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Abstract: In this paper, we consider a class of networked control systems (NCSs) with norm-
bounded uncertainties. Using the continuous modeling method, the NCSs can be described as
delayed differential equations (DDEs), which can be viewed as a general form of the NCSs model,
where the effect of the network-introduced delay and data packet dropout are simultaneously
considered. Robust exponential stability criterion are derived based on a delay-dependent
method. Robust output feedback controller can also be determined by solving a set of linear
matrix inequalities.

1. INTRODUCTION

Networked control systems (NCSs) are spatially dis-
tributed systems in which the communication between
sensors, actuators, and controllers occurs through a shared
bandlimited digital communication network (see Hespanha
et al. (2007)). Recently, much attention has been paid
to the study of stability analysis and controller design of
NCSs due to their low cost, reduced weight and power re-
quirements, simple installation and maintenance, and high
reliability. However, the insertion of the communication
channels raises new interesting and challenging problems
such as quantization, sampling, time delays, and packet
dropout. Therefore, NCSs have been a hot research topic
for the high value of theory and application.

Network introduced time-delay is one of the fundamental
problems in NCSs. As far, various methods have been used
to deal with the problem of network delay. Based on hybrid
systems technique, stability of the NCSs has been investi-
gated in Zhang et al. (2001) under the assumption that
the network-introduced delay is less than the sampling
period. Optimal stochastic control theory has been used to
treat random delays in Nilsson et al. (1998), Hu and Zhu
(2003) for short delay and long delay case, respectively. By
modeling Random delays as Markov chain, the closed-loop
NCSs have been considered as Markovian jump systems
in Zhang et al. (2005). The closed-loop NCSs have also
been written as discrete-time switched systems under the
situation that computation and transmission delays are
negligible and access delays serve as the main source of
delays (see e.g. Lin and Antsaklis (2004), Lin et al. (2003),
Zhai et al. (2002)).
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Packet dropout is another main concern in NCSs. In the
view of stochastic process, most results available have
assumpted that packet dropout be Bernoulli process (see
Zhang et al. (2001)), Markov process with two operation
modes (see Seiler and Sengupta (2005)) or multiple op-
eration modes (see Xiong and Lam (2007)), and arbi-
trary packet-loss process which takes values in a finite
set arbitrarily (see Yu et al. (2004a)). Therefore, differ-
ent kinds of systems, such as hybrid systems (see Zhang
et al. (2001)), Markovian jump systems (see e.g.Seiler and
Sengupta (2005), Xiong and Lam (2007)) and switched
systems (see Yu et al. (2004a)) have been settled according
to the different modeling method.

Since network-introduced delays and packet dropout are
the potential sources to instability and poor performance
of NCSs, a general form of the NCS model, where the effect
of the network-introduced delay and data packet dropout
are considered at the same time, has been presented as
DDEs (see e.g. Yu et al. (2004b), Yue et al. (2004),
Naghshtabrizi and Hespanha (2005)) . In this paper, our
model is similar to (Yu et al. (2004b), Yue et al. (2004),
Naghshtabrizi and Hespanha (2005)). However, there are
at least two main differences between this paper and
Yu et al. (2004b), Yue et al. (2004), Naghshtabrizi and
Hespanha (2005). The first one is that we firstly do some
research on the NCSs with norm-bounded uncertainties
in derivative matrix by descriptor systems approach (see
Fridman and Shaked (2002), Fridman et al. (2004)). The
second one is that we stabilize the NCSs with static output
feedback controller by delay-dependent LMIs. Numerical
examples are presented to illustrate our results’ correctness
and efficiency.
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2. PROBLEM FORMULATION

Consider the continuous plant which can be described as

(I + ∆I)ẋ(t) = (A + ∆A) x(t) + (B + ∆B) u(t) (1)

y(t) = Cx(t) (2)
where x(t) ∈ Rn, y(t) ∈ Rpand u(t) ∈ Rm are the state
vector, output vector and control input vector respectively,
and A, B and C are constant matrices. ∆I, ∆A and ∆B
stand for norm-bounded uncertainties with

[ ∆I ∆A ∆B ] = MF (t) [ NI NA NB ] (3)

where M , NI , NA and NB are constant matrices with
appropriate dimensions, the uncertainty F (t) satisfies

FT (t)F (t) ≤ I.

Suppose the sensor are clock-driven and controller and
actuator are event-driven, the data is transmitted with a
single packet and the full state variables are not available
for measurements, matrix C is of full row rank, the real
input u(t) realized through zero-order hold is a piecewise
constant function. Then the real control system can be
modeled as

(I + ∆I)ẋ(t) = (A + ∆A)x(t) + (B + ∆B) u(t) (4)

t ∈ [ikh + τk, ik+1h + τk+1) (5)

u(t+) = Ky (t− τk) , t ∈ {ikh + τk, k = 1, 2, · · ·} (6)

where h is the sampling period, ik, k = 1, 2, · · ·, are
some integers and {i1, i2, · · ·} ⊂ {0, 1, 2, · · ·} . τk is the
time delay which denotes the time from the instant ik
when sensor nodes sample from plant to the instant when
actuator transmit data to the plant. Obviously, ∪∞k=1[ikh+
τk, ik+1h + τk+1) = [t0,∞), t0 ≥ 0. In this paper, we
assume that u(t) = 0 before the first control signal reaches
the plant. Notice that it is not required to have ik+1 > ik.
If ik+1 − ik = 1, it means that there is no data packet
dropout in the transmission, which includes τk = τ0 and
τk < h as the special cases taken in account (4). If
ik+1 > ik + 1, there are some data packet dropout and
but the data are ordered correctly. If ik+1 < ik, it means
unordered data arrival sequence occurs. The system (4)
can be rewritten as

(I + ∆I)ẋ(t) = (A + ∆A) x(t) + (B + ∆B) KCx (ikh)(7)

t ∈ [ikh + τk, ik+1h + τk+1) (8)
Since x (ikh) = x (t− (t− ikh))(Fridman et al. (2004)),
we define τ(t) = t − ikh, t ∈ [ikh + τk, ik+1h + τk+1),
k = 1, 2, · · · , then (7) becomes

(I + ∆I)ẋ(t) = (B + ∆B) KCx (t− τ(t))
+ (A + ∆A)x(t) (9)

t ∈ [ikh + τk, ik+1h + τk+1) (10)

x(t) = φ(t), t ∈ [t0 − τ̄ , t0] (11)
where the time-varying delay τ(t) satisfies

τ(t) ∈ [τ , τ̄ ], τ̇(t) = 1,∀t ≥ 0, a.e. (12)

where
τ = min

k∈N
{τk} , τ̄ = max

k∈N
{ik+1h + τk+1 − ikh} .

Therefore, (9), (11) and (12) can be viewed as a general
form of the NCSs model, where the effect of the network-
introduced delay and data packet dropout are simultane-
ously considered.

Definition 1. The system (9) and (11) with a feedback gain
K is said to be exponentially stable if there exist constants
α > 0 and β > 0 such that

‖x(t)‖ ≤ α sup
t0−τ̄≤s≤t0

‖φ(s)‖ e−βt, t ≥ t0.

Also, if there exists a matrix K such that the system (9)
and (11) with the feedback gain K is exponentially stable,
then the NCS (4) is said to be exponentially stabilized.

Remark 1. For case (12), the Lyapunov-Krasovskii and the
Razumikhin theorems are the two main tools available to
study the stability of DDEs of the form of (9) and (11).
However, the Razumikhin method is generally more con-
servative than the Lyapunov-Krasovskii method. Therefor,
we will adopt the latter to tack with the problem.

3. ROBUST STABILIZATION

3.1 Stability analysis

For convenience, we first define some new notations:
Ī = I + ∆I, Ā = A + ∆A, B̄ = B + ∆B (13)

Theorem 1. For given scalars τ ≥ 0 , τ̄ > 0 and matrix K,
if there exist matrices P1 > 0, P2, P3, S, R, Z1, Z2 and T1

of appropriate dimensions such that

Ω =

 Ψ̄ PT

[
0

B̄KC

]
− TT

1

* −S

 < 0 (14)

[
R T1

* Z1

]
≥ 0 (15)[

R
[
0 CT KT B̄T

]
P

* Z2

]
≥ 0 (16)

where ”∗” denotes the symmetric block, and P =[
P1 0
P2 P3

]
,Ψ̄ = PT

[
0 I
Ā −Ī

]
+

[
0 I
Ā −Ī

]T

P +
[

S 0
0 τ̄R

]
+[

T1

0

]
+

[
T1

0

]T

+τZ1 +(τ̄−τ)Z2, then the system (9) and

(11), namely the NCS (4) and (6) is exponential stable.

Proof. Based on descriptor system approach, we represent
(9) in an equivalent form

Eξ̇(t) =
[

0 I
Ā −Ī

]
ξ(t) +

[
0
B̄

]
[ KC 0 ] ξ(t− τ(t)) (17)

=
[

0 I
Ā + B̄KC −Ī

]
ξ(t)−

[
0

B̄KC

] t∫
t−τ(t)

ẋ(s)ds

where ξT (t) =
[
xT (t) ẋT (t)

]
, E =

[
I 0
0 0

]
.
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Construct a Lyapunov-Krasovskii functional as

V (t) = V1(t) + V2(t) + V3(t) (18)

where

P =
[

P1 0
P2 P3

]
, P1 > 0, EP = PT E ≥ 0

V1(t) = ξT (t)EPξ(t), V3(t) =

t∫
t−τ

xT (s)Sx(s)ds

V2(t) =

0∫
−τ̄

t∫
t+θ

ẋT (s)Rẋ(s)dsdθ

Differentiating the first term of (18) with respect to t gives

V̇1(t) = 2ξT (t)PT

[
0 I

Ā + B̄KC −Ī

]
ξ(t)− η (19)

where

η = 2ξT (t)PT

[
0

B̄KC

] t∫
t−τ(t)

ẋ(s)ds.

By Moon et al. (2001), we get

−η ≤
t∫

t−τ

ζT
ts

[
R T1 −

[
0 CT KT B̄T

]
P

∗ Z1

]
ζtsds +

t−τ∫
t−τ(t)

ζT
ts

[
R T2 −

[
0 CT KT B̄T

]
P

∗ Z2

]
ζtsds

=

t∫
t−τ(t)

ẋT (s)Rẋ(s)ds + ξT (t) (τZ1 + (τ(t)− τ) Z2) ξ(t)

+2

t−τ∫
t−τ(t)

ẋT (s)
(
T2 −

[
0 CT KT B̄T

]
P

)
ξ(t)ds

+2

t∫
t−τ

ẋT (s)
(
T1 −

[
0 CT KT B̄T

]
P

)
ξ(t)ds

where ζts =
[

ẋ(s)
ξ(t)

]
,

[
R T1

∗ Z1

]
≥ 0,

[
R T2

∗ Z2

]
≥ 0.

By choosing T2 =
[
0 CT KT B̄T

]
P ,

−η ≤
t∫

t−τ(t)

ẋT (s)Rẋ(s)ds + ξT (t) (τZ1 + (τ̄ − τ) Z2) ξ(t)

+2xT (t)
(
T1 −

[
0 CT KT B̄T

]
P

)
ξ(t)

−2xT (t− τ)
(
T1 − 0 CT KT B̄T P

)
ξ(t)

Differentiating the second and third term of (18) with
respect to t gives

V̇2(t) = τ̄ ẋT (t)Rẋ(t)−
t∫

t−τ̄

ẋT (s)Rẋ(s)ds (20)

V̇3(t) = xT (t)Sx(t)− xT (t− τ)Sx(t− τ) (21)

Combining (19) to (21)

V̇ (t) ≤ χT (t)Ωχ(t) (22)

where χT (t) =
[
ξT (t) xT (t− τ)

]
.

According to (14), Ω < 0, then

V̇ (t) ≤ −λ ‖x(t)‖2 − λ ‖ẋ(t)‖2 (23)

where λ = λmin(−Ω). Defining a new function W (t) =
eεtV (t) and using the similar analysis method in Yue et al.
(2004), it can be seen that there exist a small enough
constant ε > 0 and a constant ρ > 0 such that

V (t) ≤ ρ sup
t0−τ̄≤s≤t0

‖φ(s)‖2 e−εt, t ≥ t0

Due to the fact that V1(t) = ξT (t)EPξ(t) = xT (t)P1x(t) ≤
V (t), we can obtain

‖x(t)‖ ≤
√

λ−1
min (P1) ρ sup

t0−τ̄≤s≤t0

‖φ(s)‖ e
−εt
2 , t ≥ t0 (24)

Then, by Definition 1, we can complete the proof.

Due to the norm-bounded uncertainties contained in Ī, Ā
and B̄, we have to transform the (14) and (16) into another
equivalent form using a standard technique for dealing
with norm-bounded uncertain systems. Now, combining
(3) and (14), we obtain

Y + M̄F (t)N̄ + N̄T FT (t)M̄T < 0 (25)

where

M̄ =

 PT

[
0
M

]
0

 , Y =

 Ψ PT

[
0

BKC

]
− TT

1

∗ −S


N̄T =

 [
NT

A

−NT
I

]
CT KT NT

B

 ,Ψ = PT

[
0 I
A −I

]
+

[
0 I
A −I

]T

P

+
[

S 0
0 τ̄R

]
+

[
T1

0

]
+

[
T1

0

]T

+ τZ1 + (τ̄ − τ)Z2

A similar procedure can also be carried out to handle with
(16).

Using the fact

Y + M̄F (t)N̄ + N̄T FT (t)M̄T < 0, FT (t)F (t) ≤ I

⇐⇒ Y + $−1M̄M̄T + $N̄T N̄ < 0, ∃ $ > 0 (26)

we achieve the following theorem.

Theorem 2. For given scalars τ ≥ 0 , τ̄ > 0 and matrix K,
if there exist scalars $ > 0, $1 > 0 and matrices P1 >
0, P2, P3, S,R, Z1, Z2 and T1 of appropriate dimensions
such that
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
Ψ ϕT − TT

1 PT

[
0
M

]
$

[
NT

A

−NT
I

]
∗ −S 0 $CT KT NT

B
∗ ∗ −$I 0
∗ ∗ ∗ −$I

 < 0 (27)

[
R T1

∗ Z1

]
≥ 0 (28)

−R −ϕ 0 $1C
T KT NT

B

∗ −Z2 PT

[
0
M

]
0

∗ ∗ −$1I 0
∗ ∗ ∗ −$1I

 < 0 (29)

where ”∗” denotes the symmetric block, and

Ψ = PT

[
0 I
A −I

]
+

[
0 I
A −I

]T

P +
[

S 0
0 τ̄R

]
+

[
T1

0

]
+

[
T1

0

]T

+ τZ1 + (τ̄ − τ)Z2, ϕ
T = PT

[
0

BKC

]
then the system (9) and (11), namely the NCS (4) and (6)
is exponential stable.

When τ = 0, the V3(t) and condition (28) will disappear.
Theorem 2 can be simplified to the following.

Corollary 1. For given scalar τ̄ > 0 and matrix K, if there
exist scalars $ > 0, $1 > 0 and matrices P1 > 0, P2, P3,
R and Z of appropriate dimensions such that Ψ̂ PT

[
0
M

]
$

[
NT

A + CT KT NT
B

−NT
I

]
∗ −$I 0
∗ ∗ −$I

 < 0 (30)


−R −ϕ 0 $1C

T KT NT
B

∗ −Z PT

[
0
M

]
0

∗ ∗ −$1I 0
∗ ∗ ∗ −$1I

 < 0 (31)

where ”∗” denotes the symmetric block, and

Ψ̂ = PT

[
0 I

A + BKC −I

]
+

[
0 I

A + BKC −I

]T

P

+
[

0 0
0 τ̄R

]
+ τ̄Z, P =

[
P1 0
P2 P3

]
, ϕT = PT

[
0

BKC

]
then the system (9) and (11), namely the NCS (4) and (6)
is exponential stable.
Remark 2. When the lower bound of the time delay τ
exists, more slack matrix variables are introduced in our
results. Therefore, theorem 2 is usually less conservative
than Corollary 1. Later, we will continue to illustrate this
fact by numerical example.

3.2 Robust stabilization

Based on Theorem 2, we are now in a position to determine
the feedback gain K which can make systems (4) and (6)
is exponential stable.
Theorem 3. For given scalars γ, τ ≥ 0, τ̄ > 0, if there exist

scalars $̄ > 0, $̄1 > 0 and matrices Q1 > 0, Q2, Q3, X, V,

S̄, Z̄
(ij)
i (i, j = 1, 2), T̄11 and T̄12 of appropriate dimensions

such that

Ξ11 Ξ12 −T̄T
11 0 QT

1 NT
A −QT

2 NT
I τ̄QT

2

∗ Ξ22 Ξ23 $̄M −QT
3 NT

I τ̄QT
3

∗ ∗ −S̄ 0 CT XT NT
B 0

∗ ∗ ∗ −$̄I 0 0
∗ ∗ ∗ ∗ −$̄I 0

∗ ∗ ∗ ∗ ∗ − τ̄

γ
Q1


< 0 (32)

 γQ1 T̄11 T̄12

∗ Z̄
(11)
1 Z̄

(12)
1

∗ ∗ Z̄
(22)
1

 ≥ 0 (33)


−γQ1 0 −CT XT BT 0 CT XT NT

B

∗ −Z̄
(11)
2 −Z̄

(12)
2 $̄1M 0

∗ ∗ −Z̄
(22)
2 0 0

∗ ∗ ∗ −$̄1I 0
∗ ∗ ∗ ∗ −$̄1I

 < 0 (34)

V C = CQ1 (35)

where ”∗” denotes the symmetric block, and

Ξ11 = Q2 + QT
2 + S̄ + τZ̄

(11)
1 + (τ̄ − τ) Z̄

(11)
2 + T̄11 + T̄T

11,

Ξ12 = Q3 −QT
2 −QT

1 AT + τZ̄
(12)
1 + (τ̄ − τ) Z̄

(12)
2 + T̄12,

Ξ22 =−Q3 −QT
3 + τZ̄

(22)
1 + (τ̄ − τ) Z̄

(22)
2 ,

Ξ23 = BXC − T̄T
12

then the system (9) and (11), namely the system (4) and
(6) with K = XV −1 is exponential stable.
Proof. As we know P1 > 0 and the fact that −IT P3−PT

3 I
must be negative definite in (27), we can conclude that P
is nonsingular. Defining

P−1 = Q =
[

Q1 0
Q2 Q3

]
,∆1 = diag

{
Q,Q1, $

−1I,$−1I
}

∆2 = diag {Q1, Q} ,∆3 = diag
{
Q1, Q,$−1

1 I,$−1
1 I

}
In order to obtain an LMI, we have to restrict our result
to the case R = γQ−1

1 , where γ is scalar parameter.

Multiply (27) both sides by ∆T
1 and ∆1 respectively.

Applying Schur formular to the emerging quadratic term
in Q, denote

S̄ = QT
1 SQ1, T̄1 = QT

1 T1Q =
[
T̄11 T̄12

]
, $̄ = $−1

$̄1 = $−1
1 , Z̄i = QT ZiQ =

[
Z̄

(11)
i Z̄

(12)
i

∗ Z̄
(22)
i

]
, i = 1, 2.

By (35), we denote XC = KV C = KCQ1.

Using the same way, multiply (28) both sides by diag ∆T
2

and ∆2 respectively, and (29) both sides by ∆T
3 and ∆3

respectively, we obtain (33) and (34).

According to Corollary 1, the similar method to the proof
in Theorem 3 is adopted to determine the feedback gain
K which can make systems (4) and (6) for τ = 0 is
exponential stable.
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Corollary 2. For given scalar γ, τ̄ > 0 , if there exist scalars
$̄ > 0, $̄1 > 0 and matrices Q1 > 0, Q2, Q3, X, V and
Zij(i, j = 1, 2) of appropriate dimensions such that

Ξ̄11 Ξ̄12 0 QT
1 NT

A −QT
2 NT

I τ̄QT
2

∗ Ξ̄22 $̄M −QT
3 NT

I τ̄QT
3

∗ ∗ −$̄I 0 0
∗ ∗ ∗ −$̄I 0

∗ ∗ ∗ ∗ − τ̄

γ
Q1

 < 0 (36)


−γQ1 0 −CT XT BT 0 CT XT NT

B
∗ −Z11 −Z12 $̄1M 0
∗ ∗ −Z22 0 0
∗ ∗ ∗ −$̄1I 0
∗ ∗ ∗ ∗ −$̄1I

 < 0 (37)

V C = CQ1 (38)

where ”∗” denotes the symmetric block, and

Ξ̄11 = Q2 + QT
2 + τ̄Z11, Ξ̄22 = −Q3 −QT

3 + τ̄Z22

Ξ̄12 = Q3 −QT
2 −QT

1 AT + CT XT BT + τ̄Z12

then the system (9) and (11), namely the NCS (4) and (6)
with K = XV −1 is exponential stable.

Remark 3. For special case C = I, which means that
the state variables are available for measurement, the
constraint (38) is simplified to V = Q1. However, the
state variables are not available for measurement most
of time. Due to the equality constrain (38), Theorem 3
and Corollary 2 can not be carried out by LMI toolbox.
Since matrix C is full row rank, we have to replace V with
CQ1C

T
(
CCT

)−T scarifying conservative property.

Remark 4. γ is a tuning scalar. A way to address γ is to
choose a cost function the parameter tmin that is obtained
while solving the feasibility problem using LMI toolbox. If
the above cost function tmin is negative, the tuning scalar
that solves the problem is found.

3.3 Numerical example

Example. Consider the following example which was used
in Zhang et al. (2001)

(I + MF (t)NI)ẋ(t) = (A + MF (t)NA)x(t)
(B + MF (t)NB) u(t),

y = Cx(t)
(39)

where

A =
[

0 1
0 −0.1

]
, B =

[
0

0.1

]
, C =

[
1 2

0.5 0.4

]
,M = 0.2I

NI = 0.4I, NA = 0.5I,NB =
[

0.1
0.1

]
, FT (t)F (t) ≤ I.

We use the static output feedback controller u(t) =
[−3.75 −11.5 ] y(t) which is designed without considering
the presence of the network. For τ = 0, according to
Corollary 1, it has been computed τ̄ = 0.3957. Supposed
that we have known the lower bound τ = 0.1, according
to Theorem 2, it has been computed τ̄ = 0.4186, which
confirms our comment in Remark 2.

To obtain a larger τ̄ , we also can design a controller
considering network impact. Given γ = 2.0 and τ = 0.1,

we still use the above invertible matrix C. According
to Theorem 3, the NCS (39) can be robust exponential
stabilized by u(t) = [−10.6534 26.9816 ] y(t) even τ̄ =
0.5259. When matrix C is rectangular, choosing C =
[ 1 2 ], we have to replace V with CQ1C

T
(
CCT

)−T in
order to obtain LMI. At this time, the NCS (39) can be
robust exponential stabilized by u(t) = −1.1615y(t) even
τ̄ = 0.5215.

Next, we will analyze the results obtained in last para-
graph. No loss of generality, we choose the case γ = 2.0,

τ = 0.1 and C =
[

1 2
0.5 0.4

]
, the NCS (39) can be robust

exponential stabilized by u(t) = [−10.6534 26.9816 ] y(t)
even τ̄ = 0.5259. However, from the fact that τ̄ =
maxk∈N {ik+1h + τk+1 − ikh}, we know (ik+1 − ik)h +
τk+1 ≤ τ̄ . Therefore, for instance when sampling period
h = 0.12 without considering data packet dropout, the
maximum allowable delay bound (MADB) τmax = 0.4059.
On the other hand, when 0.1 ≤ τk+1 ≤ 0.1659 considering
data packet dropout, the lower bound on transmission rate
ε can be calculated by ε = 1

maxk∈N (ik+1−ik) = 1
3 .

4. CONCLUSION

We have considered a class of NCSs with norm-bounded
uncertainties. Using the continuous modeling method, the
NCSs can be described as DDEs, which can be viewed as
a general form of the NCSs model. Robust exponential
stability criterion are derived based on a delay-dependent
method. Robust output feedback controller can also be
determined by solving a set of linear matrix inequalities.

We will extent our results to the case that some perfor-
mances are desired. The performance can be H2, H∞, H2

and H∞ mixed, or guaranteed cost et al.

ACKNOWLEDGEMENTS

The authors would like to thank the Associate Editor and
the anonymous reviewers for their constructive comments
and suggestions to improve the quality of the paper.

REFERENCES

J. Hespanha, P. Naghshtabrizi, and Y.G. Xu. A survey of
recent results in networked control systems. Proc. of the
IEEE, vol.95, no.1, pages 138-162, 2007.

W. Zhang, M.S. Branicky, and S.M. Phillips. Stability of
networked control systems. IEEE Contr. Syst. Mag.,
vol.21, no.1, pages 84-99, 2001.

J. Nilsson, B. Bernhardsson, and B. Wittenmark. Stochas-
tic analysis and control of real-time systems with ran-
dom time delays. Automatica, vol.34, no.1, pages 57-64,
1998.

S.S Hu and Q.X Zhu. Stochastic optimal control and
analysis of stability of networked control systems with
long delay. Automatica, vol.39, no.11, pages 1877-1883,
2003.

L.Q. Zhang, Y. Shi, T.W Chen, and B. Huang. A new
method for stabilization of networked control systems
with random delays. IEEE Trans. Automat. Contr.,
vol.50, no.8, pages 1177-1181, 2005.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

6618



H. Lin, and P. J. Antsaklis. Persistent disturbance attenu-
ation properties for networked control systems. in proc.
43rd Conf. Decision and Contr., vol.2, pages 953-958,
2004.

H. Lin, G. Zhai, and P.J. Antsaklis. Robust stability and
distrubance attenuation analysis of a class of networked
control systems. in proc. 42nd Conf. Decision and
Contr., vol.2,pages 1182-1187, 2003.

G. Zhai, B. Hu, K. Yasuda, and A. N. Michel. Qualitative
analysis of discrete-time switched systems. in proc.
Amer. Contr. Conf., vol.3, pages 1880-1885, 2002.

P. Seiler and R. Sengupta. An H∞ approach to networked
control. IEEE Trans. Automat. Contr., vol.50, no.3,
pages 356-364,2005.

J.L. Xiong and J. Lam. Stabilization of linear systems over
networks with bounded packet loss. Automatica, vol.43,
no.1, pages 80-87,2007.

M. Yu, L. Wang, T. Chu, and G. Xie. Stabilization of
networked control systems with data packet dropout
and network delays via switching systems approach. in
proc. 43rd Conf.Decision and Contr., vol.2, pages 3539-
3544, 2004a.

M. Yu, L. Wang, T. Chu, and F. Hao. An LMI approach
to networked control systems with data packet dropout
and transmission delays. in proc. 43rd Conf. Decision
and Contr., vol.2, pages 3545-3550, 2004b.

D. Yue, Q.L. Han, and C. Peng. State feedback controller
design of networked control systems. IEEE Trans. Circ.
Sys., vol.51,no.11, pages 640-644, 2004.

P. Naghshtabrizi and J. Hespanha. Designing observer-
based controller for network control system. in proc.
44th Conf. Decision and Contr., vol.4, pages 2876-2880,
2005.

E. Fridman and U. Shaked. An improved stabilization
method for linear time-delay systems. IEEE Trans.
Automat. Contr., vol.47, no.11, pages 1931-937, 2002.

E. Fridman, A. Seuret, and J. Richard. Robust sampled-
data stabilization of linear systems: an input delay
approach. Automatica, vol.40, no.8, pages 1441-1446,
2004.

Y.S. Moon, P.G. Park, W.H. Kwon and Y.S. Lee.
Delay-dependent robust stabilization of uncertain state-
delayed systems. International Journal of Control,
vol.74, no.14, pages 1447-1455, 2001.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

6619


