-S). In the case of the ODIS-T, the desire was 
to have an unmanned (not autonomous) vehicle that could 
provide an operator with the benefit of stand-off surveillance 
without the complexity and reduced capability of autonomy.3

4.4 Mission Payloads 

It is common to see an unmanned vehicle or autonomous 
system effort focused on making the vehicle “move by itself” 
or by remote control. But, in practice, the system is expected 
to deploy a payload of some type. Such payloads are typically 
sensors. In the case of the ODIS-T robot, the sensor suites 
deployed included those used in many unmanned systems: 

• Visual – pan/tilt imaging camera 

• Passive & active thermal imaging 

• Chemical sniffers – i.e. nitrates, toxic industrial 
chemicals 

• Night vision sensors 

• Acoustic sensors 

• Radiation detectors – i.e. dirty bombs 

• Biological agents detection 

• MEMS technology – multiple threats 

• License plate recognition 

• Infrared thermal imager 

                                                 
3 It is ironic to note that in practice, for UGVs, autonomy does 
not necessarily imply improved capability, because, although 
we can design a high degree of inherent capability in the 
electro-mechanical system, the associated algorithms for 
perception and decision-making are not yet equally mature. 

Fig. 23 shows an infrared thermal image obtained by an ODIS 
robot. Such a sensor is useful in law enforcement applications. 

 

Fig. 23. ODIS IR sensor feedback 

Mission payloads can be actuators as well as sensors, such as 
a fire hose, a robot arm, a cutting tool, etc. Different CONOPS 
will produce different mission payload requirements. Fig. 24 
shows a mobile manipulator based on the ODIS robot. 

 

Fig. 24. ODIS mobile manipulator. 

4.5 Other UxV Inherent Capability Concepts 

There are a number of other concepts related to the inherent 
capability of UxVs. One concept is the idea of cooperative or 
coordinated or swarm behaviours, such as shown in Fig. 3 
above. Another interesting concept is the so-called marsupial 
behaviours. Fig. 25 shows a large robot built to carry the 
ODIS robot. Notionally, the large robot would patrol a parking 
area (or be deployed by security guards from a distance), 
performing coarse-grained inspection, and the ODIS robot 
would be released from the larger robot to perform fine-
grained inspection.  

 

Fig. 25.  Marsupial parking lot surveillance system. 
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Finally, we mention that many times an autonomous system is 
developed by retrofitting existing vehicles, with actuation of 
steering, braking, drive, etc. This is especially common when 
dealing with larger automated vehicles (e.g., tractors or  
construction equipment) to be used by security and law 
enforcement personnel for fire-fighting, road-block and debris 
clearing, building breaching, crowd control, explosive 
ordinance disposal, etc. Typically such vehicles are retrofitted 
using an “automation kit.” This requires adding actuation as 
well as sensing. Fig. 26 shows how an existing farm tractor 
was retrofitted with actuators for remote control and 
autonomy. Fig. 27 shows the sensors. 

 

Fig. 26. Actuators used to retrofit a tractor. 

 

Fig. 27. Sensors used to retrofit a tractor. 

5. CONTROL OF UNMANNED SYSTEMS 

Once one has in their hands a vehicle with some level of 
inherent mobility capability and the ability to “fly-by-wire,” it 
is necessary to develop algorithms exploiting that inherent 
capability. Control and decision algorithms are what transform 
a collection of wheels or tracks, chassis, electronics, and 
sensors into a smart, mobile unmanned autonomous vehicle.  
We consider two aspects of control for autonomy: servo and 
path-tracking control and intelligent behaviour generation for 
mission planning and execution, which “wrap around” the 
inherent capability components as depicted in Fig. 28. 

 

Fig. 28. Control and intelligent behavior generation. 

5.1 Architectures 

Algorithms for intelligent behaviour generation and control 
must be organized in a suitable architecture. A large number 
of architectures and strategies have been proposed for 
intelligent behaviour generation for UxVs. These include: 

• Subsumption (Brooks) – The subsumption architecture 
uses input-output relations to solve small problems with a 
prioritization of actuation. For example, a simple 
autonomous system may have two behaviours: forage or 
flee. When there is no danger, forage has priority. When 
danger is present, fleeing has priority.  This approach can 
be called a reactive approach. 

• Behavior-based, hierarchical (Arkin) – This architecture 
uses specific motor schemas for specific behaviours, with 
higher-level behaviours formed form lower-level 
behaviors. This is often called a deliberative approach.   

• Behavior-based reinforcement learning (Barto/Sutton/ 
Anderson) – In reinforcement paradigms, the output of a 
difference engine measuring state-goal mismatch dictates 
actions to minimize that mismatch. These actions are 
typically probabilistic.  

Of course, one can consider combinations of these 
architectures. Below we present an architecture that is both 
deliberative and reactive, where an AI-based planner devises 
deliberative actions, but reactive actions are possible. 

We also note that a number of formal codes have been 
developed to implement architectures for autonomous 
systems. These include the 4D/RCD system from the U.S. 
National Institute of Standards and Technology, the JAUS 
(Joint Architecture fro Unmanned Systems) from the U.S. 
DoD (now a developing SAE standard), and a number of 
industry-specific standards currently under development. (e.g., 
the US STANAG 4586 for UAVs). 

In the remainder of this section we will give an overview of a 
multi-resolution architecture to implement a “task 
decomposition” approach to control. As shown in Fig. 29, at 
the lowest level actuators run the robot. At the middle level 
the path tracking controllers generate set-points (steering 
angles and drive velocities) and pass them to the low level 
(actuator) controllers. At the highest level the mission planner 
decomposes a mission into atomic tasks and passes them to 
the path tracking controllers as command-units.  

     

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

11727



 
 

 

 

Fig. 29. Multi-resolution architecture. 

5.2 Low-Level and Path-Tracking Control 

At the lowest level, servo-control and basic kinematics 
considerations can be used to devise control algorithms to 
both force the system’s actuators to follow desired setpoints 
and to force the vehicle’s body-centered motion to follow a 
desired path. Additionally, when odometry or GPS and inertial 
data are available, coordinate transformations can be used to 
force the vehicle to have a desired open-loop velocity vector 
in inertial space. To actually track a desired path in inertial 
space, path tracking strategies can be broadly classified into 
two groups: 

1. Time  trajectory-based (temporal), whereby the desired 
path is parameterized into time-varying set-points. In this 
case the locus of these set-points follow (in time) the 
desired trajectory (in space). 

2. Spatial-based, whereby the desired path is parameterized 
as a function of space and all control actions are based on 
the distance of the vehicle from the desired path. Velocity 
as a function of path can be included in such algorithms.  

We have implemented a variety of each type of controller on 
our robots. In general, spatial-based strategies are safer, but 
time-based strategies may be more accurate. For more details 
please refer to the references.  

5.3 Intelligent Behaviour Generation 

We classify behaviour generation strategies the evolution of 
their development. “First Generation” strategies used 
waypoint navigation, with splines used to define paths 
between waypoints. This can be viewed as a user-based path 
generation strategy.  

“Second Generation” strategies decompose the path into 
primitives with fixed input parameters. For example, a 
command sequence might be: 

1. Translate to (20,20) with a velocity of  1.414. 

2. Translate to (20,40) with a velocity of 1. 

Such a sequence might be implemented via a set of primitives 
such as those shown in Fig. 30. We refer to such a strategy as 
open-loop path generation. 

 

Fig. 30. Motion primitives. 

The “Third Generation” of intelligent behaviour generation 
strategies that we have studied also composes paths into 
primitives. However, in this case the variable input parameters 
depend on sensor data. We call this sensor-driven path 
generation strategy a delayed commitment approach. To see 
the difference from the second generation strategy, notice that 
the second generation approach depends upon how accurate 
your original plan might be. The problem with instantiating a 
primitive such as that shown in Fig. 30 with actual numbers 
after a planning activity is that it is not adaptable; it pre-
determines the commands based on the information available 
at planning time. A more adaptable approach is to leave the 
determination of the input variables until execution time, 
based on the perceived environment.  

To illustrate, consider the problem of controlling ODIS to 
approach a vehicle in a parking lot from the back and to align 
itself between the two back wheels. Since the exact location of 
the car is not known at planning time, a traditional script 
command specifying exact coordinates will not be possible. 
However, in the third generation intelligent behaviour 
strategy, the path for ODIS to take can be specified as 

(ALIGN-ALONG (LINE-BISECT-FACE CAR_001) 
distance) 

where “line-bisect-face” is a function that returns a line that 
bisects the closest face of the object CAR_001 (see Fig. 31). 
This line will be undefined initially, but once the object 
CAR_001 has been detected and a spatial model built, the line 
will be defined based on the perceived position of CAR_001. 
Here the determination of the path to be followed is delayed 
until execution time, based on the result of sensing the 
environment. In this way the paths followed naturally adapt to 
the local environment encountered by ODIS.  

 

 

Fig. 31.Delayed-commitment approach. 
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5.4 Software Implementation 

Command Grammar: A collection of commands such as 
illustrated in Fig. 31 can be viewed as a grammar. In our 
research we developed a command environment called 
MoRSE to implement our delayed commitment approach 
(Mobile Robots in Structured Environments). The language is 
characterized by  

• A high degree of orthogonality with a number of small 
orthogonal constructs that effectively span the action 
space of the robot and can be mixed and matched to 
provide almost any behaviour. 

• Variables that include standard integer, floating point, and 
geometric data types, such as points, lines, arcs, corners, 
pointsets, etc. 

• Data constructs for objects in the environment, to be fit 
and matched to data. 

• Geometric computation functions for building arcs and 
lines from points, returning points on objects, extracting 
geometry from environment objects, generating unit 
vectors based on geometry, fitting functions to turn raw 
data into complex objects, and vector math 

A key feature of MoRSE is the command unit. These are a set 
of individual commands actions, which define various vehicle 
actions that will be executed in parallel, including: 

• Commands for XY movement: 

− moveAlongLine(Line path, Float vmax, Float vtrans) 

− moveAlongArc(Arc path, Float vmax, Float vtrans) 

• Commands for Yaw movement: 

− yawToAngle(Float angle_I, Float rate) 

− yawThroughAngle(Float delta, Float rate) 

• Commands for sensing: 

− SenseSonar 

− SenseIR  

− SenseLaser 

− Camera commands 

• A set of rules defining how these commands may be 
combined: 

− At most one command for XY movement 

− At most one command for yaw movement 

− Only one Rapid-stop command 

− At most 1 of each sense command (laser, sonar, IR) 

− At most 1 command for camera action 

− No XY, yaw movement, and senseLaser commands 
allowed with Rapid-stop command 

− No yaw movement command when a senseLaser 
command is used 

System Architecture: These command actions and units are 
then implemented in an architecture designed to allow for the 
various layers of control and decision-making needed to 
produce autonomous behaviours. This architecture is shown in 
Fig. 32. For planning and intelligent behaviour generation, 
higher-level tasks are defined as compositions of lower-level 
tasks. In our hierarchy we define 

• Mission-level tasks – These are user-defined tasks to 
describe what the system should do, such as {Move to  
point}, {Characterize a stall}, or {Inspect a stall}. In our 
ODIS implementation we had 12 such high-level tasks. 

• Tasks and Subtasks – These are variable and planned 
actions. For instance, {Characterize a stall} might be 
decomposed into tasks such as “move to the end of the 
stall” then “move to the desired stall” then identify the 
bumper”, .etc. Subtasks would be a series of actions 
needed to achieve a task. For example, “identify the 
bumper” might be decomposed into “rotate through 45 
degrees while sensing with sonar” then “fit line to data” 
then “move to the mid-point of the line at a distance of 50 
centimetres.”   

• Atomic Tasks (scripts), Command Units, and Command 
Actions – These are the final decomposition, whereby 
subtasks are broken up into a series of pre-defined 
actions, such as the “moveAlongLine” command given 
above. 

Deliberative and Reactive Planning: The process by which 
user-defined mission-level tasks are decomposed into 
command units and command actions uses AI-based planning 
techniques which involve defining an appropriate graph 
structure for the problem and doing an A*-search over the 
graph. It is beyond the scope of this paper to describe this 
process. The interested reader is referred to the references for 
more information. This process, however, is a deliberative 
planning approach. That is, given a mission-level task, and 
current information about the world, we define a plan to 
achieve the task.  

Sometimes, however, it is necessary to deviate from the plan 
by invoking reactive behaviours. In our system, reactive 
behaviours are induced via several different approaches. 
These include (see Fig. 33):  

• Localization thread: The localization thread compares 
expected positions to actual sensor data and makes 
corrections to GPS and odometry as needed. This is 
particularly important, as ODIS’s missions require lots of 
motion, including rotation. Problems occur in “knowing 
where we are” can occur due to GPS dropout and drift in 
fiber-optic gyro data. The two solutions we have used 
include landmark-based localization using ODIS’s laser 
and wireless visual-servoing using ODIS’s camera. 
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• Awareness thread: The awareness thread interacts with 
the execution thread based on safety assessments of the 
environment 

• Logic within the execution thread and scripted adaptive 
behaviours: In our system, exit conditions at each level of 
the hierarchy determine branching to pre-defined or 
adaptive actions or to invoke a re-plan event, as shown in 
See Fig. 34.  

 

Fig. 33.Reactive behaviors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 32. Complete architecture. 

6. CONCLUDING COMMENTS 

We conclude with a brief observation about future research. 
We believe that advances in autonomy will require new ways 
of thinking in the areas of perception, decision-making, and 
architecture (but not traditional control). We have not 
addressed perception in this paper and leave this topic for 
another time. However, regarding architectures, it is our view 
that new paradigms for architectures are needed. In particular 
we believe that the discrete-event dynamic system perspective  

 

Fig. 34.Feedback during the execution thread. 
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for developing a formal approach to grammar-based 
strategiescan be useful. From this point of view, the mobile 
robot behaviour generator can be interpreted as a discrete-
event dynamic system (DEDS) as depicted in Fig. 35. In this 
interpretation commands and events are symbols in an 
alphabet associated with a (regular) language. In this 
formalism our goal is to develop methods for the automatic 
generation of scripts. Suggested approaches for synthesis 
include Petri nets and recent results on controller design for 
finite state machine model matching. This approach can also 
allow for feedback as a natural aspect of deliberative 
behaviour, such as the our use of feedback during the 
execution thread in our MoRSE system depicted in Fig. 34. 
Finally we note that the role of memory in intelligence needs 
to be understood better, as does the idea of adaptable 
architectures that can allow “growth” of knowledge (e.g., 
evolution of language), as well as other biologically-inspired 
modelling and architecture ideas such as swarms (e.g., 
bacterial foraging, ants/bees, etc. – more later), multi-agent 
systems, self-organization, complex adaptive system (e.g., 
membrane formation), and cybernetic viewpoints.  

 

Fig. 34.DEDS view of an autonomous mobile robot. 
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