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Abstract: An adaptive neural network controller is proposed to deal with the end-effector
tracking problem of manipulators with uncertainties. By employing the adaptive Jacobian
scheme, neural networks, and backstepping technique, the torque controller can be obtained
which is demonstrated to be stable by the Lyapunov approach. The updating laws for designed
controller parameters are derived by the projection method, and the tracking error can be
reduced as small as possible. The favorable features of the proposed controller lie in that: (1) the
uncertainty in manipulator kinematics is taken into account; (2) the “linearity-in-parameters”
assumption for the uncertain terms in dynamics of manipulators is no longer necessary; (3)
effects of external disturbances are considered in the controller design. Finally, the satisfactory
performance of the proposed approach is illustrated by simulation results on a PUMA 560 robot.

1. INTRODUCTION

In the past decades, robust adaptive motion control has
been thoroughly studied to counteract uncertainties in the
robot dynamics (see surveys Ortega and Spong [1989],
Abdallah et al. [1991]). However, in most applications,
the manipulator end-effector is required to track a given
trajectory in the task space. The kinematics of robot
manipulators is commonly assumed known exactly to
achieve this control objective. Unfortunately, due to the
imprecise measurement of physical parameters and the
interaction between robot and different environments, the
kinematic parameters cannot be known a prior. Therefore,
uncertainty in the robot kinematic model is a practical
problem.

There are relatively few articles to address this topic. As
reported by Arimoto [1999], the research on the control
problem with uncertain kinematics is just a beginning.
Cheah et al. [1999] first proposed an approximation Jaco-
bian method to overcome kinematic uncertainties. Based
on this method, Cheah et al. [2003] also suggested a hybrid
position and force controller when the interaction between
the manipulator end-effector and environments was con-
sidered. Dixon [2007] presented an amplitude limited con-
troller and eliminated the bounded mismatch assumption
for estimated Jacobian. However, above results are focus-
ing on the regulation control of robot. As to tracking con-
trol problems, Cheah et al. [2004] studied an adaptive Ja-
cobian approach for trajectory tracking of non-redundant
robot with uncertain kinematics and dynamics. Extensions
to the redundant robot and uncertain actuator parameters
were done by Cheah et al. [2006]. It is noted that aforemen-
tioned controllers employ the standard adaptive control
scheme to compensate effects of gravity and other terms
⋆ This work was supported in part by the National Natural Science
Foundation of China (Grants 60635010 and 60775043).

in the manipulator dynamics, which means that they will
suffer from the “linearity-in-parameters” assumption and
the tedious analysis of determining “regression matrices”.
In addition, the surface friction and external disturbance
in robot dynamics have been neglected in the controller
design.

Recently, neural networks have been successfully used for
the nonlinear system identification and control due to the
“universal approximation” property [Liu, 2001]. Several
neural-network-based adaptive controllers are also pre-
sented to eliminate the “linearity-in-parameters” assump-
tion in standard adaptive control (see Farrell and Polycar-
pou [2006] for the general framework of these methods).
An attractive feature of these methods is that synaptic
weights of neural networks are tuned on-line without any
off-line learning phases. In literature, some adaptive neural
network controllers have been proposed for the tracking
control of robot manipulators by Lewis et al. [1998], Ge
et al. [1998]. However, these controllers are designed to
move robots along the desired joint angles, the manipula-
tor kinematics is not taken into account.

This paper addresses the end-effector tracking problem of
robot manipulators with uncertain kinematics and dynam-
ics. By using adaptive Jacobian method, neural network
approximation, and backstepping technique, an adaptive
neural network controller is obtained. The adaptive up-
dating laws for controller parameters are derived by the
projection method. Stability of the proposed controller
is guaranteed by the Lyapunov theory. And the tracking
error can be reduced as small as possible. Compared with
controller used in Cheah et al. [2004], the “linearity-in-
parameters” assumption for the manipulator dynamics
is no longer necessary, external disturbances and surface
frictions are taken into account, and the velocity of robot
end-effector is not required.
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2. MATHEMATICAL PRELIMINARIES

Let ‖ · ‖ denote any suitable vector norm. When it is
required to be specific, ‖ · ‖p denotes the p-norm of given
vector. The Frobenius norm of matrix A = [aij ] ∈ R

n×m

is defined by

‖A‖2
F = Tr

(

AT A
)

= Tr
(

AAT
)

=
∑

i,j

a2
ij ,

where Tr(·) represents the trace operator. The Frobenius
norm is compatible with the 2-norm such that ‖Ax‖2 ≤
‖A‖F ‖x‖2 with A ∈ R

n×m and x ∈ R
m. The trace

operator has the following useful property, that is

aT b = Tr
(

abT
)

, (1)

where ∀a, b ∈ R
n.

2.1 Kinematics and Dynamics of Robot Manipulators

Consider a rigid n-link, serially connected robot manipu-
lator. Let x ∈ R

m (m ≤ n) represent a task-space vector
which is related to the robot joint vector q ∈ R

n as

x = h(q),

where h(q) ∈ R
m is the differentiable forward kinematics

of the manipulator. The task-space velocity ẋ is related to
the joint-space velocity q̇ as

ẋ = J(q, φJ )q̇, (2)

where φJ ∈ R
p represents the kinematic parameters of

robot manipulators, such as link lengths and joint offsets;

J(q, φJ )
def
= (∂h/∂q) ∈ R

m×n denotes the manipulator’s
Jacobian matrix which has the following property.

Property 1. The product of the manipulator Jacobian ma-
trix with the joint velocity vector can be linearly parame-
terized as

J(q, φJ )q̇ = YJ (q, q̇)φJ , (3)

where YJ(q, q̇) ∈ R
m×p can be computed directly by the

measurable joint position and velocity vectors q and q̇.

The dynamic model of robot manipulators can be ex-
pressed as [Lewis et al., 1998]

M(q)q̈ + V (q, q̇)q̇ + F (q̇) + G(q) + τed = τ, (4)

where q̈ ∈ R
n denotes the joint acceleration vector;

M(q) ∈ R
n×n is the inertia matrix; V (q, q̇) ∈ R

n×n is
the centripetal-Coriolis matrix; F (q̇) ∈ R

n denotes the
surface friction; G(q) ∈ R

n is the gravitational vector;
τed ∈ R

n denotes the bounded external disturbance vector
including unstructured model dynamics; τ ∈ R

n represents
the torque input vector. Two important properties of this
dynamics formulation are given as follows [Lewis et al.,
1998].

Property 2. The inertia matrix M(q) is symmetric and
positive definite, and satisfies the following inequalities:

m1‖y‖
2
2 ≤ yT M(q)y ≤ m2‖y‖

2
2, ∀y ∈ R

n,

where m1 and m2 are known positive constants.

Property 3. The time derivative of the inertia matrix and
the centripetal-Coriolis matrix satisfy the skew symmetric
relation; that is,

xT
(

Ṁ(q) − 2V (q, q̇)
)

x = 0, ∀x ∈ R
n. (5)

Input Layer Hidden Layer Output Layer

z1

z2

zNi

y1

y2

yNo

V W

σ(·)

σ(·)

σ(·)

σ(·)

∑

∑

∑

.

..
.
..

.

..

.

..

θv1

θv2

θvN
h
−1

θvN
h

θw1

θw2

θwNo

Fig. 1. The structure of the two-layer neural network.

2.2 Multilayer Neural Networks

An attractive ability of neural networks for control pur-
pose is that they can approximate any smooth nonlinear
function up to a small error. In this paper, a two-layer
neural network shown in Fig. 1 is employed as the function
approximator. The output of two-layer neural network can
be determined by the following formula [Lewis et al., 1998]

y = Wσ (V z̄) , (6)

where Ni, Nh and No denote the numbers of input-layer
neurons, hidden-layer neurons and output-layer neurons,
respectively; W ∈ R

No×(Nh+1), V ∈ R
Nh×(Ni+1) are aug-

mented weight matrices; z̄ = [1, zT ]T = [1, z1, z2, · · · , zNi
]T

is augmented input vector; σ(V z̄) = [1, σ(Vr1z̄), σ(Vr2z̄),
· · · , σ(VrNh

z̄)]T is the augmented activation function vec-
tor (Vri represents the ith row of matrix V ). By this
augmented expression, any tuning of W and V will include
tuning of the thresholds θwi and θvj as well. In this paper,
following sigmoid function is adopted as the activation
function,

σ(s) =
1

1 + e−s
. (7)

Let S be a compact simply connected set of R
Ni , and g(z)

be any smooth function from S to R
No . Then, it can be

shown that, for any given positive constant εN , there exist
the ideal weight matrices W ∗ and V ∗ and the number of
hidden layer neurons Nh such that

g(z) = W ∗σ(V ∗z̄) + ε, (8)

where ε is the bounded function approximation error
satisfying |ε| < εN in S.
It should be noted that the ideal matrices W ∗ and V ∗ are
only quantities required for analytical purpose. For real
applications, their estimations Ŵ and V̂ are used for the
practical function approximation. The estimation of g(z)
can be given by

ĝ(z) = Ŵσ(V̂ z̄). (9)

Lemma 1. [Ge et al., 1999] For the neural network defined
by (9), the function estimation error can be expressed as

ĝ(z) − g(z) = Ŵσ(V̂ z̄) − W ∗σ(V ∗z̄) − ε

= W̃
(

σ̂ − σ̂′V̂ z̄
)

+ Ŵ σ̂′Ṽ z̄ + du, (10)
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where σ̂ = σ(V̂ z̄); σ̂′ = diag{0, σ̂′
1, σ̂

′
2, · · · , σ̂′

Nh
} with

σ̂′
i = dσ(s)/ds|

s=V̂ri z̄
; the weight matrix estimation errors

are W̃ = Ŵ −W ∗ and Ṽ = V̂ −V ∗; and the residual term
is du = W̃ σ̂′V ∗z̄ + W ∗O(Ṽ z̄)2 − ε, which is bounded by

‖du‖ ≤ c0 + c1‖z̄‖ + c2‖W̃‖F‖z̄‖, (11)

where c0, c1 and c2 are positive constants.

2.3 Stability of Systems

Definition 1. [Lewis et al., 1998] Given a nonlinear dy-
namical system

ẋ(t) = f(x, t), x(t) ∈ R
n, t ≥ t0.

If there exists a compact set Ux ∈ R
n such that for all

x(t0) = x0 ∈ Ux, there exist a δ > 0 and a number
T (δ, x0) such that ‖x(t)‖ ≤ δ for all t ≥ t0 + T , then
the solution of the nonlinear dynamical system is called
uniformly ultimately bounded (UUB).

3. ADAPTIVE NEURAL NETWORK CONTROLLER

The control objective is to develop a task-space track-
ing controller for the end-effector of robot manipulators
with uncertainties and external disturbances. Here, the
backstepping approach is employed to achieve this control
goal. The backstepping method designs partial Lyapunov
functions and auxiliary controllers for each subsystem of
the whole nonlinear system, and integrates these auxiliary
controllers into the actual controller by “back stepping”
through the system and reassembling it from its compo-
nent subsystems [Kanellakopoulos et al., 1991].
First, a mild assumption, which always holds in practical
applications, is stated as follows.

Assumption 1. Let xd(t) ∈ R
m denote the desired task-

space trajectory. It is assumed that xd(t) and its deriva-
tives up to the second order are bounded in the sense, for
instance, that

∥

∥

∥

∥

∥

xd(t)
ẋd(t)
ẍd(t)

∥

∥

∥

∥

∥

≤ XM , (12)

where XM is a known constant.

Define the tracking error e1(t) ∈ R
m as

e1 = x − xd. (13)

Differentiating e1(t) obtains

ė1 = ẋ − ẋd = J(q, φJ )q̇ − ẋd. (14)

In the presence of kinematic uncertainty, the parameter φJ

in the Jacobian matrix J(q, φJ ) is not known exactly. By
replacing the uncertain parameter φJ with its estimation

φ̂J , an approximate Jacobian Ĵ
(

q, φ̂J

)

∈ R
m×n can be

obtained.
The first step of backstepping design is to treat q̇ as an
auxiliary control signal to the error dynamics defined by
(14). This auxiliary signal is called as q̇d and chosen as

q̇d =Ĵ+
(

q, φ̂J

)

(ẋd − K1e1) +
(

In − Ĵ+
(

q, φ̂J

)

Ĵ
(

q, φ̂J

))

λ, (15)

where Ĵ+
(

q, φ̂J

)

= ĴT
(

q, φ̂J

) (

Ĵ
(

q, φ̂J

)

ĴT
(

q, φ̂J

))−1

is the generalized inverse matrix of the approximate Jaco-

bian matrix; K1 ∈ R
m×m is a positive definite constant di-

agonal matrix; In is an n-dimensional unity matrix; λ ∈ R
n

is an auxiliary term which can be used for optimization
purposes. It is assumed that the manipulator is operating
in a finite task space such that the approximate Jaco-
bian matrix is of full rank. This assumption is commonly
adopted to deal with manipulator kinematic uncertainty
in the existing literature [Cheah et al., 2004, 2006, Dixon,
2007]. Then the error dynamics defined by (14) can be
rewritten as

ė1 =
(

J(q, φJ ) − Ĵ
(

q, φ̂J

))

q̇d + Ĵ
(

q, φ̂J

)

q̇d

+ J(q, φJ )e2 − ẋd

= −K1e1 + J(q, φJ )e2 + YJ(q, q̇d)
(

φJ − φ̂J

)

= −K1e1 + J(q, φJ )e2 − YJ(q, q̇d)φ̃J , (16)

where e2 = q̇ − q̇d. It is assumed that the uncertain
parameter φJ in manipulator kinematics is bounded by
the unknown upper limit φ+

J and lower limit φ−
J , i.e.

(φ−
J )i ≤ (φJ )i ≤ (φ+

J )i, i = 1, 2, · · · , p, where (·)i denotes
the ith element of given vector.
The second step is try to design the actual torque con-
troller τ which makes e2 as small as possible. To achieve
this, the error dynamics for e2 is derived by (4)

M(q)ė2 + V (q, q̇)e2 = τ − M(q)q̈d − V (q, q̇)q̇d − F (q̇)

− G(q) − τed

= τ − f1 − τed. (17)

The torque controller τ is chosen as

τ = F̂1 − K2e2 − γ1, (18)

where K2 is a diagonal positive definite gain matrix; γ1 is
a robustness signal which counteracts the approximation
error and external disturbances in the second step. F̂1 is
the estimation of F1 which is defined by

F1 = f1 − JT (q, φJ )e1. (19)

It is noted that the term −JT (q, φJ )e1 in F1 is used
to compensate the coupling term J(q, φJ )e2 in (16). In
the standard adaptive scheme, it has to assume that
the uncertain term F1 has the “linearity-in-parameters”
property in order to obtain the adaptive updating law.
However, this assumption does not hold if the friction
F (q̇) has the particular nonlinear form [Ge et al., 2001].
Motivated by the universal approximation ability of neural
networks, a multilayer neural network is employed to learn
the uncertain function F1. By the previous introduction
for the multilayer neural network, it can be obtained that,
over a compact set,

F1 = W ∗
1 σ(V ∗

1 Z̄1) + ε1, (20)

with the approximation error ε1 and neural network input
Z̄1 = [1, eT

1 , eT
2 , xT

d , ẋT
d , ẍT

d ]T . The estimation of F1 is given
by

F̂1 = Ŵ1σ(V̂1Z̄1). (21)

By Lemma 1, substituting (18), (19), (20) and (21) into
(17) obtains that

M(q)ė2 + V (q, q̇)e2 = F̂1 − K2e2 − γ1 − f1 − τed

= F̂1 − f1 + JT (q, φJ )e1 − K2e2 − JT (q, φJ )e1 − γ1 − τed

= −K2e2 − JT (q, φJ )e1 − γ1 + δ1 + W̃1

(

σ̂1 − σ̂′
1V̂1Z̄1

)

+ Ŵ1σ̂
′
1Ṽ1Z̄1, (22)
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where σ̂1 = σ(V̂1Z̄1); σ̂′
1 = σ′(V̂1Z̄1); δ1 = −τed − ε1 −

W̃1σ̂
′
1V

∗
1 Z̄1 − W ∗

1 O(Ṽ1Z̄1)
2.

The robustness signal γ1 takes the following hyperbolic
tangent form

γ1 = δM1 tanh

(

2kuδM1e2

ǫ1

)

, (23)

where ku = 0.2785, ǫ1 is a positive design scalar, δM1

is the upper bound of δ1 (By Lemma 1 and the stability
result in the next section, it can be shown that δ1 is indeed
bounded). It is easy to check that γ1 has the following
properties,

eT
2 γ1 ≥ 0, (24a)

δM1‖e2‖ − eT
2 γ1 ≤ ǫ1. (24b)

By the projection algorithm, the adaptive updating laws

for the kinematic parameter φ̂J and neural network weight
matrices Ŵ1 and V̂1 are derived as follows,

(

˙̂
φJ

)

j
=































βj

(

Y T
J (q, q̇d)e1

)

j
, if (φ−

J )j ≤ (φ̂J )j ≤ (φ+
J )j

or if (φ̂J )j = (φ−
J )j and

(

Y T
J (q, q̇d)e1

)

j
> 0,

or if (φ̂J )j = (φ+
J )j and

(

Y T
J (q, q̇d)e1

)

j
≤ 0;

0, if (φ̂J )j = (φ−
J )j and

(

Y T
J (q, q̇d)e1

)

j
≤ 0,

or if (φ̂J )j = (φ+
J )j and

(

Y T
J (q, q̇d)e1

)

j
> 0;

for j = 1, 2, · · · , p. (25)

˙̂
W1 =







































































−e2

(

σ̂1 − σ̂′
1V̂1Z̄1

)T

Γw1,

if Tr
(

Ŵ1Γ
−1
w1Ŵ

T
1

)

< Wm1, or if Tr
(

Ŵ1Γ
−1
w1Ŵ

T
1

)

= Wm1 and eT
2 Ŵ1

(

σ̂1 − σ̂′
1V̂1Z̄1

)

> 0;

eT
2 Ŵ1

(

σ̂1 − σ̂′
1V̂1Z̄1

)

Tr
(

Ŵ1Γ
−1
w1Ŵ

T
1

) Ŵ1 − e2

(

σ̂1 − σ̂′
1V̂1Z̄1

)T

Γw1,

if Tr
(

Ŵ1Γ
−1
w1Ŵ

T
1

)

= Wm1 and

eT
2 Ŵ1

(

σ̂1 − σ̂′
1V̂1Z̄1

)

≤ 0;

(26)

˙̂
V1 =











































−
(

eT
2 Ŵ1σ̂

′
1

)T

Z̄T
1 Γv1, if Tr

(

V̂1Γ
−1
v1 V̂ T

1

)

< Vm1,

or if Tr
(

V̂1Γ
−1
v1 V̂ T

1

)

= Vm1 and eT
2 Ŵ1σ̂

′
1V̂1Z̄1 > 0;

−
(

eT
2 Ŵ1σ̂

′
1

)T

Z̄T
1 Γv1 +

eT
2 Ŵ1σ̂

′
1V̂1Z̄1

Tr
(

V̂1Γ
−1
v1 V̂ T

1

) V̂1,

if Tr
(

V̂1Γ
−1
v1 V̂ T

1

)

= Vm1 and eT
2 Ŵ1σ̂

′
1V̂1Z̄1 ≤ 0;

(27)
where βj is a given positive scalar; Wm1 and Vm1 are given
positive constants for bounding neural network weight
matrices; Γw1 and Γv1 are given positive definite diagonal
matrices.
It is emphasized that the initial estimated kinematic

parameter φ̂J (0) should be selected as

(φ−
J )j ≤

(

φ̂J (0)
)

j
≤ (φ+

J )j , (28)

and the initial neural network weight matrices Ŵ1(0) and

V̂1(0) satisfy that

Tr
(

Ŵ1(0)Γ−1
w1Ŵ

T
1 (0)

)

≤ Wm1, (29a)

Tr
(

V̂1(0)Γ−1
v1 V̂ T

1 (0)
)

≤ Vm1. (29b)

4. STABILITY ANALYSIS

Theorem 1. Given the robot manipulator defined by (2)
and (4), if the controller is constructed as (18), the
parameters updating laws are provided by (25), (26) and
(27), and the initial values of estimated parameters satisfy

the conditions (28) and (29), then e1, e2, φ̂J , Ŵ1 and V̂1

are all uniformly ultimately bounded signals.

Proof. According to the principle of projection algorithm,

it is easy to check that φ̂J is bounded by its upper and
lower limitations.
To prove the boundness of Ŵ1, let Lw1 = Tr

(

Ŵ1Γ
−1
w1Ŵ

T
1

)

.

By (26), it follows that

1. when Lw1 = Wm1 and eT
2 Ŵ1

(

σ̂1 − σ̂′
1V̂1Z̄1

)

> 0,

dLw1

dt
= 2 Tr

(

Ŵ1Γ
−1
w1

˙̂
WT

1

)

= −2 Tr
(

Ŵ1

(

σ̂1 − σ̂′
1V̂1Z̄1

)

eT
2

)

= −2eT
2 Ŵ1

(

σ̂1 − σ̂′
1V̂1Z̄1

)

< 0;

2. when Lw1 = Wm1 and eT
2 Ŵ1

(

σ̂1 − σ̂′
1V̂1Z̄1

)

≤ 0,

dLw1

dt
= 2 Tr

(

Ŵ1Γ
−1
w1

˙̂
WT

1

)

= −2 Tr
(

Ŵ1

(

σ̂1 − σ̂′
1V̂1Z̄1

)

eT
2

)

+

2 Tr



Ŵ1Γ
−1
w1

eT
2 Ŵ1

(

σ̂1 − σ̂′
1V̂1Z̄1

)

Tr
(

Ŵ1Γ
−1
w1Ŵ

T
1

) ŴT
1





= −2eT
2 Ŵ1

(

σ̂1 − σ̂′
1V̂1Z̄1

)

+ 2eT
2 Ŵ1(σ̂1 − σ̂′

1V̂1Z̄1)

= 0.

Hence, if the initial neural network weight matrix Ŵ1(0)

satisfies (29a), then Tr
(

Ŵ1Γ
−1
w1Ŵ

T
1

)

≤ Wm1 always holds,

which means that Ŵ1 is bounded.

By the similar way, it can be proven that Tr
(

V̂1Γ
−1
v1 V̂ T

1

)

≤

Vm1 such that V̂1 is bounded.
To prove the uniform ultimate boundedness of error signals
e1 and e2, the following Lyapunov function is considered,

V = V1 + V2, (30)

where

V1 =
1

2
eT
1 e1 +

1

2
φ̃T

J Γ−1
β φ̃J , (31a)

V2 =
1

2

(

eT
2 M(q)e2 + Tr

(

W̃1Γ
−1
w1W̃

T
1

)

+ Tr
(

Ṽ1Γ
−1
v1 Ṽ T

1

))

(31b)

with Γβ = diag (β1, β2, · · · , βp) ∈ R
p×p.

By (16) and (25), derivating V1 with respect to time
obtains that,

V̇1 = eT
1 ė1 + φ̃T

J Γ−1
β

˙̂
φJ

= −eT
1 K1e1 + eT

1 J(q, φJ )e2 − φ̃T
J (Y T

J (q, q̇d)e1 − Γ−1
β

˙̂
φJ )

≤ −eT
1 K1e1 + eT

1 J(q, φJ )e2. (32)

By (5), (22), (24) (26) and (27), the time derivative of V2

is
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V̇2 = eT
2 M(q)ė2 +

1

2
eT
2 Ṁ(q)e2 + Tr

(

W̃1Γ
−1
w1

˙̂
WT

1

)

+ Tr
(

Ṽ1Γ
−1
v1

˙̂
V T

1

)

≤ Tr
(

W̃1

(

σ̂1 − eT
2 σ̂′

1V̂1Z̄1

)

eT
2

)

− eT
2 K2e2 − eT

2 JT (q, φJ )e1

+ Tr
(

Ṽ1Z̄1e
T
2 Ŵ1σ̂

′
1

)

+ Tr
(

W̃1Γ
−1
w1

˙̂
WT

1

)

+ Tr
(

Ṽ1Γ
−1
v1

˙̂
V T

1

)

+ ‖eT
2 ‖‖δ1‖ − eT

2 γ1

≤ Tr
(

Ṽ1

(

Z̄1e
T
2 Ŵ1σ̂

′
1 + Γ−1

v1
˙̂
V T

1

))

+ ǫ1 − eT
2 JT (q, φJ )e1

+ Tr
(

W̃1

((

σ̂1 − eT
2 σ̂′

1V̂1Z̄1

)

eT
2 + Γ−1

w1
˙̂

WT
1

))

− eT
2 K2e2.

(33)

By (26), it follows that

1. If
˙̂

W1 = −Γw1e2

(

σ̂1 − σ̂′
1V̂1Z̄1

)T

, then

Tr
(

W̃1

((

σ̂1 − eT
2 σ̂′

1V̂1Z̄1

)

eT
2 + Γ−1

w1
˙̂

WT
1

))

= 0.

2. If
˙̂

W1 =
eT
2 Ŵ1

(

σ̂1 − σ̂′
1V̂1Z̄1

)

Tr
(

Ŵ1Γ
−1
w1Ŵ

T
1

) Ŵ1−Γw1e2

(

σ̂1 − σ̂′
1V̂1Z̄1

)T

,

then Tr
(

Ŵ1Γ
−1
w1Ŵ

T
1

)

= Wm1, eT
2 Ŵ1

(

σ̂1 − σ̂′
1V̂1Z̄1

)

≤ 0,

and Tr
(

W̃1

((

σ̂1 − eT
2 σ̂′

1V̂1Z̄1

)

eT
2 + Γ−1

w1
˙̂

WT
1

))

=

eT
2 Ŵ1

(

σ̂1 − σ̂′
1V̂1Z̄1

)

Tr
(

Ŵ1Γ
−1
w1Ŵ

T
1

) Tr
(

W̃1Γ
−1
w1Ŵ

T
1

)

.

It is noted that

Tr
(

W̃1Γ
−1
w1Ŵ

T
1

)

= Tr
(

W̃1Γ
−1
w1W̃

T
1

)

+ Tr
(

W̃1Γ
−1
w1W

∗
1

T
)

=
1

2
Tr

(

W̃1Γ
−1
w1W̃

T
1

)

+
1

2
Tr

(

Ŵ1Γ
−1
w1Ŵ

T
1

)

−
1

2
Tr

(

W ∗
1 Γ−1

w1W
∗
1

T
)

≥ 0,

where the facts that Tr
(

Ŵ1Γ
−1
w1Ŵ

T
1

)

= Wm1, Wm1 ≥

Tr
(

W ∗
1 Γ−1

w1W
∗
1

T
)

and Tr
(

W̃1Γ
−1
w1W̃

T
1

)

≥ 0 have been

used.
Therefore, it can be seen that in both cases the following
fact holds

Tr
(

W̃1

((

σ̂1 − eT
2 σ̂′

1V̂1Z̄1

)

eT
2 + Γ−1

w1
˙̂

WT
1

))

≤ 0.

By the similar way, it can be proven that

Tr
(

Ṽ1

(

Z̄1e
T
2 Ŵ1σ̂

′
1 + Γ−1

v1
˙̂
V T

1

))

≤ 0.

Hence, according to (33) and above two inequalities, it can
be obtained that

V̇2 ≤ −eT
2 K2e2 − eT

2 JT (q, φJ )e1 + ǫ1. (34)

Thus, by (32) and (34), the time derivative of Lyapunov
function V is

V̇ = V̇1 + V̇2

≤ eT
1 J(q, φJ )e2 − eT

1 K1e1 − eT
2 K2e2 − eT

2 JT (q, φJ )e1 + ǫ1

= −eT Ke + ǫ1

≤ −λmin (K) ‖e‖2 + ǫ1, (35)

where K = diag (K1, K2), e =
(

eT
1 , eT

2

)T
, and λmin (K) is

the minimum eigenvalue of matrix K.

Table 1. The Denavit and Hartenberg parame-
ters of PUMA 560 manipulator.

Link i θi (rad) ai (rad) αi (m) di (m)

1 q1 π/2 0 0

2 q2 0 α2 0

3 q3 −π/2 α3 d3

4 q4 π/2 0 d4

5 q5 −π/2 0 0

6 q6 0 0 0

Therefore, V̇ is strictly negative outside the following
compact set

∑

e

∑

e
=

{

e(t)

∣

∣

∣

∣

0 ≤ ‖e(t)‖ ≤

√

ǫ1
λmin (K)

}

. (36)

According to the Lyapunov theory extension [Lewis et al.,
1998], this demonstrates that e1, e2 are both uniformly
ultimately bounded signals. And it is easy to see that
e1, e2 can be reduced as small as possible by choosing
appropriate K and ǫ1.

5. SIMULATION EXAMPLE

Computer simulations based on the Unimation PUMA
560 robot arm is conducted to demonstrate the effective-
ness of the proposed controller. The mechanical config-
uration and coordinate system are given by Corke and
Armstrong-Helouvry [1994]. The initial joint configura-

tion of PUMA 560 is q(0) = [0, 0, 0, 0, 0, 0]
T
rad and

q̇(0) = [0, 0, 0, 0, 0, 0]
T
rad/s. Table 1 gives the Denavit and

Hartenberg parameters of the PUMA 560 manipulator,
where link length α2 = 0.4318m, α3 = 0.0203m and joint
offset d3 = 0.15005m, d4 = 0.4318m. α2, α3, d3 and d4

are the uncertain kinematic parameters. In the proposed
controller, they are estimated initially as â2(0) = â3(0) =

d̂3(0) = d̂4(0) = 0.1m. The upper and lower limitations
of the estimated parameters are (0.5, 0.5, 0.5, 0.5)T and
(0, 0, 0, 0)T . The initial position of PUMA 560 end-effector
is specified as x(0) = (0.4521,−0.1500, 0.4318)T. The
PUMA 560 end-effector is required to follow a predesigned
straight line given by

xd(1) = 0.01t + 0.4021,

xd(2) = 0.03t− 0.2001,

xd(3) = 0.02t + 0.3818.

Because the last three joints, q4, q5 and q6, do no contribu-
tion to the position of manipulator end-effector, there is no
need to consider them in the controller design procedure.
In this simulation, the number of hidden neurons is 60; pa-
rameters of controller are set that K1 = diag(5, 5, 5); K2 =
diag(50, 50, 50); λ = 0; τed = (5 cos(πt/2), 4 sin(πt/2) +
e−t, 2 cos(t)+3 sin(πt/3))T ; Γβ = diag (2, 2, 2, 2); Nh = 60;

Ŵi(0) and V̂i(0) (i = 1, 2) are set to be zero matrices;
Wm1 = Vm1 = 1000; δM1 = 20, ǫ1 = 0.1. The simulation
results are shown in Figs. 2–4, which verifies the satisfac-
tory tracking performance of the proposed controller.

6. CONCLUSION

A neural-network-based adaptive controller is proposed
to deal with the manipulator task-space tracking prob-
lem. The proposed controller eliminates the “linearity-in-

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

2386



parameters” assumption for the uncertain terms in ma-
nipulator dynamics, avoids the tedious computation of
regression matrix, and considers the external disturbance.
The good control performance can be demonstrated by
the Lyapunov approach and illustrated by the simulation
example. Finally, by the cascade backstepping design pro-
cedure, the proposed controller can also be extended to the
cases where the uncertain actuator model or the flexible
joint manipulator are considered.
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