
Optimal Protraction of a Three-Joint Robot Leg1

Mustafa Suphi Erden*, Kemal Leblebicioğlu**

*BioMechanical Engineering, Intelligent Mechanical Systems Group, Delft university of Technology,

Delft, 2628 CD, The Netherlands, (Tel: +31 (0)15 27 86794; e-mail: m.s.erden@tudelft.nl).

**Department of Electrical & Electronics Engineering, Computer Vision and Intelligent Systems Research Laboratory,

Middle East Technical University, Ankara, 06531, Turkey, (Tel: +90 (0)312 210 4558; e-mail: kleb@metu.edu.tr)

Abstract: In this paper protraction movement, namely stepping ahead, of a three joint robot leg is

optimized for energy efficiency for any given pair of initial-final tip point positions. For the optimization a

modified version of gradient descent based optimal control algorithm with Hamiltonian formulation is

used. The objective function is modified in steps to jump over the infeasible and inefficient local

optimums. The results of 79 optimizations are used to construct a radial basis function neural network

(RBFNN) in order to interpolate between the optimized trajectories. The results are presented and

discussed in the paper.

1. INTRODUCTION

Due to its advantages over wheeled and tracked systems on

uneven terrains, legged locomotion has the potential to be

applied in various fields (Preumont et al., 1997; Huang et al.,

2003). A disadvantage of legged locomotion is its high

energy consumption (Erden and Leblebicioğlu, 2007). During

walking, some of the legs are in swing phase for protraction.

The protracting legs do not contribute to lifting, but exist as

extra weights. The protraction movement carries the tip point

of the leg from a given posterior extreme position to a given

anterior extreme position. Generating this movement

corresponds to generating proper traces of joint angles that

achieve the transfer of the tip point. The topic of this paper is

generation of the protraction movement in an energy optimal

way.

In the literature there are quite scarce studies which explicitly

deal with the protraction movement of robot legs. Ilg et al.

(1995, 1997) deal with application of reinforcement learning

for the power stroke (retraction) and return stroke

(protraction) of a robot leg. In these papers the focus is

application of reinforcement learning, rather than the

efficiency of the resulting movements. Cruse et al. (1998)

describe a general control structure for protraction under the

subtitle of “control of the swing movement”. Similarly, Dürr

et al. (2004) explicitly mention protraction as one of the four

mechanically uncoupled swing movements of robot legs,

besides searching, grasping, and grooming. These last two

papers content with a description of very general, and in fact

similar, kinematic control models, which aim to imitate the

biologically inspired movements observed in insects.

However, the stress on the similarities of the mentioned four

movements by Dürr et al. (2004) reveals the importance of

the control of such group of swing movements. This points to

the need of a generic protraction movement generator

applicable to similar swing movements. Especially the reflex

movements to be performed when the robot comes across

unexpected obstacles, holes, or hills (Espenschied et al.,

1996) are considerable in this regard. The optimization

performed in this paper is generalizable to any similar

movement once the initial-final tip point positions are

provided. Erden et al. (2004a) presents a preliminary work

for the approach developed in this paper.

Biological observations reveal that the protraction time in

six-legged insects is constant regardless of the speed of

walking. Ferrell (1995) gives summaries of three models for

biologically inspired six legged locomotion. In two of these,

namely in the Wilson and Pearson models, it is explicitly

stated that the protraction time is constant. This is sense-full

since there is no power load on the leg during the swing

motion, and it is possible to protract in a quite short and

constant time. Erden and Leblebicioğlu (2007) demonstrate

that the gaits with minimum protraction time are more energy

efficient. In this paper efficiency corresponds to dissipation

of minimum energy in the three actuators during protraction.

Following the arguments of Erden and Leblebicioğlu (2007)

and Ferrell (1995) the protraction time is taken to be the

minimum applicable to the Robot-EA308 (Fig. 7), which is

1.5 seconds .

2. THREE JOINT ROBOT LEG

A three joint robot leg can be considered as a three link

revolute joint (RRR) manipulator which is attached to a

stationary base (robot body). Therefore, the kinematic

modelling and derivation of dynamic equations can be

performed following the conventional robotics approaches

(Fu et al., 1987). The kinematic model here is derived by

defining the reference frames according to the Denavit-

Hartenberg convention. In Fig. 1 a graphical representation of

a three joint robot leg is given, with the attached reference

frames and corresponding joint variables. In this figure the

1This research is supported by the research fund of Middle East Technical University as a scientific research project: BAP–2002–03–01–06.

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 1703 10.3182/20080706-5-KR-1001.0194

body (b) and the zeroth (0) reference frames are attached to

the stationary robot body. Therefore they can be both

considered as inertial frames. (It is assumed throughout the

paper that motion of the body is much more slower than the

motion of the leg during protraction. Therefore, the body is

assumed to be stationary.) The Denavit-Hartenberg link

parameters based on Fig. 1 are given in Table 1. The

homogeneous transformation matrices between the body and

the zeroth frame, and between the sequential link frames can

be easily computed. In (1) the tip point position of the leg

with respect to the body frame is given.

[
px 

py 

p
z
]=[

Ca1S 1a2 S1C 2a3 S 1C 23Sa2 S2a3S 23

�a1C 1a2C 1C 2a3C 1C 23

�S a
1
S

1
a

2
S 

1
C 

2
a

3
S

1
C 

23
Ca

2
S

2
a

3
S 

23
]

(1)

Table 1. Denavit-Hartenberg link parameters for the three

joint robot leg.

Joint θi αi ai di

1 θ1 π/2 a1 0

2 θ2 0 a2 0

3 θ3 0 a3 0

The dynamic equations are derived using the Lagrangian

formalism (Fu et al., 1987), which leads to the compact

dynamic equation (2). In this equation M is the mass

(inertia) matrix; C is the vector of coriolis, centrifugal, and

gyroscopic terms; G is the vector of gravitational terms; and
Q is the vector of the three joint torques.

M q q̈C q , q̇  G q =Q (2)

3. TRAJECTORY OPTIMIZATION

The trajectory optimization is performed using the gradient

based optimal control theory (Kirk, 1970, pp.184-209, 236-

240, 330-343). Gradient based optimization algorithms suffer

from sticking to local optimums, especially when the

dimension of vectors to be optimized is large. In trajectory

optimization problems the dimension of vectors that represent

the whole trajectory happen to be quite large. In order to cope

with this problem it is a common approach to represent

trajectories with parametrized polynomials which satisfy the

initial and final position requirements. Cubic splines are

widely used for this purpose (Bobrow et al., 2001; Chettibi et

al, 2004; Garg et al., 2002; Saramago et al., 1998). Once the

trajectories are represented by a small number of spline

parameters, the trajectory optimization problem is reduced to

optimizing the parameters with respect to a given objective

function. Application of non-gradient based optimization

algorithms, such as genetic algorithms, is also common to be

used with such reduced representation of trajectories. Garg et

al. (2002) reduce the problem of trajectory optimization for a

two link manipulator to optimizing only two parameters with

genetic algorithms.

With polynomial representations trajectories are prisoned to a

limited search space defined by the structure of the

polynomial. The most optimistic solution of those approaches

is the best solution in the space represented by the structure

of the polynomial. If it is not desired to sacrifice the freedom

of the trajectory, it is not proper to adopt reduced

representations of trajectories based on polynomial

parameters. The attempt in this paper is to utilize an almost

full representation of trajectory, in order to access a wide

range of solution space for optimization. An almost full

trajectory representation necessitates a large number of

unknowns to be optimized. In this paper, the trajectory is

represented with 51 actual joint angle values (or tip point

coordinates) which makes up to 152 parameters. This size of

parameters makes it difficult to be handled by non-gradient

based optimization algorithms. For example, the coding of a

large input vector leads to too large chromosomes for genetic

algorithms. Moreover, in evolutionary optimizations, the

parameters are optimized independently. Therefore, they may

lead to non-smooth (non-continuous) solution sets if the

parameters optimized are one to one trajectory values (as it is

the case here), rather than auxiliary variables representing the

trajectory (as it is the case in cubic spline representations). As

a result, gradient based optimization is more proper from the

stand point of producing analytical solutions with high

dimensional one to one trajectory representations.

However, how to come over the problem of sticking to local

optimums then? The approach here attempts to utilize

gradient based optimization using the optimal control theory.

The problem of local optimality is intended to be overcome

by objective function modification in different epochs of

gradient based optimization. In the following the formulation

for optimal control, the objective function modification, and

optimization results are presented. In Section 4, the optimal

trajectories are processed and an interpolating RBFNN is

constructed to produce near-optimal trajectories for any given

initial and final point positions.

3.1 State Space Representation and Hamiltonian

Formulation of Three Joint Leg System

In a robotic manipulator the actual inputs to the system are

the actuator forces and torques. For the three joint leg system

the actual inputs are the three joint torques,  Q . However, if

Fig. 1. Three joint robot leg: Reference frames and joint

variables.

)(
1
b

u
r

)(
3
b

u
r

(
2
b

u
r

Ψ

)0(
1u
r

)0(
3u
r

)1(
2u
r

)1(
3

u
r

)0(
2

u
r

)1(
1u
r

)2(
1
u
r

)2(
2u
r

)2(
3u
r

)3(
1u
r

)3(
2u
r

)3(
3u
r

a1 a2

a3

θ1

θ2

θ3

O0

O1

O3

O2

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

1704

the aim is trajectory optimization, some auxiliary control

variables can be chosen as the input, and the actual torques

can be calculated using these (Frangos et al., 2001).

Following this approach the auxiliary variables, namely the

inputs to the system, are chosen to be the angular

accelerations of the joints, ̈ . After these are determined

the actual joint torques can be calculated using (2). There are

three kinds of requirements in the formulation: system

dynamics, initial and final state conditions, and joint angle

constraints. In handling these requirements the approaches in

(Kirk, 1970) are followed. Initial state conditions are imposed

in the initialization of the optimization; the final state

conditions are imposed in the objective function as a penalty

term; joint angle constraints are imposed using a

supplementary state variable, named as the constraint-state;

and the system dynamics are imposed in the dynamic

equations of the state variables. There is no restriction on the

control input. The states are of three groups: the joint angles

 ; the joint velocities ̇ ; and a constraint-state. The
state and input vectors of the overall system are given in (3).

Following the notation of Kirk (1970) the system dynamics

can be written as in (4).

x=[
x q

x q̇

x c
]=[

1

2

3

̇
1

̇2

̇
3

xc

]=[
x1
x
2

x 3

x 4

x5
x
6

x
7

] u t =[
̈1t 

̈2t 

̈
3
t ] (3)

̇x=a xt  ,u t  , t  (4)

The state derivatives are defined in (5). The seventh state is

the constraint-state whose dynamics is defined by the

function f c xt  . There are two kinds of constraints on the
joint angles: the ones imposed by the mechanical

construction of the joints, and the one that limits the tip point

from going under the ground level. These constraints are

given in (6), where t1a=30
0; t1b=150

0; t2a=0
0; t2b=150

0; t3a=-

1500; t3b=-30
0; and the ground level is taken to be zg=-9 cm.

ẋ1t =a1 x t  ,u t  , t =̇1= x4

ẋ2t =a2x t  ,ut  , t =̇2=x5

ẋ
3
t =a

3
 x t ,u t  , t =̇

3
= x

6

ẋ
4
t =a

4
x t  ,ut , t =̈

1
=u

1

ẋ
5
t =a

5
 x t  ,u t  , t =̈

2
=u

2

ẋ
6
t =a

6
x t ,u t  , t =̈

3
=u

3

ẋ
7
t =a

7
x t ,u t  , t = f

c
x t 

̇x=[
̇x q

̇x q̇

ẋ c
]=[

xq̇
u

f
c
x t ] (5)

t 1a1t 1b
t 2a2t 2b
t 3a3t 3b
p z=�Sa1 S 1a 2S 1C 2a3 S 1C 23

Ca2S 2a3 S 23z g

 (6)

Based on these constraints the seven f functions in (7) are

determined, all of which should be greater than 0 in order the

constraints to be satisfied. The dynamics of the constraint-

state is defined as given in (8). The  function used in (8) is

given in (9).

f 1xt  , t =1�t 1a0

f 2xt  ,t =t1b�10

f 3xt  , t =2�t 2a0

f 4x t  ,t =t 2b�20

f 5xt  , t =3�t3a0

f 6xt , t =t 3b�30

f 7xt , t =1000  p z�zg0

 (7)

ẋ ct = f c x t =∑
i=1

7

[f i xt ]
2� f i (8)

� f i={0, for f ix t  , t 0

1, for f ix t  , t 0} for i=1,2,...7 (9)

The initial and final conditions for the constraint-state are set

to 0. Since the  function is positive when the constraint is

not satisfied and zero when satisfied, the derivative of the

constraint-state happens to be either positive (if any of the

constraints is not satisfied) or zero. The conditions that the

initial and final values are zero, and the derivative is non-

negative force the constraint-state to remain zero throughout

the protraction period. In this way all the seven constraints in

(7) are satisfied.

It is a common approach to use the integral of torque squares

as an index of energy dissipation in the actuators of robotic

manipulators (Bobrow et al., 2001; Garg et al., 2002; Liu et

al., 2000). The torque vector of the three joint leg system is

given in (10). Combining the torque square integration with

the final state conditions leads to the objective function in

(11), for which again the notation of Kirk (1970) is followed.

The optimization problem can be stated as in (12). This leads

to a two point boundary value problem in which the state and

control variables are not constrained by any boundaries, the

final time tf is fixed, and xt f  is free (in fact it is not free,
but it can be considered as free in the formulation since the

requirement is imposed in the objective function by
h x t f  ,t f ).

Q t = Q xt  ,u t = Q t , ̇t  ,̈ t 

= M q ̈qC  q , ̇qG q 
 (10)

J u =h xt f  ,t f J s x s ,u 

=h xt f  , t f ∫
t0

t f

g  x t  ,u t  , t dt

=x t f � xtf 
T D hxt f � x tf 

∫
t 0

t f

Q x t  ,u t 
T D g

Q x t  ,u t dt

 (11)

Minimize J u 
subject to

̇x t =a  x t  ,u t  , t 

xt o=xo

 (12)

Following the optimal control approach (Kirk, 1970), the

Hamiltonian function can be given as in (13), where pt 
corresponds to the costate vector.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

1705

H  x t  ,u t  , p t  , t 

=g xt  ,u t  , t p t 
T
a x t  ,u t  , t 

 (13)

The necessary and boundary conditions for an optimal

solution can be written as follows:

Necessary conditions for optimality:

̇x
∗
t =a x

∗
t  ,u

∗
t  , t  (14)

̇p
∗ t =

�∂ H

∂x
 x

∗ t  ,u
∗ t  , p

∗t  , t  (15)

0=
∂H
∂u

x
∗t  ,u

∗ t  , p
∗t  , t  (16)

Boundary conditions:

xt 0=x0 (17)

pt f =
∂h
∂x

xt f
 (18)

The first two equations of the necessary conditions make up

two differential equations whose initial and final conditions

are given by the boundary conditions equations. The

trajectory of input vector is approximated with a dense

discretization of 51 instants, which results in quite a high

dimensional optimization input of 3×51 length. Starting with

an initial input trajectory, namely 51 values of the vector

u t  for the discretized instances, the state and costate
equations can be solved numerically, by forward and reverse

integrations, respectively. The third equation of necessary

conditions is in fact nothing but the gradient of the objective

function with respect to the input vector. Therefore, u t  can
be updated in the negative direction of this gradient in order

to minimize the objective function, as in (19), where i stands

for the iteration number. After some iteration the optimal

u t  trajectory, which makes the third necessary condition as

close as possible to 0, can be achieved. This technique is

called “the method of steepest descent for two-point

boundary-value problems” (Kirk, 1970). The initial u t 
trajectory in this work is taken to be a zero matrix of 3×51

dimension. The value of α in (19) is determined by a one-

dimensional search in every step. The optimization is

terminated when the difference between two successive

objective functions is less than 0.01.

u
i1 

t k =u
i 
t k �

∂H
∂u

t k  ,

t k= k�1
t f

50
, k=1,2 , ... ,51

 (19)

3.2 Optimization with Objective Function Modification

In the objective function of (11), there are two terms,

respectively related to final state conditions and energy

integration. These terms are weighted by the constant

matrices of Dh and D g , respectively. These two are taken to

be diagonal matrices as in (20).

Table 2. Sequential values of the weights of the objective

function for "objective function modified optimization"

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

dh 1 10 1 10 1 10

dg 10 1 10 1 100 1

Dh=dh[
500 0 0 0 0 0 0

0 500 0 0 0 0 0

0 0 500 0 0 0 0

0 0 0 20 0 0 0

0 0 0 0 20 0 0

0 0 0 0 0 20 0

0 0 0 0 0 0 10
7

] Dg=d g[10
6

0 0

0 10
6

0

0 0 10
6]

 (20)

The elements of the Dh and D g matrices are arranged to

have comparable values in the two terms of the objective

function. The entry corresponding to the constraint-state in

the Dh matrix is chosen to be very large in order to guarantee

the satisfaction of the constraints. The dh and dg
 values

determine the relative strength of the two terms with respect

to each other. Choosing a large dh and a small dg
 results in a

better achievement of final state requirements with little

decrease in total energy dissipation; while a small dh and a

large dg
 results in a big decrease of total energy dissipation

with non-achievement of final state requirements. Therefore,

there is a trade-off between the two considerations

represented by these two terms. Another problem is that,

whatever values these two parameters are assigned, the

optimization stops in a local optimum which does not give a

satisfactory trajectory. For example, even though dh is chosen

very large compared to dg the optimization stops at a local

minimum in which the tip point is not brought to the desired

tip point position. Therefore, the problem is of two fold:

sticking to local optimums, and trade-off between the two

terms.

The approach adopted to overcome these two problems is to

make optimizations with changing the dh and dg parameters

sequentially. In this way the local optimum is jumped over by

the change of objective function, and the two terms are

enforced sequentially one after the other. The steps of

optimization with objective function modification are given

as follows:

Step 1:

i) Initialize u t k =0 for k=0,1 ,... ,51.

ii) dh=dh,1; dg=dg,1.

iii) Perform optimization.

iv) Output u t k =u t k 
[2]

for k=0,1 , ... ,51.

Step i:

v) Initialize u t k =u t k 
[i�1]

for k=0,1 , ... ,51.

vi) dh=dh,i; dg=dg,i.

vii)Perform optimization.

viii)Output u t k =u t k 
[i]

for k=0,1 ,... ,51.

for i=2,...,6.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

1706

The changing values of dh and dg are given in Table 2. In

Steps 1-4, a regular change is followed. In the step before the

last, the jump of dg is increased to give a last impulse in the

direction of increased dg, before the actual values of the last

step are applied.

For the protraction movement it is possible to define a region

of departure in the backward of the leg, and a region of

arrival in the forward. These regions are determined to be

two squares whose corners are given as [(8,-7,-9);(12,-7,-

9);(12,-3,-9);(8,-3,-9)] and [(8,3,-9);(12,3,-9);(12,7,-9);(8,7,-

9)] (cm), respectively, with respect to the body frame. The tip

point is assumed to depart from a point in the square of

departure to a point in the square of arrival. The ground level

is taken to be -9 cm in the z-direction. Nine points from each

square are chosen as the sample positions for optimization.

Eight of these are distributed homogeneously throughout the

periphery of the square, and the remaining is taken to be the

centre point. As a result, 9× 9=81 initial-final position pairs

are used in the optimization; therefore, a total of 81 optimal

trajectories are obtained to represent the protraction from the

square of departure to the square of arrival. These trajectories

are used in Section 4 to interpolate a trajectory for any given

initial-final position points in those squares. The set of the

initial and final point positions used for optimization are

given in Table 3.

3.3 Comparative Results of “Optimization With Single

Objective Function” and “Optimization With Objective

Function Modification”

In Fig. 2 the joint angles, velocities, and accelerations

resulted from the 81 optimizations with “single objective

function” are given in the first three rows. The single

objective function corresponds to only Step 6 of Table 2. The

last row in Fig. 2 shows the tip point position errors between

the actual tip point and the desired final tip point positions.

Among the results in Fig. 2, a few of the optimizations ended

with feasible trajectories, which came close to the desired

final tip point position with a movement of lifting up the tip

point in the start. Some of these feasible ones are shown by

arrows in some of the figures in Fig. 2. Most of the remaining

optimizations created infeasible trajectories which cannot be

considered as a proper protraction at all. Not only the

infeasible ones but also the few feasible trajectories are the

local minimums of the single objective function. A much

more improvement of those trajectories is possible with the

objective function modified optimization.

In Fig. 3 the joint angles, velocities, accelerations, and tip

point position errors resulted from the 81 optimizations with

“objective function modification” are given. It is immediately

realized how structured the figures are compared to the ones

in Fig. 2. In 79 of the results given in Fig. 3, the optimization

was successful to create a proper protraction: In the starting

phase the leg is first retracted towards the body with raising

the tip point above the ground level; in the middle phase the

protraction towards the front is maintained; and in the end

phase the leg is extracted carrying the tip point towards the

desired final position.

Table 3. Set of initial and final point positions used for

optimization.

Set of Initial Positions (m) Set of Final Positions (m)

x(b) y(b) z(b)

0.08 -0.03 -0.09

0.08 -0.05 -0.09

0.08 -0.07 -0.09

0.10 -0.03 -0.09

0.10 -0.05 -0.09

0.10 -0.07 -0.09

0.12 -0.03 -0.09

0.12 -0.05 -0.09

0.12 -0.07 -0.09

x(b) y(b) z(b)

0.08 0.03 -0.09

0.08 0.05 -0.09

0.08 0.07 -0.09

0.10 0.03 -0.09

0.10 0.05 -0.09

0.10 0.07 -0.09

0.12 0.03 -0.09

0.12 0.05 -0.09

0.12 0.07 -0.09

Among the 81 optimizations in Fig. 3, only two of them

resulted in a different behaviour. These two are shown with

arrows on the figures. In these two, the optimization did not

manage to bring the tip point to the desired final position.

A comparison of the two optimizations regarding to cost

minimization is given in Fig. 4. This figure shows the

improvement for an infeasible case with “single objective

function optimization”. The fist row figures show the leg

movement from different sights for the optimization result

with “single objective function”. The second row figures

show the leg movement for the optimization result with

“objective function modification”. It is clear that the

movement on the second row figures corresponds to a proper

protraction. The figures in the last row of Fig. 4 show the

main cost function values (nominal cost), whose parameters

are given by the Step 6 of Table 2. The dashed lines show the

values for “optimization with single objective function”, and

the solid lines show the values for “optimization with

modified objective function”. The most left one of these

depict the change of the main objective function (nominal

cost). The ultimate aim of both optimizations is to minimize

this function. As expected the cost decreases continuously in

the case of “optimization with single objective function”. In

the case of “optimization with objective function

modification” the nominal cost increases and decreases with

the modifications in the cost function. However, ultimately

when the nominal cost function of Step 6 is used, the result is

considerably lower than the one with “optimization with

single objective function”. The middle figure in the row

depicts the value of h x t f  ,t f  , which is related with the
achievement of final state requirements with the dh value in

Step 6. A lower value of this function means that the final

state requirements are attained better. It is seen that this value

is lower in the “optimization with objective function

modification” compared to the case of “optimization with

single objective function”. The right most figure in the

bottom row of Fig. 4 depicts the value of

∫
t 0

t f

g x t  ,u t  , t dt which signifies the sum of torque

squares with the dg value in Step 6. The difference for this

value between the two cases is striking. In the case of

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

1707

“optimization with objective function modification” it is

possible to observe a step by step decrease of this value to

much more lower values compared to the one in

“optimization with single objective function”.

The “optimization with single objective function” suffers

from the local optimums which mostly lead to infeasible

trajectories. With the “optimization with objective function

modification” it is possible to jump over these local

optimums and generate more feasible and efficient

trajectories. With the six steps and the associated cost

parameters mentioned in Table 2, the “optimization with

objective function modification” was successful to generate

feasible and more efficient trajectories for the 79 cases of the

81 optimizations. These results, however, are sure not the

global optimums, since the optimization is still based on the

gradient information. A problem related to “optimization

with objective function modification” is the long time

required for the termination. As can be seen in Fig. 4

“optimization with objective function modification”

necessitates around 200 iterations which is quite much for a

gradient based optimization. However, the improvement is

considerable and leads to satisfactory results to be used in

controller design. The long time of termination did not create

a problem for this work since the optimization is performed

only to create a training set to be used in the design of

protraction controller.

4. GENERALIZATION OF OPTIMAL TRAJECTORIES

WITH INTERPOLATION

4.1 Manipulation of Optimal Trajectories

The optimization is capable of decreasing the torque square

sum with approaching the tip point to the final position;

however this approaching does not result in exact placement

of the tip point to the desired final position. Most of the time

slight, but sometimes considerable, position differences occur

between the actual and desired final tip point positions. For

the interpolation purposes, this is an improper situation

regarding to the data set. In order to overcome this final

position deviation, the optimized trajectories are modified to

bring the final tip points to the desired positions. This is

performed by adding the difference vector between the actual

and desired final positions to all position vectors, multiplied

by a weight decreasing towards the start of trajectory (21).

This manipulation effects the most successful optimizations

in a negligible amount. However, the less successful

optimizations, in which the final point position is not close to

the desired position, are manipulated in a considerable

amount. The effect of optimal trajectory manipulation is

shown in Fig. 6 for two sample initial-final position pairs.

Pmod t k =Popt k  P f�Pmod t 51
k

51
,

k=0,1,2 , ...,51.

 (21)

Fig. 2. Results of "optimization with single objective

function". Rows from top to bottom: Joint angles, joint

angle velocities, joint angle accelerations, tip point position

errors.

Fig. 3. Results of “optimization with objective function

modification". Rows from top to bottom: Joint angles, joint

angle velocities, joint angle accelerations, tip point position

errors.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

1708

4.2 RBFNN for Interpolation:

In order to generalize the optimal trajectories for the

continuous domain of anterior and posterior tip point position

regions, it is necessary to construct an interpolation

algorithm, which generates the trajectory for any given initial

and final tip point positions. For this purpose a RBFNN with

pure-linear output neurons is a proper choice (Fig. 5). The

inputs of this interpolating network are the coordinates of the

initial and final tip point positions, which makes up to 6 input

variables. The outputs are the tip point positions

corresponding to the 51 discretized instances throughout the

protraction period, which makes up to a total of 153 output

variables. The inner neurons in an RBFNN correspond to the

representatives of clusters of the input space. The weights

between the input and inner neurons determine the location of

the representatives in the input space. Given any input, its

distance to the representatives are calculated, and the inner

neurons are activated with an inverse proportion to this

distance. Namely, the representative which is closest to the

input is activated the most. The weights between the inner

and output neurons generate the output vectors corresponding

to the representative neurons. Since these weights are

multiplied with the activation of inner neurons, the output is a

weighted sum of the effect of all representatives.

Training of the RBFNN according to the optimized

trajectories is a matter of generating the inner neurons,

namely the cluster representatives, and the weights

corresponding to those. The number of neurons to be

generated is a matter of design preference, in which data

storage capabilities should be considered. In this work the

function, newrb(), in the neural network toolbox of

MATLAB is utilized for training the RBFNN with 30 inner

neurons. The output values of the RBFNN are given in (22).

Two trajectories produced by the interpolation of the RBFNN

for two sample initial-final position points from the training

set are shown in Fig. 6.

[output]
j
=∑

n=1

30

w
nj
a
n
=∑

n=1

30

w
nj
gaussian ∑

i=1

6

∣[input]
i
�c

in
∣

i=1,2 ,... ,6 ; n=1,2 , ... ,30 ; j=1,2 , ... ,153

(22)

In Fig. 7, three slides are given to show the Robot-EA308

while its right middle leg is protracting following the path

generated by the controller. The left most figure shows how

the leg is pulled towards the body while the tip point is raised

up. In the middle and right-most figures the whole protraction

can be seen from different perspectives. These results, and

also the joint angle trajectories in Fig. 3, reveal that the

energy optimal protraction has the following character: The

leg is pulled towards the body while the tip point is raised up;

then it is stretched out while the tip point is going down to

approach to the destination. This behaviour is quite different

from the conventionally adapted protraction movements in

which the leg is first stretched out while raising the tip point,

and then pulled towards the body while the tip point is

approached down to the destination.

6. CONCLUSIONS

In this work the protraction movement of a three-joint robot

leg is handled. In multi legged system applications mostly

some limited protraction behaviours are adopted based on

intuitive feeling of physical behaviour. Those applications

limit the freedom of leg placements since the system can use

only the preplanned structures. Moreover, mostly the adopted

behaviours are not optimized considering energy

consumption. The optimization presented in this work creates

energy optimal trajectories for any given initial-final tip point

position pairs. With the generalization of the optimized

trajectories it is shown that the system does not need to be

limited to some specific protraction behaviours, but it can

handle any protraction once the initial-final tip point

positions are given in the range of design. The result of this

work shows that an energy optimal protraction is

characterized by pulling the leg towards the body, rather than

stretching out, in the rising phase of the movement.

The optimization is based on the gradient descent algorithm,

with the Hamiltonian formulation for optimal control

problems. The conventional application suffers from sticking

to infeasible and inefficient local optimums. To overcome

this, the approach of “optimization with objective function

modification” is introduced. The results reveal that this

Fig. 4. Results of "optimization with single objective

function" (the first row and the dashed lines in the last row)

and "optimization with objective function modification" (the

second row and solid lines in the last row). (Initial tip point

position: [12, -7, -9] (cm); final tip point position: [8, 2, -9]

(cm).)

Fig. 5. Trajectory interpolating RBFNN.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

1709

method is successful to overcome both feasible and infeasible

local optimum solutions of conventional “optimization with

single objective function”. The optimal trajectories are

generalized to a continuous space by interpolation using

RBFNN.

For the optimization algorithm a considerable drawback is

the long duration for the termination. This is because a full

optimization is performed for every step, namely for all the

objective functions described by the steps. This was not a

problem for the work presented here, because the

optimization is performed once and the recorded results are

used in generalizations. However, this may be a significant

problem in some applications in which fast responses of

optimization are required. The improvement of the idea of

“optimization with modified objective function” in the

direction of speeding up the algorithm remains as a future

work. A crucial attempt may be to modify the objective

function not in steps of sequential optimizations, but

continuously throughout a single optimization. This might be

performed by some intelligent and continuous modification

of the objective function based on the values of a nominal

objective function and its gradient.

REFERENCES

Bobrow, J.E., Martin, B., Sohl, G., Wang, E.C., Park, F.C,

Kim, K. (2001). Optimal robot motions for physical

criteria. Journal of Robotic Systems, 18 (12), 785-792.

Chettibi, T., Lehtihet, H.E., Haddad, M., and Hanchi, S.

(2004). Minimum cost trajectory planning for industrial

robots. European Journal of Mechanics A/Solids, 23,

703-715.

Cruse, H., Kindermann, T., Schumm, M., Dean, J. and

Schmitz, J. (1998). Walknet-a biologically inspired

network to control six legged walking. Neural Networks,

11,1435-1447.

Dürr, V., Schmitz, J., and Cruse, H. (2004). Behaviour-based

modeling of hexapod locomotion: linking biology and

technical application. Arthropod Structure &

Development, 33, 237-250.

Erden, M.S. and Leblebicioğlu, K, (2004a). Fuzzy controller

design for a three joint robot leg in protraction phase - an

optimal behavior inspired fuzzy controller design. In:

Proceedings of the First International Conference On

Informatics In Control, Automation And Robotics,

Setúbal, Portugal, 2, 302-306.

Erden, M.S., Leblebicioğlu, K. and Halıcı, U. (2004b). Multi-

agent system based fuzzy controller design with genetic

tuning for a service mobile manipulator robot in the

hand-over task. Journal of Intelligent and Robotic

Systems, 38, 287-306.

Erden, M.S. and Leblebicioğlu, K. (2007). Analysis of wave

gaits for energy efficiency. Autonomous Robots, 23, 213-

230.

Espenschied, K.S., Quinn, R.D., Beer, R.D. and Chiel, H.J.

(1996). Biologically based distributed control and local

reflexes improve rough terrain locomotion in a hexapod

robot. Robotics and Autonomous Systems, 18, 59-64.

Ferrell, C. (1995). A comparison of three insect-inspired

locomotion controllers. Robotics and Autonomous

Systems, 16,135-159.

Frangos, C. and Yavin, Y. (2001). Control of a three-link

manipulator with inequality constraints on the

trajectories of its joints. Computers and Mathematics

with Applications, 41, 1562-1574.

Fu, K.S., Gonzalez, R.C. and Lee, C.S.G. (1987). Robotics,

McGraw-Hill, Inc.

Garg, D.P. and Kumar, M. (2002). Optimization techniques

applied to multiple manipulators for path planning and

torque minimization. Engineering Applications of

Intelligence, 15, 241-252.

Huang, Q.J. and Nomani, K. (2003). Humanitarian mine

detecting six-legged walking robot and hybrid neuro

walking control with position/force control.

Mechatronics, 13, 773-790.

Ilg, W. and Bernes, K. (1995). A learning architecture based

on reinforcement learning for adaptive control of the

walking machine LAURON. Robotics and Autonomous

Systems, 15, 321-334.

Ilg, W., Bernes, K., Mühlfriedel, and T., Dillman, R. (1997).

Hybrid learning concepts based on self-organizing neural

networks for adaptive control of walking machines.

Robotics and Autonomous Systems, 22, 317-327.

Kirk, D.E (1970). Optimal Control Theory – An Introduction,

Prentice-Hall Inc., Englewood Cliffs, New Jersey.

Liu, J.F. and Abdel-Malek, K. (2000). Robust control of

planar dual-arm cooperative manipulators. Robotics and

Computer-Integrated Manufacturing, 16 (2-3), 109-120.

Preumont, A., Alexandre, P., Doroftei, I. and Goffin, F.

(1997). A conceptual walking vehicle for planetory

exploration. Mechatronics, 7 (3), 287-296.

Saramago, S.F.P. and Stefen Jr., V. (1998). Optimization of

the trajectory planning of robot manipulators taking into

account the dynamics of the system. Mech. Mach.

Theory, 33 (7), 883-894.

Fig. 6. The trajectories produced as a result of the

interpolation with the RBFNN for two trained input of initial-

final tip point positions. (unit: m)

Fig. 7. Protraction of the right middle leg of robot EA308,

following the trajectory generated by the controller. The

initial and final tip point positions are [0.11, -0.06, -0.09] and

[0.11, 0.06, -0.09], respectively.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

1710

