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Abstract: This paper introduces a threshold policy with hysteresis (TPH) for the control of one-
predator one-prey models. The models studied are the Lotka–Volterra (LV) and Rosenzweig–
MacArthur (RM) two species density-dependent predator-prey models. The proposed policy
(TPH) changes the dynamics of the system in such a way that a bounded oscillation is achieved.
The policy can be designed by a suitable choice of so called virtual equilibrium points in a simple
and intuitive manner.
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1. INTRODUCTION

This paper is concerned with the introduction of an
exogenous control, called a threshold policy with hys-
teresis (TPH), into predator-prey models of two species.
Predator-prey models play an important role in manage-
ment of exploited natural resources. In order to define a
TPH, the threshold policy (TP) is defined first as follows:
if a certain measured variable (density or abundance) is
below the single threshold no action is taken (for example,
no harvesting), while above the single threshold, an action
is taken (harvesting is permitted). More details about TPs
can be found in Meza et al. [2005b]. Application of TPs can
be seen in Collie and Spencer [1993], Costa et al. [2000],
Meza et al. [2005a], Enberg [2005]. The exogenous control
considered in this paper is the TPH that represents the
non-ideal behavior of a practical threshold management
policy which switches off at a different threshold from the
one where it switches on, giving rise to an overlap region
in its characteristic, known as hysteresis.

There is a substantial literature devoted to hysteresis
in each of the communities of physicists, engineers and
mathematicians, see, e.g. Carnevale et al. [2006], Brokate
et al. [2006], Gonçalves et al. [2001], Moreno et al. [2003]
and references therein.

Piecewise linear systems (PLS) are switching systems char-
acterized by a finite number of linear dynamical models
together with a set of rules for switching among these
models. PLS are characterized by having both the logic
in the controller and the nonlinearities in the system
model (such as hysteresis) appearing as piecewise linear
functions, with the system dynamics described by linear
systems. The papers Gonçalves et al. [2001], Varigonda
and Georgiou [2001], Moreno et al. [2003] consider linear
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systems subject to hysteresis as a controller or as a system
nonlinearity.

In the control engineering literature, hysteresis has been
shown to change the dynamics of a linear (and nonlinear)
system to which it is applied in such a way that a bounded
oscillation (limit cycle) can be achieved [Andronov et al.,
1966, Gonçalves et al., 2001]. In the context of ecology as
well, since stabilizing a system at a point is a rather un-
realistic goal, this is the main motivation for the proposal
in this paper of the threshold management policy (TPH),
which changes the dynamics of the system in such a way
that a bounded oscillation is achieved. This is exactly
the objective of this paper in the specific context of two
variable nonlinear predator-prey models. The policy can
be designed in a simple and intuitive manner by a suitable
choice of so called virtual equilibrium points, which were
defined in Meza et al. [2005b].

In this paper, we study the LV and RM two species
density-dependent predator-prey models.

2. MATHEMATICAL DEFINITIONS OF
THRESHOLD POLICY WITH HYSTERESIS

TPs (on-off controls) for dynamical systems are strategies
that switch the control inputs from one level to another
whenever a certain measured variable crosses a predeter-
mined single threshold (a line or a curve that depends on
the state vector).

In the context of real systems, however, there is one
important assumption that makes the TP used in Costa
et al. [2000], Meza et al. [2005b] a little unrealistic:
namely that as soon as the system crosses a threshold, the
mode of control changes instantaneously. This allows the
model to closely follow the single threshold (sliding mode),
and reach a stable equilibrium (sliding equilibrium). In
practice, it is likely that the threshold from the region
with control towards the region without control has a
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different position than the threshold from the region
without control towards the region with control. In control
language, this means that we should consider hysteresis in
the TP.

We propose the following hysteresis model as a relation
between an input signal, τ(z), and an output signal, φhys,

φhys(τ) =

{

{0}, if τ < −σ, or τ ≤ σ and τ̇ > 0
{1}, if τ > σ, or τ ≥ −σ and τ̇ < 0.

(1)

where τ is the threshold that should be chosen adequately,
depending on the problem to be solved, σ > 0 is the
hysteresis parameter, and τ̇ is the rate of change or time
derivative of τ .

Remark 1. A model that is equivalent to (1) but does not
use the derivative τ̇ explicitly can be derived from (1)
by using the backward Euler approximation of τ̇ . This
requires the storage of τ(t) and τ(t − h) (value at instant
t − h) and results in a hysteresis model similar to that
proposed in Gonçalves et al. [2001].

In mathematical terms, the system subject to a threshold
policy with hysteresis is as follows

ż = f (z, t) + uhys, (2)

where z is the state vector, uhys = u(z, t)φhys(τ) is the
TPH, φhys(τ) is defined as in (1), see Figure 1, and u(z, t)
is a continuous function. In the state space, the switching
curves M0 and M1 (see Figure 1.(a)) of the systems are the
curves where τ(z) is equal to σ and −σ, respectively. More
precisely, M0 :=

{

z ∈ R
2 : τ(z) − σ = 0

}

, and M1 :=
{

z ∈ R
2 : τ(z) + σ = 0

}

.
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Fig. 1. (a) Graphical representation of the TPH in a phase plane.
The grey region is the hysteresis region G3. zeq

G2
and zeq

G1
are the

stable equilibrium point of the dynamics in region G2 and G1,
respectively, and both are virtual. (b) Graphical representation
of hysteresis, where z is the state vector, τ is the threshold
variable and σ > 0 is the hysteresis parameter.

Definition 2. Let zeq

Gi be the stable equilibrium point of

the dynamics of region Gi ∀ i = 1, 2. Then zeq

Gi is called

a real equilibrium if it belongs to Gi and a virtual
equilibrium if it belongs to Gj , j 6= i.

In practice, it is likely that the threshold from G1 to G2

has a different position than the threshold from G2 to G1.
The threshold of trajectories with initial conditions in G1

moving towards G2 is M1, and the threshold of trajectories
with initial conditions in G2 moving towards G1 is M0, see
Figure 1.(a).

3. ONE-PREDATOR ONE-PREY MODELS SUBJECT
TO A TPH

A large class of predator-prey models can be written as
the nonlinear dynamical system

ẋ = f1(x) + f2(x) y (3)

ẏ = f3(x) y (4)

where the state variable x denotes the prey population
density and the state variable y denotes the predator
density; the functions f1 and f3 describe the prey and
predator growth functions, respectively. The function f2

describes the interaction when the predator finds the prey.
These equations constitute the simplest representation
of the essence of the nonlinear predator-prey interaction
[Gurney and Nisbet, 1998].

We consider the introduction of an exogenous control, ux
hys

and uy
hys, corresponding respectively to the removal of

each species. If the control is applied, the model (3), (4)
becomes

ẋ = f1(x) + f2(x) y − ux
hys (5)

ẏ = f3(x) y − uy
hys, (6)

where ux
hys and uy

hys are the TPH on prey and predator,
respectively.

Standard notation that will be used throughout the paper:
(i) Subscripts ‘fs’ denotes free system (without control)
and ‘cs’ denotes controlled system (with proportional con-

trol), (ii) fG1

(z) is the dynamics in region G1, (iii) fG2

(z)

is the dynamics in region G2, (iv) zfs
i is the stable equi-

librium point of the dynamics of the free system, and (v)
zcs
i is the stable equilibrium point of the dynamics of the

controlled system. We define the curves: (i) V φ=0(z) =

{z ∈ R
2
+ :

〈

η, fG2

(z)
〉

= 0} and (ii) V φ=1(z) = {z ∈ R
2
+ :

〈

η, fG1

(z)
〉

= 0} where η is the vector normal to M0 and

M1, and it is oriented in direction from G2 towards G1. We
define the following regions: G1 := {z ∈ R

2
+ : τ(z) − σ >

0}, G2 := {z ∈ R
2
+ : τ(z) + σ < 0}, G3 := {z ∈ R

2
+ : −σ <

τ(z) < σ}, R4 :=
{

z ∈ R
2
+ :

〈

η, fG2

(z)
〉

> 0
}

, R5 :=
{

z ∈ R
2
+ :

〈

η, fG2

(z)
〉

< 0
}

, R6 :=
{

z ∈ R
2
+ :

〈

η, fG1

(z)
〉

> 0}, R7 :=
{

z ∈ R
2
+ :

〈

η, fG1

(z)
〉

< 0
}

.

We now state a general version of the main theorem
of this paper (referred to as the TPH theorem), the
generality permitting application to the class of predator-
prey systems given in (3), (4).

Theorem 3. Consider the following general model
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ẋ = f1(x) + f2(x) y − ux
hys (7)

ẏ = f3(x) y − uy
hys (8)

which is the model (3), (4) subject to TPHs, and where
ux

hys = u1(z)φhys and uy
hys = u2(z)φhys correspond to the

removal of species x and y, where τ is a threshold that has
one of the following forms

τ := α1x + α2y − Sd, slope threshold (9a)

τ := y − yth, horizontal threshold (9b)

τ := x − xth, vertical threshold. (9c)

There will exist a region that is invariant and globally
attractive, if

(1) the switching lines M0 and M1 are defined such that
the stable equilibrium points of each dynamics are
virtual,

(2) the conditions
〈

η, fG1

(z)
〉

< 0 and
〈

η, fG2

(z)
〉

> 0

on the vector field are satisfied, and
(3) the intersection of the region G3

⋂

R4
⋂

R7 is not of
measure zero.

Remark 4. Condition (3) means that if G3
⋂

R4
⋂

R7 is
the segment of a curve or line then condition (3) is not
satisfies.

Proof. Sketch for the LV case. For simplicity, consider the
specific LV model as follows

f1 = r1 x, f2 = −a x,
f3 = −r2 + b x,

For this model, we demonstrate that the region IR (A −
B − C − D − A), in Figure 2, is invariant and globally
attractive.
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Fig. 2. Phase portrait diagram of the LV model. The globally
attracting invariant region in the phase plane is the region IR
(A − B − C − D − A). τ = α1x + α2y − Sd, S0 = Sd + σ
and S1 = Sd − σ. Sy

0
= S0/α2, Sy

1
= S1/α2, Sx

0
= S0/α1 and

Sx
1

= S1/α1.

Figure 2 shows the regions G1, G2, G3, Ri for i = 4, 5, 6, 7,
the curves V φ=0(z) and V φ=1(z), the switching lines M0

and M1 in a case where the threshold is as in equation

(9a), and the stable equilibrium points zfs
2 and zcs

2 , see
subsection 3.1, are virtual. The first condition of the TPH
theorem is satisfied.

Conditions on the vector fields and Invariance of region
A − B − C − D − A

The following geometrical approach is inspired by paper
Boukal and Křivan [1999], in which the basic types of so-
lution behavior along a single discontinuity line were sum-
marized. In order to determine the behavior of trajectories
along M0 and M1 analytically, we take a vector η normal
to M0 and M1 and oriented in direction from G2 towards
G1 and we examine the scalar products of this vector with

fG2

(z) and fG1

(z), where fG2

(z) is the dynamics of the

free system (u1 = u2 = 0), and fG1

(z) is the dynamics
of the controlled system (u1 = ε1 x, u2 = ε2 y). Now, we
verify direction of the vector field in switching lines M0

and M1,

on M0 on M1

cM0

1 :=
〈

η, fG2

(z)
〉

> 0 cM1

1 :=
〈

η, fG2

(z)
〉

> 0

cM0

2 :=
〈

η, fG1

(z)
〉

< 0 cM1

2 :=
〈

η, fG1

(z)
〉

< 0

From cM1

1 , we obtain the following expression

〈

η, fG2

(z)
〉

= [α1 α2]

[

r1 x − a x y
−r2 y + b x y

]

> 0

= α1 r1 x − α2 r2 y

+(α2 b − α1 a)x y > 0, (10)

V φ=0(z) := α1 r1 x − α2 r2 y

+(α2 b − α1 a)x y, (11)

points that satisfy (10) are on the right of V φ=0(z),

i.e., region R4; and from cM0

2 , we obtain the following
expression

〈

η, fG1

(z)
〉

= [α1 α2]

[

r1 x − a x y − ε1 x
−r2 y + b x y − ε2 y

]

< 0

= α1(r1 − ε1)x − α2(r2 + ε2)y

+(α2 b − α1 a)x y < 0, (12)

V φ=1(z) := α1(r1 − ε1)x − α2(r2 + ε2)y

+(α2 b − α1 a)x y, (13)

points that satisfy (12) are on the left of V φ=1(z), i.e.,
region R7. The points E and B are located where the
curve V φ=1(z) intersects the switching surfaces M0 and
M1, respectively. The points D and F are located where
the curve V φ=0(z) intersects the switching surfaces M0

and M1, respectively. The intersection of curves ltr
G2 and

M1 is the point A, and the intersection of curves ltr
G1 and

M0 is the point C. Points that belong to R4
⋂

R7 satisfy

cM1

1 and cM0

2 , and the intersection of regions R4
⋂

R7
⋂

G3

is not of measure zero.

The curve labelled ltr
G1 is the trajectory that enters the

region IR at the point D and remains within it thence-
forth, and the curve labelled ltr

G2 is the trajectory that
enters the region IR at the point B and remains within
it thenceforth. The region that satisfies (10) and (12), i.e.,
R4

⋂

R7, is the subset of points which their trajectories
enter region G3 with a transversal motion, and conditions
cM1

1 and cM0

2 means that the vector fields are oriented in
opposite directions, see Figures 2 and 3. Therefore, the
region IR is invariant.
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Fig. 3. Phase portrait dynamics of the the LV system with TPH.
Parameter values: a = 1, b = 1, r1 = 1, r2 = 1, α1 = 0.2,
α2 = 1, σ = 0.1, ε1 = 0.5, ε2 = 0.5 and Sd = 1. Showing the
point mapping z0 7→ z2 on the switching line under a trajectory
of the system with control, as well as the point mapping z2 7→ z4

under a trajectory of the system without control, for the LV
system subject to the TPH, when both equilibrium points zfs

2

and zcs
2

are virtual.

Global attractivity of the region IR

Trajectories of the LV are given implicitly by the first
integral. Thus the point mapping, see Figure 3, from z0

towards z2 must satisfy:

x
(r2+ε2)
2 e−bx2y

(r1−ε1)
2 e−ay2 = x

(r2+ε2)
0 e−bx0y

(r1−ε1)
0 e−ay0 ,

(14)
and the point mapping from z2 towards z4 must satisfy:

xr2

4 e−bx4yr1

4 e−ay4 = xr2

2 e−bx2yr1

2 e−ay2 . (15)

Taking logarithms of the above equations and subtracting
(15) from (14) leads to:

ε2 ln

(

x2

x0

)

+ ε1 ln

(

y0

y2

)

= r2 ln

(

x0

x4

)

+ r1 ln

(

y0

y4

)

−b(x0 − x4) − a(y0 − y4) (16)

The points z0 and z4 belong to line M0 and they satisfy
y0 − y4

x0 − x4
= −

α1

α2
.

Equation (16) can be expressed as

ε2 ln

(

x2

x0

)

+ ε1 ln

(

y0

y2

)

= r2 ln

(

x0

x4

)

+ r1 ln

(

y0

y4

)

−a(x0 − x4)

(

b

a
−

α1

α2

)

(17)

It is reasonable to assume that x2 < x0 which implies
that y2 > y0. Under this assumption the left hand side
of equation (17) is negative. If x0 > x4 then the first
term of right hand side of equation (17) is positive and
the second term is negative. It is possible to choose the
αi (and, if necessary, the εi) to make the third term
sufficiently negative to ensure that the left hand side and
the right hand side have the same negative sign, and, in
addition, satisfy the slope condition (equation (7) in Costa
et al. [2000]). Therefore, the trajectory z0 → z2 → z4 is
contracting, in other words, if z4 is on the left of z0 then
the mapping z0 7→ z4 is a contraction, see Figure 3.

In Figure 3, all trajectories that cross M0 between points B
and ztr

G1 enter region IR and remain within it thenceforth,
and all trajectories that cross M1 between points ztr

G2 and
D enter region IR and remain within it thenceforth.

There exists a trajectory which maps condition z̄0 into zG1

tr .
Any trajectory with initial condition on M0 between the
points ztr

G1 and z̄0 or crosses line M0 between the points
ztr
G1 and z̄0, entering the region IR at first, and remains

within it thenceforth, as can be observed for the mapping
z0 7→ z4 (see Figure 3). For any trajectory that crosses M0

on the right of z̄0, we can demonstrate that with a second
iteration of mapping, that trajectory enters the region IR
and remains within it thenceforth. To economize space,
this demonstration is omitted, but it follows the idea of
the contraction of trajectory shown above. Therefore, the
region IR is globally attractive. �

Remark 5. The curves V φ=0(z) and V φ=1(z) are derived
as in Boukal and Křivan [1999]. Another way to derive the
curves V φ=0(z) and V φ=1(z) is considering a Liapunov
function for each switching line M0 and M1, such that
the time derivative of each Liapunov function must be
negative. The Liapunov function for switching line M0

is VM0
(z) = (τ(z) − σ)

2
/2, and the Liapunov function

for switching line M1 is VM1
(z) = (τ(z) + σ)

2
/2, where

τ(z) = α1 x + α2 y − Sd.

Remark 6. Trajectories that belong to the same region
and have distinction never intersect. Trajectories with ini-
tial condition in region G2 enter the region G3 and switch
when they cross the line M0 (τ = σ), and trajectories with
initial condition in region G1 enter to the region G3 and
switch when they cross the line M1 (τ = −σ), see Figure
3. Therefore, there is no possibility that the system slides
in the line τ = 0. Any trajectory on the left on right of ltr

G2

never intersect it, because these trajectories belong to the
same region.

Figure 2 shows the regions G1, G2, G3, Ri for i = 4, 5, 6, 7,
the curves V φ=0(z) and V φ=1(z), the switching lines M0

and M1 in a general case where the threshold is as in (9a)
and the conditions of the theorem are satisfied.

We now show the application of the TPH in the simple
two-species LV and RM models.

3.1 Application of the TPH theorem to the LV model

One example of a TP, known as a weighted escape-
ment policy (WEP), in which a threshold is built from
a weighted (or linear) combination of prey and predator
densities was proposed in Costa et al. [2000]. The TP
was used to stabilize a LV system under simultaneous
harvesting of the prey and predator. Here, we consider
the LV system under simultaneous TPH on both species
as follows















ẋ = r1 x − a x y − ux
hys,

ẏ = −r2 y + b x y − uy
hys,

ux
hys = u1(z)φhys(τ),

uy
hys = u2(z)φhys(τ),

(18)

where the parameter r1 is the growth rate of the prey,
r2 is the mortality rate of the predator, a, b represent
the interaction coefficients between the species, u1 = ε1 x
and u2 = ε2 y (proportional controls), ε1 and ε2 are
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the control effort parameters (harvesting intensities), and
φhys(τ) is defined as in equation (1); and all parameters
are positive. The threshold defined in Costa et al. [2000]
has the following form

τ = α1 x + α2 y − Sd (19)

where Sd is the weighted sum of species (constant), α1

and α2 are attributed population weights. We will use the
slope threshold (19) which needs the measurement of both
species densities. This is because, for the particular case
of LV system, if only one species has TPH applied to it,
one can satisfy conditions (1) and (2) of the TPH theorem
but not condition (3).

Verification of the conditions of the TPH theorem

Note that the free LV system has the following dynamics:

the origin, zfs
1 = (xfs

1 , yfs
1 ) = (0, 0), is a saddle point,

while zfs
2 = (xfs

2 , yfs
2 ) = (r2/b, r1/a) is a center point, and

the controlled LV system has the following dynamics: the
origin, zcs

1 = (xcs
1 , ycs

1 ) = (0, 0), is a saddle point, and the
point zcs

2 = (xcs
2 , ycs

2 ) = ((r2+ε2)/b, (r1−ε1)/a) is a center
point. In both cases, the trajectories in the phase portrait
are only closed trajectories and not limit cycles.

The switching lines M0 and M1 must be chosen so that

the equilibrium points zfs
2 and zcs

2 will be virtual, this
verifies the first condition of the TPH theorem. The second
condition will be verified, where η = [α1 α2] and fG1

is the
dynamics of the LV system with a proportional control,

and fG2

is the dynamics of the LV system without control,
and the curves V φ=0(z) and V φ=1(z) can be calculated,
and the third condition is verified, i.e., G3

⋂

R4
⋂

R7 is
not measure zero. Thus, the introduction of a TPH is
responsible for new dynamic behavior, i.e., a bounded
oscillation between the switching lines is achieved, see
Figure 4.
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Fig. 4. Phase portrait dynamics of the LV system with TPH

(ε1 = ε2 = 0.5). Parameter values: a = 1, b = 1, r1 = 1,
r2 = 1, α1 = 0.2, α2 = 1, σ = 0.1, ε1 = 0.5, ε2 = 0.5 and
Sd = 1.

3.2 Application of the TPH theorem to the RM model

In this section is shown that the proposed approach is
successful in the control of the classical RM predator-prey
model that corresponds to the choice f1 = r x (1 − x/K),
f2 = x/(x+A), f3 = sA (x−J)/(J +A)(x+A) where r is

the intrinsic growth rate of the prey, K is the carrying
capacity of the environment, A is the half saturation
constant, s is the conversion efficiency of the predator,
and J is the minimum prey population for which the
predator can survive. We will treat only the case J < K.
We chose this model because it can be regarded as the
simplest nontrivial paradigm that was proposed after the
more classical but biologically unrealistic LV system. In
this case, we consider harvesting of only the predator as
follows























ẋ(t) = rx
(

1 −
x

K

)

−
xy

x + A
,

ẏ(t) =
sA(x − J)

(J + A)(x + A)
y − uhys,

uhys = u1(z, t)φhys(τ), and u1(z) = ε2 y
x(0) = x0 > 0, y(0) = y0 > 0,

(20)

where uhys is the TPH, u1(z, t) = ε2 y is defined as a
proportional control, ε2 is the control effort parameter
(harvesting intensity), and φhys(τ) is defined as in equa-
tion (1), and τ is a threshold that has the following form

τ := y − yth,

where yth is the predator threshold level.

Verification of the conditions of the TPH theorem

Note that the free RM system has the following dynamics:

the origin, zfs
1 = (xfs

1 , yfs
1 ) = (0, 0), is a saddle point, the

point zfs
2 = (xfs

2 , yfs
2 ) = (J, r (J + A) (K − J)/K) is an

unstable node, and the point zfs
3 = (xfs

3 , yfs
3 ) = (K, 0)

is a saddle point. The behavior of the free system is a
limit cycle. The controlled RM system has the following
dynamics: the origin, zcs

1 = (xcs
1 , ycs

1 ) = (0, 0), is a saddle
point, the point zcs

2 = (xcs
2 , ycs

2 ) is a stable equilibrium
point, which does not belong to either to region G1 or G2,

i.e., zcs
2 6∈ R

2
+, and the point zcs

3 = (xfs
3 , yfs

3 ) = (K, 0) is a
saddle point. The behavior of the controlled system is the
extinction of the predator.

The switching lines M0 and M1 must be chosen so that the

equilibrium points zfs
2 and zcs

2 are virtual, this verifies the
first condition of the TPH theorem. The second condition
is easily verified, where η = [0 1] and fG1

(z) is the
dynamics of the RM system with a proportional control,

and fG2

(z) is the dynamics of the RM system without
control, and the curves V φ=0(z) and V φ=1(z) are vertical
lines. The third condition is verified, i.e., G3

⋂

R4
⋂

R7

is not measure zero. Thus, the introduction of a TPH
is responsible for new dynamic behavior, i.e., a bounded
oscillation between the switching lines is achieved, see
Figure 5, and the amplitude of the oscillations is reduced
with respect to the free system limit cycle oscillations, this
being the main goal of the TPH.

4. CONCLUSION

In managing renewable resources, stabilizing a system at
a point is a rather unrealistic goal, which is the main
motivation for the proposal of the TPH that changes the
dynamics of the system in such a way that a bounded
oscillation of small amplitude is achieved, i.e., the system
stabilizes in a limit cycle, as has been shown in Figures 4,
5. The TPH has been shown to be effective in the control of
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Fig. 5. Phase portrait dynamics of the the RM system with TPH

(ε2 = 1/3). Parameter values: r = 2, K = 60, s = 1, A = 10,
J = 20, yth = 28.75 and σ = 5.

two species (LV and RM) predator-prey model commonly
used in mathematical population biology.

The TPH takes advantage of the condition of overex-
ploitation so that the extinction of the species is avoided
by switching between periods of overexploitation and no
exploitation. The important novel characteristic of a TPH
is that it ensures that, even though the system is subjected
to a period of overexploitation it eventually stabilizes in
low amplitude bounded oscillations in a desired safe re-
gion of the state space. In contrast, the commonly used
proportional control cannot ensure this, and will often
lead to extinction while the system is being subjected to
overexploitation.

It must be stressed that when a threshold control with
hysteresis effect is considered, we are implicitly considering
errors and delays in the implementation of the policy,
i.e. errors and delays in the measurement of the species
density. The hysteresis loop around the threshold level
takes explicitly into account such occurrences and there-
fore, stabilizes the dynamics by means of low amplitude
bounded oscillations in the region delimited by the hys-
teresis itself. Finally, from the management standpoint, it
is important to stress that the proposed strategy does not
interfere directly in the harvesting intensities. As is well
known, such interference usually meets several obstacles
in its implementation.

Although discrete models are not studied in this paper,
we expect that such systems subjected to a TPH can be
analyzed with analogous techniques. This will be a topic
of future research.
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