
A Tutorial Introduction to Autonomous Systems

Kevin L. Moore

Division of Engineering, Colorado School of Mines, Golden, CO 80403
USA (Tel: 303-273-3898; e-mail: kmoore@mines.edu).

Abstract: This paper presents a tutorial-level introduction to the technical aspects of unmanned
autonomous systems. We emphasize a system engineering perspective on the conceptual design and
integration of both the components used in unmanned systems, including the locomotion, sensors, and
computing systems needed to provide inherent autonomy capability, and the algorithms and architectures
needed to enable control and autonomy, including path-tracking control and high-level planning strategies.
Concepts are illustrated using case study examples from robotic and unmanned system developed by the
author and his colleagues.

1. INTRODUCTION

This paper presents a basic introduction to the technical
aspects of unmanned and autonomous systems. Our
perspective is that one must take a systems engineering
approach to develop an unmanned, autonomous system and
the paper is organized to emphasize our viewpoint. Thus we
consider first application-driven conceptual design of
autonomous systems. Next we consider the components
needed to implement an unmanned system and how these
components are integrated together, including: power and
drive train components for locomotion, electro-mechanical
and computational system elements, proprioceptive sensors,
environmental sensors for self-sensing, localization, and
perception. We then consider architectures to integrate and
coordinate the algorithms in an unmanned system, including
servo-level and path-tracking controllers, based on actuator
modelling and system-level kinematics, as well as navigation,
motion planning, and intelligent behaviour generation using
high-level planning techniques based on searching. The ideas
presented in the paper are generally applicable to all types of
unmanned systems, but we will focus on autonomous
unmanned ground systems, using case study examples of real
systems developed by the author and his colleagues. We
conclude the paper with comments on research opportunities
and challenges in autonomous unmanned systems1.

2. WHAT IS AN UNMANNED SYSTEM?

What is an unmanned system? Is it the same as an unmanned
vehicle? Is an unmanned system a robot? Is a robot an
unmanned system? Is an unmanned system an autonomous
system? What is an autonomous system? What about
unmanned sensors? What about mobile sensors? What about
tele-presence or tele-operation? What about teams of
unmanned vehicles, or swarms? All of these terms and phrases

1 Due to the tutorial nature of this paper, all reference citations
are collected at the end of the paper.

appear in the literature with a variety of meanings, but often
used synonymously.

To establish a framework, let us begin with the word “robot.”
From Wikipedia™ we learn that the word “robot” was
introduced in Rossum's Universal Robots, a 1921 science
fiction play by Karl Čapek. In this play a factory makes
artificial people that are called robots, which can be mistaken
for humans. In more recent times, people think of “robots” as
either manipulator arms or systems with human-like motion or
features, such as the Kuka or Asimov robots shown in Fig. 1.

Fig. 1. Industrial manipulator made by KUKA (photo credited
to) and Asimov robot made by Sony (photo from web).

Again referring to Wikipedia™, one definition is that “… a
robot is a mechanical or virtual, artificial agent. A robot is
usually an electro-mechanical system, which, by its
appearance or movements, conveys a sense that it has intent or
agency of its own. A robot may have the following properties:
it is not natural/has been artificially created; it can sense its
environment; it can manipulate things in its environment; it
has some degree of intelligence, or ability to make choices
based on the environment, or automatic control or pre-
programmed sequence; it is programmable; it can move with
one or more axes of rotation or translation; it can make
dexterous coordinated movements; it appears to have intent or
agency.”

These descriptors of robots are useful and provide some ideas
about how to define an unmanned or autonomous system. The
key distinction is that while people often associate the word
robot with a manipulator arm or a humanoid-type system, we
want to consider a broader class of systems that admit a

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 11720 10.3182/20080706-5-KR-1001.0273

variety of locomotion capabilities as well as autonomous
behaviour capabilities. To this end, let us define:

Unmanned system: any electro-mechanical system with
the capability to carry out a prescribed task or portion of
a prescribed task automatically, without human
intervention.

Such systems can be autonomous, able to act alone to follow
some plan or script while adapting to changes in the
environment. However, we will also allow the descriptor
“unmanned system” to be applied to tele-operated or tele-
manipulated systems as well, meaning those systems that can
be operated remotely by a human. A sub-class of unmanned
systems are unmanned vehicles: a vehicle that does not
contain a person. In the remainder of this paper we will use
the phrases unmanned system, unmanned vehicle, autonomous
system, and robotics system interchangeable, but will focus
primarily on unmanned vehicles in our examples. It should
also be noted that most unmanned systems are intended to
deploy a payload (sensor or actuator).

Unmanned vehicles can come in several flavours:

• Unmanned land (or ground) vehicles (UGV), which
come in all varieties, but which can often be
categorised as either wheeled, tracked, or novel.

• Unmanned air vehicles (UAV), which may be fixed-
wing, rotary-wing, or ducted fan.

• Unmanned maritime vehicles, which may be
underwater vehicles (UUV) or surface vessels
(USV).

Collectively we will refer to UxVs where “x” can mean
ground, air, underwater, or surface. Examples of typical,
currently- fielded UxVs are shown in Fig. 2. It is also common
to identify so-called unattended ground sensors (UGS) as an
unmanned system.

Fig. 2. Example UxVs (photos taken from the web).

We conclude this section by noting that recent research trends
have extended beyond single-entity autonomy to address the
cooperative autonomy that can emerge when collections of
unmanned systems are deployed to work together. For
example, the SwardBot™ developed by the company IRobot

and studied at MIT (shown in Fig. 3), can demonstrate
flocking behaviour typical of swarms found in nature when
programmed with the right algorithms. In a related example,
Fig. 4 depicts the idea of meta-swarms that can result when
different types of UxVs work together inside the so-called
global information grid (GiG). We will not address swarming
or networked UxVs in the remainder of the paper, but will
focus only on single-entity autonomy.

Fig. 3. Swarming (photo credit http://www.irobot.com).

Fig. 4. Networked UxVs.

3. HOW DO YOU MAKE A UxV?

First, we can note that all UxVs have common elements:
mechanical components (drive, power, chassis), electronics
and computational resouces, sensing/mission payloads,
communication systems, control systems, smart algorithms for
perception and decision-making, and ways to interface to
user.2 These components are depicted in Fig. 5.

In considering the components of an unmanned autonomous
system, we take the point of view that there are two key
aspects of unmanned vehicles and autonomy:

1. Inherent physical capabilities built into the system.

2. Intelligent control to exploit these capabilities.

By inherent physical capabilities built into the system, we
mean mechanisms for mobility and manipulation, power,
sensors for perception, both proprioceptive (meaning self-

2 While it may seem an oxymoron to talk about a user
interface for an unmanned vehicle, practically speaking all
unmanned vehicles or autonomous systems exist for a purpose
defined by humans. Thus we must have a way to deploy and
monitor autonomous systems.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

11721

sensing) and external sensors, and computational resources.
By intelligent control to exploit these capabilities, we refer to
algorithms that include machine-level control, perception
algorithms, reasoning, decision-making, learning, and human-
machine interfaces.

In the remainder of this section we will discuss some of the
individual components shown in Fig. 5. First, however, we
note that all unmanned systems should be developed from the
perspective of its concept of operations (CONOPS). For
instance, Fig. 6 shows an unmanned vehicle intended for
autonomous orchard spraying operations. Fig. 7 shows the
OmniDirectional Inspection System (ODIS) intended for
under-vehicle surveillance. Clearly the requirements for the
individual subsystems of each vehicle are different. Once a
CONOPS has been defined, then systems engineering is used
to flow-down requirements for subsystems. A common
mistake in robotic vehicle development is to not begin the
process with a clearly stated CONOPS.

4. INHERENT CAPABILITIES OF UNMANNED
SYSTEMS

In this section we discuss the inherent capabilities needed in
unmanned systems and in the next section we discuss
algorithms that exploit these inherent capabilities. Much of
our discussion will use the ODIS robot as an illustrative case
study. Thus we begin the section with an overview of ODIS.

4.1 ODIS CONOPS

The ODIS robot shown in Fig. 7 is only 3.75 inches tall and
has three wheels, each with the same smart wheel ODV
capability described in the next subsection. Using GPS,
odometry, and on-board sensors, ODIS can navigate though a
parking area either, a) going from stall to stall, inspecting any
vehicles that it finds, or, b) going to a prescribed location and

 Fig. 5. Components of unmanned autonomous systems.

Fig. 6. Autonomous orchard spraying tractor.

Fig. 7. ODIS robot.

inspecting any vehicles it finds in that location. Once a vehicle
is found to be in a parking stall some form of inspection may
be carried out. After deciding to inspect a vehicle, ODIS
characterizes the vehicle, finding bumper and tire locations,
and then autonomously travels under the vehicle, sending
streaming video back to the operator station for analysis.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

11722

4.2 System Engineering Concepts for UxVs

Based on the motivating UxVs CONOPS, a system
engineering approach can be taken to define requirements for
the subsystems of the system. In the case of the ODIS vehicle,
the overall specifications shown in Fig. 8 were articulated
based on the CONOPS.

Fig. 8 ODIS specifications.

From these specifications, the design process proceeded to
consider the mechanical aspects of locomotion and power,
vehicle electronics (also called vetronics), and sensors. Other
subsystems included the chassis design. Fig. 9 depicts how
theses subsystem can be viewed as “wrapping” around each
other. We discuss each subsystem separately.

Fig. 9 ODIS components.

Locomotion: Except for unattended ground sensors, most
unmanned systems must move. The primary locomotion
systems used in most UxVs are:

• UGV: wheels and tracks. UGVs are further classified
by their steering type (e.g., Ackerman, skid steer,
unicycle, omni-directional, or novel).

• UAV: fixed wing, rotary wing, VTOL.

• USV/UUV: propeller based, jetted.

In general the motion and locomotion aspects of an unmanned
vehicle are not remarkably different from those of their
manned counterparts. Thus the design of motion and
locomotion system becomes “only” an engineering task.

Sometime a novel mechanical concept for locomotion might
become the basis of an unmanned system, rather than a
motivating CONOPS. For example, Fig. 10 shows the original
“smart wheel” concept developed at Utah State University.
Also shown is the ODIS version of the smart wheel assembly.
This USU-developed mobility capability has two or three
independent degrees of freedom: drive, steering with infinite
rotation, and height (in some robots). Multiple smart wheels
on a chassis creates a “nearly-holonomic” or omni-directional
(ODV) vehicle. Fig. 11 shows some of the ODV robots built
using the smart wheel.

Fig. 10. USU smart wheel.

Fig. 11.ODV robots.

Power: Another important consideration in unmanned vehicle
locomotion design is the system’s power source. Power for
UxVs is one of the technology’s limiting issues. Many robots,
especially in hobbyist or academic and research lab settings,
are battery-based systems, using lead-acid, nickel-metal
hydride, lithium-ion, or silver-zinc batteries. In larger, more
“real-world” systems, however, it is more common to find
combustion engine-based power sources, including both
gasoline and diesel. Recently there have been examples of fuel
cells being used in robots, as well as novel ideas such as the
notion of energy scavenging. Another aspect to consider when
addressing power is the so called “power budget,” which can
be obtained by analyzing a power distribution block diagram
such as the one for ODIS shown in Fig. 12.

Vehicle electronics and computational capability: When
designing a UxV one must identify all computational
processes that are required and then allocate these
requirements across multiple processors. A critical
consideration will be the particular data sources that drive the
computational algorithms and the interface requirements
associated with those data sources (e.g., RS-232/485 serial,.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

11723

Fig. 12.ODIS power distribution diagram.

CAN, Ethernet, USB, Analog, Digital, etc.). Figs. 13-15
illustrate the vetronics design for the ODIS vehicle, with Fig.
13 showing the high-level block diagram, Fig. 14 showing
how to describe the I/O of the master processor, and Fig. 15
showing similar detail for a lower-level wheel node processor

Fig. 13.Vetronics architecture.

Fig. 14. Master node.

Chassis: UxV design can be a “chicken-and-egg” problem.
While on the surface chassis development seems to be a
standard mechanical engineering problem, the design cannot

Fig. 15. Wheel node.

be done in a vacuum without consideration of other issues. In
particular, the tradeoffs between layout (e.g., vehicle size),
vehicle speed/torque, battery capacity, and weight become
paramount. A bigger motor give more speed and torque, but
takes up more space and requires more battery, which makes
the vehicle heavier, which makes it need more power, which
requires a bigger motor, which … Clearly all the teams
working on the UxV design must collaborate. To this end it is
useful to develop layout diagrams such as that shown in Fig.
16 and weight budgets calculations such as shown in Fig. 17.
Another important aspect often overlooked is the design and
layout of cables. Fig. 18 shows the final ODIS chassis layout.

Fig. 16. ODIS vetronics layout.

Fig. 17. ODIS weight budget.

Sensors: The ODIS robot was equipped with a full range of
sensors. Fig. 19 depicts the external sensors that ODIS uses to
understand its environment. We will not discuss the design
and selection of these sensors in detail here. The interested
reader can refer to the references in the bibliography.
However, we do note two points. First, Fig. 19 and Fig 13
both emphasize that it is common to have separate processing
boards for individual sensors. Such a “system-of-systems”
approach makes it easy to quickly design new platforms.
Second, a useful design technique for sensor selection is to use

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

11724

Fig. 18. Final ODIS chassis layout.

what we call a “sensor influence map,” which shows the range
and coverage of each sensor based on its placement on the
robot. Fig. 20 shows the ODIS sensor placement map.

In addition to sensors used to perceive the external
environment, UxVs need so-called “properioceptive sensors.”
These are sensors that allow the unmanned system to measure
information about its own internal state, that is, self-status
sensors. Such sensors can include:

Fig. 19. ODIS external sensors.

Fig. 20. Sensor influence map for ODIS.

• Localization sensors such as a fiber optic gyro (FOG,
similar to a compass) and GPS.

• Sensors to aid in localization, including wheel
encoders for odometry or dead-reckoning
computations (relative encoders for wheel speed and
absolute encoders for steering angle).

• Vehicle health sensors, such as current sensors on
each motor, temperature sensors for the motors and
inside the chassis, battery voltage sensors, and
accelerometers to measure stresses.

Sensors are important for UxVs not only for self-sensing and
localization, but also for safety. Taking as an example an
autonomous tractor, safety scenarios include stopping the
vehicle if:

• Tractor leaves field boundary or deviates from path.

• Unavoidable obstacle within given threshold.

• Communication disrupted or lost.

• GPS dropout corrupts position information.

• Computer failures occur.

Some safeguards to ensure that such vehicle halt actions occur
include the use of a sensor suite for detecting vehicle path
obstructions, a redundant radio link to protect against wireless
communication dropout or corruption, and the use of
odometry to complement/supplement GPS. Fig. 21 shows
some of the awarenenss issues that must be addressed by the
sensor suite.

Fig. 21. Safety awareness issues.

In the case of the autonomous tractor, these issues were
addressed through the use of a three-tiered proximity detection
system, whose sensor influence map is shown in Fig. 22.

We conclude by commenting on localization. Localization
(where am I?) is arguably the most fundamental problem
autonomous systems. It is defined as the technique through
which a robot is able to update its position (and also
orientation) in the world. In outdoor unmanned systems, one
might suppose that GPS solves the problem. However, it is
often the case that GPS signals are lost or denied. Thus, more
sophisticated techniques using cameras, maps, and statistical
inference strategies, such as SLAM (simultaneous localization
and mapping), are active areas of research.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

11725

Fig. 22. Proximity detection system.

4.3 Scope Creep and Design Evolution

Inevitably, all projects experience either scope creep, in which
the customer keeps changing things and/or adding to the
requirements, or product evolution, in which the system is
enhanced or changed in fundamental ways, or both! In the
case of the ODIS project, after the autonomous unmanned
vehicle was developed, the customer requested a tele-
operated-only version (subsequently named the ODIS-T).
Later, a different customer requested another full-up
autonomous version to be used for semi-autonomous
operation (ODIS-S). In the case of the ODIS-T, the desire was
to have an unmanned (not autonomous) vehicle that could
provide an operator with the benefit of stand-off surveillance
without the complexity and reduced capability of autonomy.3

4.4 Mission Payloads

It is common to see an unmanned vehicle or autonomous
system effort focused on making the vehicle “move by itself”
or by remote control. But, in practice, the system is expected
to deploy a payload of some type. Such payloads are typically
sensors. In the case of the ODIS-T robot, the sensor suites
deployed included those used in many unmanned systems:

• Visual – pan/tilt imaging camera

• Passive & active thermal imaging

• Chemical sniffers – i.e. nitrates, toxic industrial
chemicals

• Night vision sensors

• Acoustic sensors

• Radiation detectors – i.e. dirty bombs

• Biological agents detection

• MEMS technology – multiple threats

• License plate recognition

• Infrared thermal imager

3 It is ironic to note that in practice, for UGVs, autonomy does
not necessarily imply improved capability, because, although
we can design a high degree of inherent capability in the
electro-mechanical system, the associated algorithms for
perception and decision-making are not yet equally mature.

Fig. 23 shows an infrared thermal image obtained by an ODIS
robot. Such a sensor is useful in law enforcement applications.

Fig. 23. ODIS IR sensor feedback

Mission payloads can be actuators as well as sensors, such as
a fire hose, a robot arm, a cutting tool, etc. Different CONOPS
will produce different mission payload requirements. Fig. 24
shows a mobile manipulator based on the ODIS robot.

Fig. 24. ODIS mobile manipulator.

4.5 Other UxV Inherent Capability Concepts

There are a number of other concepts related to the inherent
capability of UxVs. One concept is the idea of cooperative or
coordinated or swarm behaviours, such as shown in Fig. 3
above. Another interesting concept is the so-called marsupial
behaviours. Fig. 25 shows a large robot built to carry the
ODIS robot. Notionally, the large robot would patrol a parking
area (or be deployed by security guards from a distance),
performing coarse-grained inspection, and the ODIS robot
would be released from the larger robot to perform fine-
grained inspection.

Fig. 25. Marsupial parking lot surveillance system.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

11726

Finally, we mention that many times an autonomous system is
developed by retrofitting existing vehicles, with actuation of
steering, braking, drive, etc. This is especially common when
dealing with larger automated vehicles (e.g., tractors or
construction equipment) to be used by security and law
enforcement personnel for fire-fighting, road-block and debris
clearing, building breaching, crowd control, explosive
ordinance disposal, etc. Typically such vehicles are retrofitted
using an “automation kit.” This requires adding actuation as
well as sensing. Fig. 26 shows how an existing farm tractor
was retrofitted with actuators for remote control and
autonomy. Fig. 27 shows the sensors.

Fig. 26. Actuators used to retrofit a tractor.

Fig. 27. Sensors used to retrofit a tractor.

5. CONTROL OF UNMANNED SYSTEMS

Once one has in their hands a vehicle with some level of
inherent mobility capability and the ability to “fly-by-wire,” it
is necessary to develop algorithms exploiting that inherent
capability. Control and decision algorithms are what transform
a collection of wheels or tracks, chassis, electronics, and
sensors into a smart, mobile unmanned autonomous vehicle.
We consider two aspects of control for autonomy: servo and
path-tracking control and intelligent behaviour generation for
mission planning and execution, which “wrap around” the
inherent capability components as depicted in Fig. 28.

Fig. 28. Control and intelligent behavior generation.

5.1 Architectures

Algorithms for intelligent behaviour generation and control
must be organized in a suitable architecture. A large number
of architectures and strategies have been proposed for
intelligent behaviour generation for UxVs. These include:

• Subsumption (Brooks) – The subsumption architecture
uses input-output relations to solve small problems with a
prioritization of actuation. For example, a simple
autonomous system may have two behaviours: forage or
flee. When there is no danger, forage has priority. When
danger is present, fleeing has priority. This approach can
be called a reactive approach.

• Behavior-based, hierarchical (Arkin) – This architecture
uses specific motor schemas for specific behaviours, with
higher-level behaviours formed form lower-level
behaviors. This is often called a deliberative approach.

• Behavior-based reinforcement learning (Barto/Sutton/
Anderson) – In reinforcement paradigms, the output of a
difference engine measuring state-goal mismatch dictates
actions to minimize that mismatch. These actions are
typically probabilistic.

Of course, one can consider combinations of these
architectures. Below we present an architecture that is both
deliberative and reactive, where an AI-based planner devises
deliberative actions, but reactive actions are possible.

We also note that a number of formal codes have been
developed to implement architectures for autonomous
systems. These include the 4D/RCD system from the U.S.
National Institute of Standards and Technology, the JAUS
(Joint Architecture fro Unmanned Systems) from the U.S.
DoD (now a developing SAE standard), and a number of
industry-specific standards currently under development. (e.g.,
the US STANAG 4586 for UAVs).

In the remainder of this section we will give an overview of a
multi-resolution architecture to implement a “task
decomposition” approach to control. As shown in Fig. 29, at
the lowest level actuators run the robot. At the middle level
the path tracking controllers generate set-points (steering
angles and drive velocities) and pass them to the low level
(actuator) controllers. At the highest level the mission planner
decomposes a mission into atomic tasks and passes them to
the path tracking controllers as command-units.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

11727

Fig. 29. Multi-resolution architecture.

5.2 Low-Level and Path-Tracking Control

At the lowest level, servo-control and basic kinematics
considerations can be used to devise control algorithms to
both force the system’s actuators to follow desired setpoints
and to force the vehicle’s body-centered motion to follow a
desired path. Additionally, when odometry or GPS and inertial
data are available, coordinate transformations can be used to
force the vehicle to have a desired open-loop velocity vector
in inertial space. To actually track a desired path in inertial
space, path tracking strategies can be broadly classified into
two groups:

1. Time trajectory-based (temporal), whereby the desired
path is parameterized into time-varying set-points. In this
case the locus of these set-points follow (in time) the
desired trajectory (in space).

2. Spatial-based, whereby the desired path is parameterized
as a function of space and all control actions are based on
the distance of the vehicle from the desired path. Velocity
as a function of path can be included in such algorithms.

We have implemented a variety of each type of controller on
our robots. In general, spatial-based strategies are safer, but
time-based strategies may be more accurate. For more details
please refer to the references.

5.3 Intelligent Behaviour Generation

We classify behaviour generation strategies the evolution of
their development. “First Generation” strategies used
waypoint navigation, with splines used to define paths
between waypoints. This can be viewed as a user-based path
generation strategy.

“Second Generation” strategies decompose the path into
primitives with fixed input parameters. For example, a
command sequence might be:

1. Translate to (20,20) with a velocity of 1.414.

2. Translate to (20,40) with a velocity of 1.

Such a sequence might be implemented via a set of primitives
such as those shown in Fig. 30. We refer to such a strategy as
open-loop path generation.

Fig. 30. Motion primitives.

The “Third Generation” of intelligent behaviour generation
strategies that we have studied also composes paths into
primitives. However, in this case the variable input parameters
depend on sensor data. We call this sensor-driven path
generation strategy a delayed commitment approach. To see
the difference from the second generation strategy, notice that
the second generation approach depends upon how accurate
your original plan might be. The problem with instantiating a
primitive such as that shown in Fig. 30 with actual numbers
after a planning activity is that it is not adaptable; it pre-
determines the commands based on the information available
at planning time. A more adaptable approach is to leave the
determination of the input variables until execution time,
based on the perceived environment.

To illustrate, consider the problem of controlling ODIS to
approach a vehicle in a parking lot from the back and to align
itself between the two back wheels. Since the exact location of
the car is not known at planning time, a traditional script
command specifying exact coordinates will not be possible.
However, in the third generation intelligent behaviour
strategy, the path for ODIS to take can be specified as

(ALIGN-ALONG (LINE-BISECT-FACE CAR_001)
distance)

where “line-bisect-face” is a function that returns a line that
bisects the closest face of the object CAR_001 (see Fig. 31).
This line will be undefined initially, but once the object
CAR_001 has been detected and a spatial model built, the line
will be defined based on the perceived position of CAR_001.
Here the determination of the path to be followed is delayed
until execution time, based on the result of sensing the
environment. In this way the paths followed naturally adapt to
the local environment encountered by ODIS.

Fig. 31.Delayed-commitment approach.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

11728

5.4 Software Implementation

Command Grammar: A collection of commands such as
illustrated in Fig. 31 can be viewed as a grammar. In our
research we developed a command environment called
MoRSE to implement our delayed commitment approach
(Mobile Robots in Structured Environments). The language is
characterized by

• A high degree of orthogonality with a number of small
orthogonal constructs that effectively span the action
space of the robot and can be mixed and matched to
provide almost any behaviour.

• Variables that include standard integer, floating point, and
geometric data types, such as points, lines, arcs, corners,
pointsets, etc.

• Data constructs for objects in the environment, to be fit
and matched to data.

• Geometric computation functions for building arcs and
lines from points, returning points on objects, extracting
geometry from environment objects, generating unit
vectors based on geometry, fitting functions to turn raw
data into complex objects, and vector math

A key feature of MoRSE is the command unit. These are a set
of individual commands actions, which define various vehicle
actions that will be executed in parallel, including:

• Commands for XY movement:

− moveAlongLine(Line path, Float vmax, Float vtrans)

− moveAlongArc(Arc path, Float vmax, Float vtrans)

• Commands for Yaw movement:

− yawToAngle(Float angle_I, Float rate)

− yawThroughAngle(Float delta, Float rate)

• Commands for sensing:

− SenseSonar

− SenseIR

− SenseLaser

− Camera commands

• A set of rules defining how these commands may be
combined:

− At most one command for XY movement

− At most one command for yaw movement

− Only one Rapid-stop command

− At most 1 of each sense command (laser, sonar, IR)

− At most 1 command for camera action

− No XY, yaw movement, and senseLaser commands
allowed with Rapid-stop command

− No yaw movement command when a senseLaser
command is used

System Architecture: These command actions and units are
then implemented in an architecture designed to allow for the
various layers of control and decision-making needed to
produce autonomous behaviours. This architecture is shown in
Fig. 32. For planning and intelligent behaviour generation,
higher-level tasks are defined as compositions of lower-level
tasks. In our hierarchy we define

• Mission-level tasks – These are user-defined tasks to
describe what the system should do, such as {Move to
point}, {Characterize a stall}, or {Inspect a stall}. In our
ODIS implementation we had 12 such high-level tasks.

• Tasks and Subtasks – These are variable and planned
actions. For instance, {Characterize a stall} might be
decomposed into tasks such as “move to the end of the
stall” then “move to the desired stall” then identify the
bumper”, .etc. Subtasks would be a series of actions
needed to achieve a task. For example, “identify the
bumper” might be decomposed into “rotate through 45
degrees while sensing with sonar” then “fit line to data”
then “move to the mid-point of the line at a distance of 50
centimetres.”

• Atomic Tasks (scripts), Command Units, and Command
Actions – These are the final decomposition, whereby
subtasks are broken up into a series of pre-defined
actions, such as the “moveAlongLine” command given
above.

Deliberative and Reactive Planning: The process by which
user-defined mission-level tasks are decomposed into
command units and command actions uses AI-based planning
techniques which involve defining an appropriate graph
structure for the problem and doing an A*-search over the
graph. It is beyond the scope of this paper to describe this
process. The interested reader is referred to the references for
more information. This process, however, is a deliberative
planning approach. That is, given a mission-level task, and
current information about the world, we define a plan to
achieve the task.

Sometimes, however, it is necessary to deviate from the plan
by invoking reactive behaviours. In our system, reactive
behaviours are induced via several different approaches.
These include (see Fig. 33):

• Localization thread: The localization thread compares
expected positions to actual sensor data and makes
corrections to GPS and odometry as needed. This is
particularly important, as ODIS’s missions require lots of
motion, including rotation. Problems occur in “knowing
where we are” can occur due to GPS dropout and drift in
fiber-optic gyro data. The two solutions we have used
include landmark-based localization using ODIS’s laser
and wireless visual-servoing using ODIS’s camera.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

11729

• Awareness thread: The awareness thread interacts with
the execution thread based on safety assessments of the
environment

• Logic within the execution thread and scripted adaptive
behaviours: In our system, exit conditions at each level of
the hierarchy determine branching to pre-defined or
adaptive actions or to invoke a re-plan event, as shown in
See Fig. 34.

Fig. 33.Reactive behaviors.

 Fig. 32. Complete architecture.

6. CONCLUDING COMMENTS

We conclude with a brief observation about future research.
We believe that advances in autonomy will require new ways
of thinking in the areas of perception, decision-making, and
architecture (but not traditional control). We have not
addressed perception in this paper and leave this topic for
another time. However, regarding architectures, it is our view
that new paradigms for architectures are needed. In particular
we believe that the discrete-event dynamic system perspective

Fig. 34.Feedback during the execution thread.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

11730

for developing a formal approach to grammar-based
strategiescan be useful. From this point of view, the mobile
robot behaviour generator can be interpreted as a discrete-
event dynamic system (DEDS) as depicted in Fig. 35. In this
interpretation commands and events are symbols in an
alphabet associated with a (regular) language. In this
formalism our goal is to develop methods for the automatic
generation of scripts. Suggested approaches for synthesis
include Petri nets and recent results on controller design for
finite state machine model matching. This approach can also
allow for feedback as a natural aspect of deliberative
behaviour, such as the our use of feedback during the
execution thread in our MoRSE system depicted in Fig. 34.
Finally we note that the role of memory in intelligence needs
to be understood better, as does the idea of adaptable
architectures that can allow “growth” of knowledge (e.g.,
evolution of language), as well as other biologically-inspired
modelling and architecture ideas such as swarms (e.g.,
bacterial foraging, ants/bees, etc. – more later), multi-agent
systems, self-organization, complex adaptive system (e.g.,
membrane formation), and cybernetic viewpoints.

Fig. 34.DEDS view of an autonomous mobile robot.

7. CITATIONS

Our approach to citation in this paper is unconventional. The
information presented has been based on the author’s
knowledge accumulated over a ten-year period on a number of
projects. We have chosen not to give individual references.
Instead, we indicate here several representative publications.
A complete list of publications related to the projects and
topics described in the paper, including many downloadable
links, can be found at http://www.csois.usu.edu/.

A basic overview of the ODIS concept can be found in:

Flann, N.S., Moore, K.L., and Ma, L. (2002). A small mobile

robot for security and inspection applications in Control
Engineering, Vol. 10, No. 11, Nov. 2002, pp. 1265-1270.

An overview of the ODIS vehicle design and systems
engineering can be found in:

Moore, K.L, Flann, N.S., Rich, S., Frandsen, M, Chung, Y-C.,

Martin, J, Davidson, M., Maxfield, R, Wood, C. (2001).
Implementation of an Omnidirectional Robotic Inspection
System (ODIS) in Proceedings of SPIE Aerosense

2001,Conference on Unmanned Robotic Vehicles,
Orlando, FL, April 2001.

A general overview of our overall ideas on architecture as
well as system engineering can be found in:

Moore, K.L, Flann, N.S. (2000). A Six-Wheeled Omni-
directional Autonomous Mobile Robot in IEEE Control
Systems Magazine, Special Issue on Mobile Robotics, vol.
20, no. 6, pp. 53-66, December 2000.

Our ideas on intelligent behaviour generations, including the
delayed commitment approach have appeared in many papers.
The following are representative:

Bhal, V., Moore, K.L. (2003). Multi-Robot Autonomous

Parking Security System in Proceedings of the 18th IEEE
International Symposium on Intelligent Control, IEEE
ISIC'03,Westin Galleria Houston, Texas, October 5-8,
2003.

Flann, N.S., Davidson, M., Martin J., Moore, K.L., (2001).

Intelligent Behavior Generation Strategy for Autonomous
Vehicles Using a Grammar-Based Approach in
Proceedings of 3rd International Conference on Field
and Service Robotics FSR2001, Helsinki University of
Technology, Otaniemi, Espoo, Finland June 11 -13, 2001.

Moore, K.L., Flann, N.S., (1999). Hierarchical Task

Decomposition Approach to Path Planning and Control
for an Omni-Directional Mobile Robot in Proceedings of
1999 IEEE International Symposium on Control,
Intelligent Systems and Semiotics, pp. 302-307,
Cambridge, MA, Sept. 1999.

Control strategies developed in our research have been
detailed in the following:

Davidson, M., Bahl, V. (2001). The Scalar E-Controller: A

Spatial Path Tracking Approach for ODV, Ackerman, and
Differentially-Steered Autonomous Wheeled Mobile
Robots in IEEE International Conference on Robotics
and Automation, Seoul, Korea, May, 2001.

Moore, K.L., Davidson, M., Bahl,, V., Rich, S., Jirgal, S.

(2000) Modelling and Control of a Six-Wheeled
Autonomous Robot in Proceedings of 2000 American
Control Conference, pp. 1483-1490, Chicago, Illinois,
June 2000.

ACKNOWLEDGEMENTS

The author would like to thank all his various colleagues and
co-authors from the past ten years who have worked with him
in the area of autonomous systems, especially Robert
Gunderson, Nicholas Flann, YangQuan Chen, Carl Wood, and
Don Cripps of Utah State University, Mel Torrie and Matt
Berkemeier of Autonomous Solutinos, Inc., Gordon Olsen of
VPI and Monte Frandsen and Morgan Davidson of USU’s
Space Dynamics Lab, and Vikas, Bahl, Lili Ma, Hitesh Shah,
and Zhen Song.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

11731

