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Abstract: This paper provides a concise and up-to-date analysis of the foundations of
performance robustness of a linear-quadratic class of servo-systems with respect to variability in
a stochastic environment. The dynamics of servo-systems are corrupted by a standard stationary
Wiener process and include input functions that are controlled by controllers. Basic assumptions
will be that controllers have access to the current value of the states of the systems and would
like to learn about performance uncertainty of the systems that is now affected by other non-
cooperative learners, i.e. model deviations and environmental disturbances named Nature. The
controller considered here optimizes a multi-objective criterion over time where optimization
takes place with high regard for possible random sample realizations by Nature who may more
likely not be acting in concert. It is found that the optimal servo in the finite horizon case is a
novel two-degrees-of-freedom controller with: one, a feedback controller with state measurements
that is robust against performance uncertainty; two, a model-following controller that minimizes
the difference between the reference model and the system outputs.

Keywords: Servo-systems, linear-quadratic structure, performance-measure statistics,
statistical control, Mayer problems, dynamic programming

1. INTRODUCTION

In recent works Pham (2000) through Pham (2007), the
statistical control theory for a class of optimal stochastic
regulator problems has been developed for the task of
returning systems to either zero or pre-specified states in
a complete statistical description of Chi-squared random
measures of performance. In fact, this regulator problem
class is a special case of a wider class of problems where
it is required that the outputs of a system follow a
reference signal which in turn belongs to a known class of
signals. The present research investigation now examines a
possible extension of this generalized stochastic regulator
theory developed so far in such a way that the resulting
servo controller consists of a feedback controller together
with a model-following controller involving processing of
the desired reference signals to ensure the outputs of a
linear stochastic system follow as closely as possible the
outputs of a reference system in accordance of a given
target probability density function of Chi-squared random
measure of performance. To the best knowledge of the
author, the theoretical development in the sequel appears
to be the first of its kind and its novel solution concepts are
related well with the extensive literature on tracking and
feedforward control design problems such as the earlier
works of Davison (1973, 1976) and Yuksel (2006); just
to name a few. Most of these works only considered the
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traditional measure of average performance using dynamic
programming approach.

The results here will effectively address two key issues that
have not been dealt with so far in the stochastic control
literature; namely, how to quantify higher-order character-
istics of performance uncertainty with respect to all sam-
ple realizations of the underlying stochastic process (i.e.
Nature) and how to design new model-following strate-
gies that directly influence the performance distribution
and robustness. Therefore, the enabling solution included
here will bring one step closer the realization of optimal
tracking of stochastic systems with multi-attribute perfor-
mance guarantees. Future work will answer the question
of applications as may be seen in longitudinal acceleration
command tracking, speed capture systems, and etc.

2. PERFORMANCE-MEASURE STATISTICS

Precisely stated, both state and output dynamics of a
stochastic linear system modeled on [t0, tf ] are given by

dx(t) = (A(t)x(t) + B(t)u(t)) dt + G(t)dw(t), x(t0) (1)
z(t) = C(t)x(t) (2)

where the deterministic coefficients A ∈ C([t0, tf ]; Rn×n),
B ∈ C([t0, tf ]; Rn×m), C ∈ C([t0, tf ]; Rr×n), and G ∈
C([t0, tf ]; Rn×p). Nature, w(t) � w(t, ω) : [t0, tf ]×Ω �→ R

p

is the p-dimensional Wiener process starting from t0 with
action space of Ω, which is independent of the known
x(t0) � x0. {Ft≥t0>0} is its filtration on a complete filtered
probability space (Ω,F , {Ft≥t0>0},P) over [t0, tf ] with the
correlation of independent increments
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E
{
[w(τ) − w(ξ)][w(τ) − w(ξ)]T

}
= W |τ − ξ| , W > 0 .

The admissible control u ∈ L2
Ft

(Ω; C([t0, tf ]; Rm)) de-
fined by a subset of Hilbert space of R

m-valued square-
integrable processes on [t0, tf ] that are adapted to the σ-

field Ft generated by w(t) with E
{∫ tf

t0
uT (τ)u(τ)dτ

}
< ∞

is robust against Nature’s actions ω so that the resulting
system outputs z ∈ L2

Ft
(Ω; C([t0, tf ]; Rr)) effectively fol-

lows the desired transient responses zd ∈ L2([t0, tf ]; Rr) of
the given linear reference model

dxd(t) = Ad(t)xd(t)dt , xd(t0) = xd0 (3)
zd(t) = Cd(t)xd(t) (4)

where the deterministic coefficients Ad ∈ C([t0, tf ]; Rnd×nd)
and Cd ∈ C([t0, tf ]; Rr×nd).

In addition, the stochastic system (1) in the absence of
process noises is supposed to be uniformly exponentially
stable. That is, there exist positive constants η1 and η2

such that the pointwise matrix norm of the closed-loop
state transition matrix satisfies the inequality

||Φ(t, τ)|| ≤ η1e
−η2(t−τ) ∀ t ≥ τ ≥ t0 .

The pair (A(t), B(t)) is stabilizable if there exists a
bounded matrix-valued function K(t) such that dx(t) =
(A(t) + B(t)K(t)) x(t)dt is uniformly exponentially stable.
Similarly, the pair (Cd(t), Ad(t)) is assumed detectable.
Hence, there must exist a bounded matrix-valued func-
tion Ld(t) such that dxd(t) = (Ad(t) − Ld(t)Cd(t)) xd(t)dt
is also uniformly exponentially stable. Associated with
the admissible 3-tuple (x(·), xd0(·);u(·)) is a finite-horizon
integral-quadratic performance-measure J : R

n × R
nd ×

L2
Ft

(Ω; C([t0, tf ]; Rm)) �→ R
+

J(x0, xd0;u(·)) = [z(tf ) − zd(tf )]TQf [z(tf ) − zd(tf )] (5)

+
∫ tf

t0

{
[z − zd]

T(τ)Q(τ) [z − zd] (τ) + uT(τ)R(τ)u(τ)
}

dτ

where design parameters Qf ∈ R
r×r, Q ∈ C([t0, tf ]; Rr×r),

and invertible R ∈ C([t0, tf ]; Rm×m) are deterministic,
symmetric and positive semi-definite relative weighting of
the terminal state, state trajectory, and control input.

In view of the linear system (1)-(2) and the quadratic
performance-measure (5), admissible control laws are
therefore, restricted to being generated by the mapping
γ : [t0, tf ]× L2

Ft
(Ω; C([t0, tf ]; Rn))× L2(C([t0, tf ]; Rnd)) �→

L2
Ft

(Ω; C([t0, tf ]; Rm)) with the rule of actions

u(t) = γ(t, x(t), xd(t)) � Kx(t)x(t) + Kxd
(t)xd(t) (6)

where the deterministic matrix-valued functions Kx ∈
C([t0, tf ]; Rm×n) and Kxd

∈ C([t0, tf ]; Rm×nd) are, respec-
tively, the admissible feedback gain and the feedforward
gain on the reference model states from restraint sets
which are yet to be defined. To convert the stochastic servo
problem to a stochastic regulator problem, it requires to
define augmented state variables and system parameters

xa �
[

x
xd

]
; Aa �

[
A + BKx BKxd

0 Ad

]
; Ga �

[
G
0

]
together with the state and terminal penalty weightings

Na �
[

CT QC + KT
x RKx −CT QCd + KT

x RKxd

−CT
d QC + KT

xd
RKx CT

d QCd + KT
xd

RKxd

]
;

Qfa �
[

CT (tf )QfC(tf ) −CT (tf )QfCd(tf )
−CT

d (tf )QfC(tf ) CT
d (tf )QfCd(tf )

]

which lead to the equivalent performance-measure of (5)

J(xa0;Kx(·),Kxd
(·)) = xT

a (tf )Qfa(tf )xa(tf )

+
∫ tf

t0

xT
a (τ)Na(τ)xa(τ)dτ (7)

subject to the augmented system of (1)-(4)
dxa(t) = Aa(t)xa(t)dt + Ga(t)dw(t), xa(t0) = xa0 (8)

with initial value condition

xa0 =
[

x0

xd0

]
.

As previously established by Pham (2000)-Pham (2005),
the following theorem contains an efficient and tractable
procedure for calculating all the performance-measure
statistics of any order that completely capture the per-
formance uncertainty of the augmented stochastic system
(8) and (7).
Theorem 1. Performance-Measure Statistics.
Suppose that (A,B) is uniformly stabilizable and (Cd, Ad)
is uniformly detectable. The kth-cumulant or equiva-
lently kth-order statistic of the Chi-squared performance-
measure (7) is given by

κk(t0, xa0) = xT
a0Ha(t0, k)xa0 + Da(t0, k) (9)

where the cumulant-generating components Ha(α, k) and
Da(α, k) evaluated at α = t0 satisfy the cumulant-
generating equations (with the dependence of Ha(α, k) and
Da(α, k) upon Kx and Kxd

suppressed)
d

dα
Ha(α, 1) = −AT

a (α)Ha(α, 1) − Ha(α, 1)Aa(α) (10)

− Na(α) ,

d

dα
Ha(α, i) = −AT

a (α)Ha(α, i) − Ha(α, i)Aa(α) (11)

−
i−1∑
j=1

2i!
j!(i − j)!

Ha(α, j)Ga(α)WGT
a (α)Ha(α, i − j) ,

d

dα
Da(α, i) = −Tr

{
Ha(α, i)Ga(α)WGT

a (α)
}

(12)

with the terminal-value conditions Ha(tf , 1) = Qfa(tf ),
Ha(tf , i) = 0 for 2 ≤ i ≤ k and Da(tf , i) = 0 for 1 ≤ i ≤ k.

Note that this computational procedure now allows the
incorporation of classes of linear-feedback strategies in the
statistical control problems. Moreover, these performance-
measure statistics or cumulants (9) are then interpreted in
terms of variables and system parameters of the original
servo as follows

κk(t0, x0, z0) = xT
0 Hk

11(t0)x0 + 2xT
0 Hk

12(t0)z0

+ zT
0 Hk

22(t0)z0 + Dk(t0) , (13)
provided that the matrix partition is of the form

Ha(α, i) =
[

Hi
11(α) Hi

12(α)
HiT

12 (α) Hi
22(α)

]
, 1 ≤ i ≤ k (14)

from which the components
{
Hi

11(α)
}k

i=1
,

{
Hi

12(α)
}k

i=1
,

and
{
Hi

22(α)
}k

i=1
implicitly depend on Kx and Kxd

and
satisfy the cumulant-supporting equations

d

dα
H1

11(α) = − [A(α) + B(α)Kx(α)]T H1
11(α)

− H1
11(α) [A(α) + B(α)Kx(α)]

− KT
x (α)R(α)Kx(α) − CT (α)Q(α)C(α) (15)
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d

dα
Hi

11(α) = − [A(α) + B(α)Kx(α)]T Hi
11(α)

− Hi
11(α) [A(α) + B(α)Kx(α)]

−
i−1∑
j=1

2i!
j!(i − j)!

Hj
11(α)G(α)WGT (α)Hi−j

11 (α) (16)

d

dα
H1

12(α) = − [A(α) + B(α)Kx(α)]T H1
12(α)

− H1
11(α)B(α)Kxd

(α) − H1
12(α)Ad(α)

− KT
x (α)R(α)Kxd

(α) + CT (α)Q(α)Cd(α) (17)

d

dα
Hi

12(α) = − [A(α) + B(α)Kx(α)]T Hi
12(α)

− Hi
11(α)B(α)Kxd

(α) − Hi
12(α)Ad(α)

−
i−1∑
j=1

2i!
j!(i − j)!

Hj
11(α)G(α)WGT (α)Hi−j

12 (α) (18)

d

dα
H1

22(α) = −AT
d (α)H1

22(α) − H1
22(α)Ad(α)

− KT
xd

(α)BT (α)H1
12(α) − H1T

12 (α)B(α)Kxd
(α)

− KT
xd

(α)R(α)Kxd
(α) − CT

d (α)Q(α)Cd(α) (19)

d

dα
Hi

22(α) = −AT
d (α)Hi

22(α) − Hi
22(α)Ad(α)

− KT
xd

(α)BT (α)Hi
12(α) − HiT

12 (α)B(α)Kxd
(α)

−
i−1∑
j=1

2i!
j!(i − j)!

HjT
12 (α)G(α)WGT (α)Hi−j

12 (α) (20)

d

dα
Di(α) = −Tr

{
Hi

11(α)G(α)WGT (α)
}

(21)

with terminal-value conditions H1
11(tf ) = CT (tf )QfC(tf ),

Hi
11(tf ) = 0 for 2 ≤ i ≤ k; H1

12(tf ) = −CT (tf )QfCd(tf ),
Hi

12(tf ) = 0 for 2 ≤ i ≤ k; H1
22(tf ) = CT

d (tf )QfCd(tf ),
Hi

22(tf ) = 0 for 2 ≤ i ≤ k; and Di(tf ) = 0 for 1 ≤ i ≤ k.

3. PROBLEM STATEMENTS

Although different states x(t) will result in different values
for the “performance-to-come” wherein (7) is redefined
with the lower integration limit t0 being replaced by the
running variable α, the cumulant values are however,
functions of time-backward evolutions of the cumulant-
generating variables Hi

11(α), Hi
12(α), Hi

22(α) and Di(α)
and do not take into account of all the intermediate values
x(t). This fact therefore makes the new optimization prob-
lem as being considered in statistical control particularly
unique as compared with the more traditional dynamic
programming class of investigations. In other words, the
time-backward trajectories (15)-(21) should be considered
as the “new” dynamical equations for statistical control
from which the resulting Mayer optimization and associ-
ated value function in the framework of dynamic program-
ming Fleming (1975) therefore depend on these “new”
state variables Hi

11(α), Hi
12(α), Hi

22(α) and Di(α), not
the classical states x(t) as the people may often expect.

For notational simplicity and compact formulation, it is
required to introduce the convenient mappings to denote
the right members of (15)-(21)

F i
11 : [t0, tf ] × (Rn×n)k × R

m×n �→ R
n×n

F i
12 : [t0, tf ] × (Rn×nd)k × R

m×n × R
m×nd �→ R

n×nd

F i
22 : [t0, tf ] × (Rnd×nd)k×(Rn×nd)k×R

m×nd �→ R
nd×nd

Gi : [t0, tf ] × (Rn)k �→ R

with the rules of action

F1
11(α,H11,Kx) � − [A(α) + B(α)Kx(α)]T H1

11(α)
−H1

11(α) [A(α) + B(α)Kx(α)]
− KT

x (α)R(α)Kx(α) − CT (α)Q(α)C(α) ,

F i
11(α,H11,Kx) � − [A(α) + B(α)Kx(α)]T Hi

11(α)
−Hi

11(α) [A(α) + B(α)Kx(α)]

−
i−1∑
j=1

2i!
j!(i − j)!

Hj
11(α)G(α)WGT (α)Hi−j

11 (α) ,

F1
12(α,H12,Kx,Kxd

) � − [A(α) + B(α)Kx(α)]T H1
12(α)

−H1
11(α)B(α)Kxd

(α) −H1
12(α)Ad(α)

− KT
x (α)R(α)Kxd

(α) + CT (α)Q(α)Cd(α) ,

F i
12(α,H12,Kx,Kxd

) � − [A(α) + B(α)Kx(α)]T Hi
12(α)

−Hi
11(α)B(α)Kxd

(α) −Hi
12(α)Ad(α)

−
i−1∑
j=1

2i!
j!(i − j)!

Hj
11(α)G(α)WGT (α)Hi−j

12 (α) ,

F1
22(α,H22,H12,Kxd

) � −AT
d (α)H1

22(α)−H1
22(α)Ad(α)

− KT
xd

(α)BT (α)H1
12(α) −H1T

12 (α)B(α)Kxd
(α)

− KT
xd

(α)R(α)Kxd
(α) − CT

d (α)Q(α)Cd(α) ,

F i
22(α,H22,H12,Kxd

) � −AT
d (α)Hi

22(α)−Hi
22(α)Ad(α)

− KT
xd

(α)BT (α)Hi
12(α) −HiT

12 (α)B(α)Kxd
(α)

−
i−1∑
j=1

2i!
j!(i − j)!

HjT
12 (α)G(α)WGT (α)Hi−j

12 (α) ,

Gi(α,H11) � −Tr
{
Hi

11(α)G(α)WGT (α)
}

,

where the components of k-tuple variables H11, H12, H22

and D defined by H11(·) �
(
H1

11(·), . . . ,Hk
11(·)

)
, H12(·) �(

H1
12(·), . . . ,Hk

12(·)
)
, H22(·) �

(
H1

22(·), . . . ,Hk
22(·)

)
, and

D(·) �
(
D1(·), . . . ,Dk(·)

)
provided that each element

Hi
11 ∈ C1([t0, tf ]; Rn×n), Hi

12 ∈ C1([t0, tf ]; Rn×nd), Hi
22 ∈

C1([t0, tf ]; Rnd×nd), and Di ∈ C1([t0, tf ]; R) have the rep-
resentations Hi

11(·) � Hi
11(·), Hi

12(·) � Hi
12(·), Hi

22(·) �
Hi

22(·), and Di(·) � Di(·). Thus, the product mappings of
the equations (15)-(21)

F11 : [t0, tf ] × (Rn×n)k × R
m×n �→ (Rn×n)k

F12 : [t0, tf ] × (Rn×nd)k × R
m×n × R

m×nd �→ (Rn×nd)k

F22 : [t0, tf ]×(Rnd×nd)k×(Rn×nd)k×R
m×nd �→(Rnd×nd)k

G : [t0, tf ] × (Rn×n)k �→ R
k

in statistical control for servo problems have the rules of
action given by
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d

dα
H11(α) = F11(α,H11(α),Kx(α)) , (22)

d

dα
H12(α) = F12(α,H12(α),Kx(α),Kxd

(α)) , (23)

d

dα
H22(α) = F22(α,H22(α),H12(α),Kx(α)) , (24)

d

dα
D(α) = G(α,H11(α)) , (25)

under the obvious definitions F11 � F1
11 × · · · × Fk

11,
F12 � F1

12 × · · · × Fk
12, F22 � F1

22 × · · · × Fk
22, and

G � G1 × · · · × Gk together with the terminal values
H11(tf ) � Hf

11 =
(
CT (tf )QfC(tf ), 0, . . . , 0

)
, H12(tf ) �

Hf
12 =

(
−CT (tf )QfCd(tf ), 0, . . . , 0

)
, H22(tf ) � Hf

22 =(
CT

d (tf )QfCd(tf ), 0, . . . , 0
)
, and D(tf ) � Df = (0, . . . , 0).

Recall that the product system uniquely determines H11,
H12, H22, and D once admissible feedback and feedforward
gains Kx and Kxd

are specified. Therefore, it should be
considered H11 ≡ H11(·,Kx,Kxd

), H12 ≡ H12(·,Kx,Kxd
),

H22 ≡ H22(·,Kx,Kxd
), and D ≡ D(·,Kx,Kxd

). The
performance index in the statistical control problem can
now be formulated in Kx and Kxd

.
Definition 1. Performance Index.
Fix k ∈ Z

+ and the sequence μ = {μi ≥ 0}k
i=1 with μ1 > 0.

Then for the given 3-tuple (t0, x0, xd0), the performance
index in statistical control for explicit model-following
problems is given by
φs : {t0} × (Rn×n)k × (Rn×nd)k × (Rnd×nd)k × R

k �→ R
+

with the rule of action

φs (t0,H11(t0),H12(t0),H22(t0),D(t0))

�
k∑

i=1

μiκi(t0, x0, xd0;Kx,Kxd
) =

k∑
i=1

μi

[
xT

0 Hi
11(t0)x0

+ 2xT
0 Hi

12(t0)xd0 + xT
d0Hi

22(t0)xd0 + Di(t0)
]

(26)

where the scalar, real constants μi represent parametric
design freedom and the unique solutions

{
Hi

11(α)
}k

i=1
,{

Hi
12(α)

}k

i=1
,
{
Hi

22(α)
}k

i=1
, and {Di(α)}k

i=1 evaluated at
α = t0 satisfy the dynamic equations of motion (22)-(25).

It is worth to observe the performance index (26) adopts
a new and comprehensive optimization criterion which
introduces additional parametric design freedom in the
class of feedback control laws that will then result in
a broad class of problem solutions as one can directly
derive from these solutions to other related results in LQG
and Risk-Sensitive control problems. More importantly,
the ultimate objective here is to introduce a competition
among performance-measure statistics as they directly
influence on the performance distribution of (5).
Definition 2. Admissible Feedback & Feedforward Gains.
For given terminal data (tf ,Hf

11,H
f
12,H

f
22,Df ), the classes

of admissible feedback and feedforward gains are de-
fined as follows. Let compact subsets Kx ⊂ R

m×n and
Kxd

⊂ R
m×nd be the sets of allowable gain values. For

the given k ∈ Z
+ and sequence μ = {μi ≥ 0}k

i=1 with
μ1 > 0, the sets of admissible Kx

tf ,Hf
11,Hf

12,Hf
22,Df ;μ

and

Kxd

tf ,Hf
11,Hf

12,Hf
22,Df ;μ

are respectively assumed to be the

classes of C([t0, tf ]; Rm×n) and C([t0, tf ]; Rm×nd) with val-

ues Kx(·) ∈ Kx and Kxd
(·) ∈ Kxd

for which solutions
to the dynamic equations of motion (22)-(25) exist on the
interval of optimization [t0, tf ].
Definition 3. Optimization Problem.
Suppose that k ∈ Z

+ and the sequence μ = {μi ≥
0}k

i=1 with μ1 > 0 are fixed. Then, the optimization
problem over [t0, tf ] is defined as the minimization of the
performance index (26) with respect to (Kx,Kxd

) over
Kx

tf ,Hf
11,Hf

12,Hf
22,Df ;μ

× Kxd

tf ,Hf
11,Hf

12,Hf
22,Df ;μ

and subject to

the equations of motion (22)-(25).
Definition 4. Reachable Set.
Let the reachable set Q �

{
(ε,Y11,Y12,Y22,Z) ∈

[t0, tf ]× (Rn×n)k × (Rn×nd)k × (Rnd×nd)k ×R
k such that

Kx
tf ,Hf

11,Hf
12,Hf

22,Df ;μ
�= 0 and Kxd

tf ,Hf
11,Hf

12,Hf
22,Df ;μ

�= 0
}

.

By adapting to the initial cost problem and the terminolo-
gies present in statistical control, the Hamilton-Jacobi-
Bellman (HJB) equation satisfied by the value function
is derived from the excellent treatment in Fleming (1975).
Theorem 2. HJB Equation-Mayer Problem.
Let (ε,Y11,Y12,Y22,Z) be any interior point of the reach-
able set Q at which the value function V (ε,Y11,Y12,Y22,Z)
is differentiable. If there exist optimal gains K∗

x ∈
Kx

tf ,Hf
11,Hf

12,Hf
22,Df ;μ

and K∗
xd

∈ Kxd

tf ,Hf
11,Hf

12,Hf
22,Df ;μ

, then

the partial differential equation of dynamic programming

0 = min
Kx∈Kx, Kxd

∈Kz

{
∂

∂ε
V (ε,Y11,Y12,Y22,Z)

+
∂

∂ vec(Y11)
V (ε,Y11,Y12,Y22,Z) vec (F11 (ε,Y11,Kx))

+
∂

∂vec(Y12)
V(ε,Y11,Y12,Y22,Z)vec(F12(ε,Y12,Kx,Kxd

))

+
∂

∂vec(Y22)
V(ε,Y11,Y12,Y22,Z)vec(F22(ε,Y22,Y12,Kxd

))

+
∂

∂ vec(Z)
V (ε,Y11,Y12,Y22,Z) vec (G (ε,Y11))

}
(27)

is satisfied. The boundary condition for (27) is given by
V

(
t0,H0

11,H0
12,H0

22,D0
)

= φs

(
t0,H0

11,H0
12,H0

22,D0
)
.

Theorem 3. Verification Theorem.
Fix k ∈ Z

+ and let W(ε,Y11,Y12,Y22,Z) be a con-
tinuously differentiable solution of (27) which satis-
fies the boundary condition W(t0,H0

11,H0
12,H0

22,D0) =
φs

(
t0,H0

11,H0
12,H0

22,D0
)
. Let (tf ,Hf

11,H
f
12,H

f
22,Df ) be

in Q; (Kx,Kxd
) a pair of gains in Kx

tf ,Hf
11,Hf

12,Hf
22,Df ;μ

×
Kxd

tf ,Hf
11,Hf

12,Hf
22,Df ;μ

; H11, H12, H22 and D the solutions

of (22)-(25). Then, W(α,H11(α),H12(α),H22(α),D(α)) is
a time-backward increasing function of α. If (K∗

x,K∗
xd

)
is a gain set in Kx

tf ,Hf
11,Hf

12,Hf
22,Df ;μ

× Kxd

tf ,Hf
11,Hf

12,Hf
22,Df ;μ

defined on [t0, tf ] with corresponding solutions, H∗
11, H∗

12,
H∗

22 and D∗ of (22)-(25) such that, for α ∈ [t0, tf ]

0 =
∂

∂ε
W(α,H∗

11(α),H∗
12(α),H∗

22(α),D∗(α))

+
∂

∂ vec(Y11)
W(α,H∗

11(α),H∗
12(α),H∗

22(α),D∗(α))

· vec(F11(α,H∗
11(α),K∗

x(α)))

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

7997



+
∂

∂ vec(Y12)
W(α,H∗

11(α),H∗
12(α),H∗

22(α),D∗(α))

· vec(F12(α,H∗
12(α),K∗

x(α),K∗
xd

(α)))

+
∂

∂ vec(Y22)
W(α,H∗

11(α),H∗
12(α),H∗

22(α),D∗(α))

· vec(F22(α,H∗
22(α),H∗

12(α),K∗
xd

(α)))

+
∂

∂ vec(Z)
W(α,H∗

11(α),H∗
12(α),H∗

22(α),D∗(α))

· vec(G(α,H∗
11(α))) , (28)

then K∗
x and K∗

xd
are optimal feedback and feedforward

gains. Moreover

W(ε,Y11,Y12,Y22,Z) = V(ε,Y11,Y12,Y22,Z) (29)

where V(ε,Y11,Y12,Y22,Z) is the value function.

4. STATISTICAL CONTROL SOLUTION

Recall that the optimization problem being considered
herein is in “Mayer form” and can be solved by applying
an adaptation of the Mayer form verification theorem of
dynamic programming given in Fleming (1975). In the
framework of dynamic programming, it is often required
to denote the terminal time and states of a family of
optimization problems by (ε,Y11,Y12,Y22,Z) rather than(
tf ,Hf

11,H
f
12,H

f
22,Df

)
. Thus, the value of these optimiza-

tion problems depends on their terminal conditions. In
particular, for any ε ∈ [t0, tf ], the states of the equations
(22)-(25) are denoted by H11(ε) = Y11, H12(ε) = Y12,
H22(ε) = Y22, and D(ε) = Z. Then, the quadratic-affine
nature of (26) implies that a solution to the HJB equation
(27) is suggested of the form as follows.
Theorem 4. Fix k ∈ Z

+ and let (ε,Y11,Y12,Y22,Z) be
any interior point of the reachable set Q at which the real-
valued function W (ε,Y11,Y12,Y22,Z) described by

W(ε,Y11,Y12,Y22,Z) = xT
0

k∑
i=1

μi

(
Yi

11 +
d

dε
E i
11(ε)

)
x0

+2xT
0

k∑
i=1

μi

(
Yi

12 +
d

dε
E i
12(ε)

)
xd0+

k∑
i=1

μi

(
Zi +

d

dε
T i(ε)

)

+ xT
d0

k∑
i=1

μi

(
Yi

22 +
d

dε
E i
22(ε)

)
xd0 (30)

is differentiable. Parameterizations E i
11 ∈ C1([t0, tf ]; Rn×n),

E i
12 ∈ C1([t0, tf ]; Rn×nd), E i

22 ∈ C1([t0, tf ]; Rnd×nd), and
T i ∈ C1([t0, tf ]; R) are yet to be determined. Then, the
derivative of W (ε,Y11,Y12,Y22,Z) with respect to ε is

d

dε
W (ε,Y11,Y12,Y22,Z)

= xT
0

k∑
i=1

μi

(
F i

11(ε,Y11,Kx) +
d

dε
E i
11(ε)

)
x0

+ 2xT
0

k∑
i=1

μi

(
F i

12 (ε,Y12,Kx,Kxd
) +

d

dε
E i
12(ε)

)
xd0

+ xT
d0

k∑
i=1

μi

(
F i

22(ε,Y22,Y12,Kxd
) +

d

dε
E i
22(ε)

)
xd0

+
k∑

i=1

μi

(
Gi (ε,Y11) +

d

dε
T i(ε)

)
, (31)

provided (Kx,Kxd
) ∈ Kx × Kxd

.

Replacing the guess solution (30) into the HJB equation
(27), one obtains

min
(Kx,Kxd

)∈Kx×Kxd

{
xT

0

k∑
i=1

μi

(
F i

11(ε,Y11,Kx)+
d

dε
E i
11(ε)

)
x0

+ 2xT
0

k∑
i=1

μi

(
F i

12 (ε,Y12,Kx,Kxd
) +

d

dε
E i
12(ε)

)
xd0

+ xT
d0

k∑
i=1

μi

(
F i

22(ε,Y22,Y12,Kxd
) +

d

dε
E i
22(ε)

)
xd0

+
k∑

i=1

μi

(
Gi (ε,Y11) +

d

dε
T i(ε)

) }
≡ 0 . (32)

Differentiating the expression within the bracket (32) with
respect to Kx and Kxd

yields the necessary conditions for
an interior extremum of the performance index (26) on the
finite horizon [t0, tf ]

0 = −2BT (ε)
k∑

i=1

μiYi
11M

0
11 − 2μ1R(ε)KxM0

11

− 2BT (ε)
k∑

i=1

μiYi
12M

0
12 − 2μ1R(ε)Kxd

M0
12 (33)

0 = −2BT (ε)
k∑

i=1

μiYi
12M

0
22 − 2μ1R(ε)Kxd

M0
22

− 2BT (ε)
k∑

i=1

μiYi
11M

0
12 − 2μ1R(ε)KxM0

12 (34)

where matrices M0
11 � x0x

T
0 , M0

12 � xd0x
T
0 , and M0

22 �
xd0x

T
d0. Because these matrices are arbitrary and have rank

one, the extremizing Kx and Kxd
must be

Kx(ε,Y11) = −R−1(ε)BT (ε)
k∑

r=1

μ̂rYr
11 , (35)

Kxd
(ε,Y12) = −R−1(ε)BT (ε)

k∑
r=1

μ̂rYr
12 , (36)

in which μ̂r = μi/μ1. In view of (35) and (36), the value
of the expression inside of the bracket of (32) becomes

xT
0

[
k∑

i=1

μi
d

dε
E i
11(ε) − AT (ε)

k∑
i=1

μiYi
11 −

k∑
i=1

μiYi
11A(ε)

+
k∑

r=1

μ̂rYr
11B(ε)R−1(ε)BT (ε)

k∑
i=1

μiYi
11

+
k∑

i=1

μiYi
11B(ε)R−1(ε)BT(ε)

k∑
r=1

μ̂rYr
11−μ1C

T(ε)Q(ε)C(ε)
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− μ1

k∑
r=1

μ̂rYr
11B(ε)R−1(ε)BT (ε)

k∑
s=1

μ̂sYs
11

]
x0

+2xT
0

[
k∑

i=1

μi
d

dε
E i
12(ε)−AT (ε)

k∑
i=1

μiYi
12−

k∑
i=1

μiYi
12Ad(ε)

+
k∑

r=1

μ̂rYr
11B(ε)R−1(ε)BT (ε)

k∑
i=1

μiYi
12

+
k∑

i=1

μiYi
11B(ε)R−1(ε)BT(ε)

k∑
r=1

μ̂rYr
12 +μ1C

T(ε)Q(ε)Cd(ε)

− μ1

k∑
r=1

μ̂rYr
11B(ε)R−1(ε)BT (ε)

k∑
s=1

μ̂sYs
12

−
k∑

i=2

μi

i−1∑
j=1

2i!
j!(i − j)!

Yj
11G(ε)WGT (ε)Yi−j

12

]
xd0

+ xT
d0

[
k∑

i=1

μi
d

dε
E i
22(ε)−AT

d (ε)
k∑

i=1

μiYi
22 −

k∑
i=1

μiYi
22Ad(ε)

+
k∑

r=1

μ̂rYr
12B(ε)R−1(ε)BT (ε)

k∑
i=1

μiYi
12

+
k∑

i=1

μiYiT
12B(ε)R−1(ε)BT(ε)

k∑
r=1

μ̂rYr
12−μ1C

T
d (ε)Q(ε)Cd(ε)

− μ1

k∑
r=1

μ̂rYr
12B(ε)R−1(ε)BT (ε)

k∑
s=1

μ̂sYs
12

−
k∑

i=2

μi

i−1∑
j=1

2i!
j!(i − j)!

YjT
12 G(ε)WGT (ε)Yi−j

12

]
xd0

+
k∑

i=1

μi
d

dε
T i(ε) −

k∑
i=1

μiTr
{
Yi

11G(ε)WGT (ε)
}

. (37)

The minimum of (37) equal to zero for any ε ∈ [t0, tf ]
when Yi

11, Yi
12, Yi

22 and Zi evaluated at (22)-(25) requires

d

dε
E1
11(ε) = AT (ε)H1

11(ε)+H1
11(ε)A(ε)+CT(ε)Q(ε)C(ε)

−
k∑

r=1

μ̂rHr
11(ε)B(ε)R−1(ε)BT (ε)H1

11(ε)

−H1
11(ε)B(ε)R−1(ε)BT (ε)

k∑
r=1

μ̂rHr
11(ε)

+
k∑

r=1

μ̂rHr
11(ε)B(ε)R−1(ε)BT (ε)

k∑
s=1

μ̂sHs
11(ε) (38)

d

dε
E i
11(ε) = AT (ε)Hi

11(ε) + Hi
11(ε)A(ε)

−
k∑

r=1

μ̂rHr
11(ε)B(ε)R−1(ε)BT (ε)Hi

11(ε)

−Hi
11(ε)B(ε)R−1(ε)BT (ε)

k∑
r=1

μ̂rHr
11(ε)

+
i−1∑
j=1

2i!
j!(i − j)!

Hj
11(ε)G(ε)WGT (ε)Hi−j

11 (ε) (39)

d

dε
E1
12(ε) = AT(ε)H1

12(ε)+H1
12(ε)Ad(ε)−CT(ε)Q(ε)Cd(ε)

−
k∑

r=1

μ̂rHr
11(ε)B(ε)R−1(ε)BT (ε)H1

12(ε)

−H1
11(ε)B(ε)R−1(ε)BT (ε)

k∑
r=1

μ̂rHr
12(ε)

+
k∑

r=1

μ̂rHr
11(ε)B(ε)R−1(ε)BT (ε)

k∑
s=1

μ̂sHs
12(ε) (40)

d

dε
E i
12(ε) = AT (ε)Hi

12(ε) + Hi
12(ε)Ad(ε)

−
k∑

r=1

μ̂rHr
11(ε)B(ε)R−1(ε)BT (ε)Hi

12(ε)

−Hi
11(ε)B(ε)R−1(ε)BT (ε)

k∑
r=1

μ̂rHr
12(ε)

+
i−1∑
j=1

2i!
j!(i − j)!

Hj
11(ε)G(ε)WGT (ε)Hi−j

12 (ε) (41)

d

dε
E1
22(ε) = AT

d(ε)H1
22(ε)+H1

22(ε)Ad(ε)+CT
d (ε)Q(ε)Cd(ε)

−
k∑

r=1

μ̂rHr
12(ε)B(ε)R−1(ε)BT (ε)H1

12(ε)

−H1T
12 (ε)B(ε)R−1(ε)BT (ε)

k∑
r=1

μ̂rHr
12(ε)

+
k∑

r=1

μ̂rHr
12(ε)B(ε)R−1(ε)BT (ε)

k∑
s=1

μ̂sHs
12(ε) (42)

d

dε
E i
22(ε) = AT

d (ε)Hi
22(ε) + Hi

22(ε)Ad(ε)

−
k∑

r=1

μ̂rHr
12(ε)B(ε)R−1(ε)BT (ε)Hi

12(ε)

−HiT
12 (ε)B(ε)R−1(ε)BT (ε)

k∑
r=1

μ̂rHr
12(ε)

+
i−1∑
j=1

2i!
j!(i − j)!

HjT
12 (ε)G(ε)WGT (ε)Hi−j

12 (ε) (43)

d

dε
T i(ε) = Tr

{
Hi

11(ε)G(ε)WGT (ε)
}

. (44)

The boundary condition of W(ε,Y11,Y12,Y22,Z) implies
that the initial conditions E i

11(t0) = 0, E i
12(t0) = 0,

E i
22(t0) = 0, and T i(t0) = 0 for the equations (38)-(44)

and yields a value function

W(ε,Y11,Y12,Y22,Z) = V(ε,Y11,Y12,Y22,Z)

= xT
0

k∑
i=1

μiHi
11x0 + 2xT

0

k∑
i=1

μiHi
12xd0

+ xT
d0

k∑
i=1

μiHi
22xd0 +

k∑
i=1

μiDi (45)
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for which the sufficient condition (28) of the verification
theorem is satisfied so that the extremizing gains (35) and
(36) become optimal

K∗
x(ε) = −R−1(ε)BT (ε)

k∑
r=1

μ̂rH∗r
11(ε) ,

K∗
xd

(ε) = −R−1(ε)BT (ε)
k∑

r=1

μ̂rH∗r
12(ε) .

Theorem 5. Multi-Cumulant Solution for Servo Problems.
Under the assumptions of (A,B) uniformly stabilizable
and (Cd, Ad) uniformly detectable, the servo dynamics
governed by (1)-(2) attempt to follow the desired trajec-
tory of the system (3)-(4) via the Chi-squared measure
of performance (5). Suppose k ∈ Z

+ and the sequence
μ = {μi ≥ 0}k

i=1 with μ1 > 0 are fixed. Then, the
statistical control solution for the servo problem over a
finite horizon is a two-degrees-of-freedom controller with
time-varying gains

u∗(t) = K∗
x(t)x∗(t) + K∗

xd
(t)xd(t) , (46)

K∗
x(α) = −R−1(α)BT (α)

k∑
r=1

μ̂rHr∗
11(α) , (47)

K∗
xd

(α) = −R−1(α)BT (α)
k∑

r=1

μ̂rHr∗
12(α) , (48)

where μ̂r = μi/μ1 represent different levels of influence as
they deem important to the performance distribution.

There is the addition of a feedforward part, which is the
state xd of the reference model (3)-(4). The feedback part
of the optimal servo is dependent of Ad, Cd, and xd(t0).
Finally, {Hr∗

11(α)}k
r=1, and {Hr∗

12(α)}k
r=1 are the solutions

of the time-backward matrix differential equations
d

dα
H1∗

11(α) = − [A(α) + B(α)K∗
x(α)]T H1∗

11(α)

−H1∗
11(α) [A(α) + B(α)K∗

x(α)]
− K∗T

x (α)R(α)K∗
x(α) − CT (α)Q(α)C(α) , (49)

d

dα
Hr∗

11(α) = − [A(α) + B(α)K∗
x(α)]T Hr∗

11(α)

−Hr∗
11(α) [A(α) + B(α)K∗

x(α)]

−
r−1∑
s=1

2r!
s!(r − s)!

Hs∗
11 (α)G(α)WGT (α)H(r−s)∗

11 (α) , (50)

together with
d

dα
H1∗

12(α) = − [A(α) + B(α)K∗
x(α)]T H1∗

12(α)

−H1∗
11(α)B(α)K∗

xd
(α) −H1∗

12(α)Ad(α)

− K∗T
x (α)R(α)K∗

xd
(α) + CT (α)Q(α)Cd(α) , (51)

d

dα
Hr∗

12(α) = − [A(α) + B(α)K∗
x(α)]T Hr∗

12(α)

−Hr∗
11(α)B(α)K∗

xd
(α) − Hr∗

12 (α)Ad(α)

−
r−1∑
s=1

2r!
s!(r − s)!

Hs∗
11 (α)G(α)WGT (α)H(r−s)∗

12 (α) (52)

where terminal-value conditions H1∗
11(tf ) = CT (tf )QfC(tf ),

Hr∗
11(tf ) = 0 for 2 ≤ r ≤ k together with H1∗

12(tf ) =
−CT (tf )QfCd(tf ), Hr∗

12(tf ) = 0 for 2 ≤ r ≤ k.

5. CONCLUSIONS

The results here demonstrate a successful combination
of the compactness offered by logic from the state-space
model description (7)-(8) and the quantitativity from
a-priori probabilistic knowledge of adverse environmen-
tal disturbances so that the uncertainty of performance-
measure (7) can now be represented in a compact and
robust way. Moreover, there is a feature of interactive
learning in the context of performance uncertainty where
the servo controller not only optimizes criteria for evaluat-
ing for its performance but also interacts with the external
environment. To be specific, the model-reference system
(8) consists of a statistical controller plus a special agent
called Nature. It is assumed that the statistical controller
has a finite set of performance-measure statistics, while
Nature has a finite set of sample path realizations. The
optimal statistical controller composed of cumulant-based
feedback (47) and feedforward (48) gains that operates dy-
namically on the time-backward histories of the cumulant-
supporting equations (49)-(50) and (51)-(52) from the
final to the current time. Finally, the present framework
emphasizes the amount of information in performance-
measure statistics (which actually are functions of noise
process characteristics) needed to implement a risk-averse
learning rule that effectively shapes the closed-loop per-
formance distribution beyond the long-run average perfor-
mance. The results also stress on the limits of what can
be achieved: in such robust control designs there exists a
kind of statistical controllers (46) that trades the property
of certainty equivalence principle as would be inherited
from the special case of classical linear-quadratic tracking,
for the adaptability to deal with uncertain environments.
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