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Abstract: In  this  paper  protraction  movement,  namely  stepping  ahead,  of  a  three  joint  robot  leg  is

optimized for energy efficiency for any given pair of initial-final tip point positions. For the optimization a

modified version of gradient  descent  based optimal  control  algorithm with  Hamiltonian formulation is

used.  The  objective  function  is  modified  in  steps  to  jump  over  the  infeasible  and  inefficient  local

optimums.  The results of 79 optimizations are used to construct a radial basis function neural network

(RBFNN)  in  order  to   interpolate  between  the  optimized  trajectories.  The  results  are  presented  and

discussed in the paper.

1. INTRODUCTION

Due to its advantages over wheeled and tracked systems on

uneven  terrains,  legged  locomotion  has  the  potential  to  be

applied in various fields (Preumont et al., 1997; Huang et al.,

2003).  A  disadvantage  of  legged  locomotion  is  its  high

energy consumption (Erden and Leblebicioğlu, 2007). During

walking, some of the legs are in swing phase for protraction.

The protracting legs do not contribute to lifting, but exist as

extra weights. The protraction movement carries the tip point

of the leg from a given posterior extreme position to a given

anterior  extreme  position.  Generating  this  movement

corresponds to generating proper traces of joint angles that

achieve the transfer of the tip point. The topic of this paper is

generation of the protraction movement in an energy optimal

way.

In the literature there are quite scarce studies which explicitly

deal with the protraction movement of robot legs. Ilg et al.

(1995, 1997) deal with application of reinforcement learning

for  the  power  stroke  (retraction)  and  return  stroke

(protraction)  of  a  robot  leg.  In  these  papers  the  focus  is

application  of  reinforcement  learning,  rather  than  the

efficiency  of  the  resulting  movements.  Cruse  et  al.  (1998)

describe a general control structure for protraction under the

subtitle of “control of the swing movement”. Similarly, Dürr

et al. (2004) explicitly mention protraction as one of the four

mechanically  uncoupled  swing  movements  of  robot  legs,

besides searching,  grasping, and grooming.  These last two

papers content with a description of very general, and in fact

similar, kinematic control models,  which aim to imitate the

biologically  inspired  movements  observed  in  insects.

However, the stress on the similarities of the mentioned four

movements by  Dürr et al. (2004) reveals the importance of

the control of such group of swing movements. This points to

the  need  of  a  generic  protraction  movement  generator

applicable to similar swing movements. Especially the reflex

movements  to  be  performed  when  the  robot  comes  across

unexpected  obstacles,  holes,  or  hills  (Espenschied  et  al.,

1996)  are  considerable  in  this  regard.  The  optimization

performed  in  this  paper  is  generalizable  to  any  similar

movement  once  the  initial-final  tip  point  positions  are

provided. Erden et al.  (2004a) presents a preliminary work

for the approach developed in this paper. 

Biological  observations  reveal  that  the  protraction  time  in

six-legged  insects  is  constant  regardless  of  the  speed  of

walking. Ferrell (1995) gives summaries of three models for

biologically inspired six legged locomotion. In two of these,

namely  in  the  Wilson  and  Pearson models,  it  is  explicitly

stated that the protraction time is constant. This is sense-full

since  there  is  no  power  load  on the  leg  during  the  swing

motion,  and  it  is  possible  to  protract  in  a  quite  short  and

constant  time.  Erden and Leblebicioğlu (2007) demonstrate

that the gaits with minimum protraction time are more energy

efficient.  In this paper efficiency corresponds to dissipation

of minimum energy in the three actuators during protraction.

Following the arguments of Erden and Leblebicioğlu (2007)

and  Ferrell  (1995)  the  protraction  time  is  taken  to  be  the

minimum applicable to the Robot-EA308  (Fig. 7), which is

1.5 seconds .   

2. THREE JOINT ROBOT LEG

A three  joint  robot  leg  can  be  considered  as  a  three  link

revolute  joint  (RRR)  manipulator  which  is  attached  to  a

stationary  base  (robot  body).  Therefore,  the  kinematic

modelling  and  derivation  of  dynamic  equations  can  be

performed  following  the  conventional  robotics  approaches

(Fu et  al.,  1987).  The kinematic  model  here  is  derived  by

defining  the  reference  frames  according  to  the  Denavit-

Hartenberg convention. In Fig. 1 a graphical representation of

a three joint robot leg is given,  with the attached reference

frames and corresponding joint variables.  In this  figure the
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body (b) and the zeroth (0) reference frames  are attached to

the  stationary  robot  body.  Therefore  they  can  be  both

considered as inertial frames. (It  is assumed throughout the

paper that motion of the body  is much more slower than the

motion of the leg during protraction. Therefore, the body is

assumed  to  be  stationary.)  The  Denavit-Hartenberg  link

parameters  based  on  Fig.  1  are  given  in  Table  1.  The

homogeneous transformation matrices between the body and

the zeroth frame, and between the sequential link frames can

be easily computed. In (1) the tip point position of the leg

with respect to the body frame is given.

[
px 

py 

p
z
]=[
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(1)

Table  1. Denavit-Hartenberg  link  parameters  for  the  three

joint robot leg.

Joint θi αi ai di

1 θ1 π/2 a1 0

2 θ2 0 a2 0

3 θ3 0 a3 0

The  dynamic  equations  are  derived  using  the  Lagrangian

formalism  (Fu  et  al.,  1987),  which  leads  to  the  compact

dynamic  equation  (2).  In  this  equation  M is  the  mass

(inertia)  matrix; C is  the vector of coriolis,  centrifugal,  and

gyroscopic terms; G is the vector of gravitational terms; and
Q is the vector of the three joint torques. 

M q q̈C q , q̇  G q =Q                    (2) 

3. TRAJECTORY OPTIMIZATION

The trajectory optimization is performed using the gradient

based optimal control theory (Kirk, 1970, pp.184-209, 236-

240, 330-343). Gradient based optimization algorithms suffer

from  sticking  to  local  optimums,  especially  when  the

dimension of vectors to be optimized is large. In trajectory

optimization problems the dimension of vectors that represent

the whole trajectory happen to be quite large. In order to cope

with  this  problem  it  is  a  common  approach  to  represent

trajectories with parametrized polynomials which satisfy the

initial  and  final  position  requirements.  Cubic  splines  are

widely used for this purpose (Bobrow et al., 2001; Chettibi et

al, 2004; Garg et al., 2002; Saramago et al., 1998). Once the

trajectories  are  represented  by  a  small  number  of  spline

parameters, the trajectory optimization problem is reduced to

optimizing the parameters with respect to a given objective

function.  Application  of  non-gradient  based  optimization

algorithms, such as genetic algorithms, is also common to be

used with such reduced representation of trajectories. Garg et

al. (2002) reduce the problem of trajectory optimization for a

two link manipulator to optimizing only two parameters with

genetic algorithms.  

With polynomial representations trajectories are prisoned to a

limited  search  space  defined  by  the  structure  of  the

polynomial. The most optimistic solution of those approaches

is the best solution in the  space represented by the structure

of the polynomial. If it is not desired to sacrifice the freedom

of  the  trajectory,  it  is  not  proper  to  adopt  reduced

representations  of  trajectories  based  on  polynomial

parameters. The attempt in this paper is to utilize an almost

full  representation  of trajectory,  in  order  to  access  a  wide

range  of  solution  space  for  optimization.  An  almost  full

trajectory  representation  necessitates  a large  number  of

unknowns  to  be  optimized.  In  this  paper,  the  trajectory  is

represented  with  51 actual  joint  angle  values  (or  tip  point

coordinates) which makes up to 152 parameters. This size of

parameters makes it difficult to be handled by non-gradient

based optimization algorithms. For example, the coding of a

large input vector leads to too large chromosomes for genetic

algorithms.  Moreover,  in  evolutionary  optimizations,  the

parameters are optimized independently. Therefore, they may

lead  to  non-smooth  (non-continuous)  solution  sets  if  the

parameters optimized are one to one trajectory values (as it is

the case here), rather than auxiliary variables representing the

trajectory (as it is the case in cubic spline representations). As

a result, gradient based optimization is more proper from the

stand  point  of  producing  analytical  solutions  with  high

dimensional one to one trajectory representations. 

However, how to come over the problem of sticking to local

optimums  then?  The  approach  here  attempts  to  utilize

gradient based optimization using the optimal control theory.

The problem of local optimality is intended to be overcome

by  objective  function  modification  in  different  epochs  of

gradient based optimization. In the following the formulation

for optimal control, the objective function modification, and

optimization results are presented. In Section 4, the optimal

trajectories  are  processed  and  an  interpolating  RBFNN  is

constructed to produce near-optimal trajectories for any given

initial and final point positions.

3.1 State Space Representation and Hamiltonian

Formulation of  Three Joint Leg System       

In a robotic manipulator the actual inputs to the system are

the actuator forces and torques. For the three joint leg system

the actual inputs are the three joint torques,  Q . However, if

Fig. 1. Three joint robot leg: Reference frames and joint

variables. 
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the  aim  is  trajectory  optimization,  some  auxiliary  control

variables can be chosen as the input, and the actual torques

can  be  calculated  using  these  (Frangos  et  al.,  2001).

Following this approach the auxiliary variables, namely the

inputs  to  the  system,  are  chosen  to  be  the  angular

accelerations  of the  joints, ̈ .  After  these  are  determined

the actual joint torques can be calculated using (2). There are

three  kinds  of  requirements  in  the  formulation:  system

dynamics,  initial  and final  state  conditions,  and joint angle

constraints. In handling these requirements the approaches in

(Kirk, 1970) are followed. Initial state conditions are imposed

in  the  initialization  of  the  optimization;  the  final  state

conditions are imposed in the objective function as a penalty

term;  joint  angle  constraints  are  imposed  using  a

supplementary state variable, named as the constraint-state;

and  the  system  dynamics  are  imposed  in  the  dynamic

equations of the state variables. There is no restriction on the

control input. The states are of three groups: the joint angles

 ;  the  joint  velocities  ̇ ;  and a  constraint-state.   The
state and input vectors of the overall system are given in (3).

Following the notation of Kirk (1970) the system dynamics

can be written as in (4).

x=[
x q

x q̇

x c
]=[

1

2

3

̇
1

̇2

̇
3

xc

]=[
x1
x
2

x 3

x 4

x5
x
6

x
7

]      u t =[
̈1t 

̈2t 

̈
3
t ]              (3)

̇x=a xt  ,u t  , t                            (4)

The state derivatives are defined in (5).  The seventh state is

the  constraint-state  whose  dynamics  is  defined  by  the

function f c xt  . There are two kinds of constraints on the
joint  angles:  the  ones  imposed  by  the  mechanical

construction of the joints, and the one that limits the tip point

from going  under  the  ground  level.  These  constraints  are

given in (6), where  t1a=30
0; t1b=150

0;  t2a=0
0; t2b=150

0;  t3a=-

1500; t3b=-30
0; and the ground level is taken to be zg=-9 cm.

ẋ1t =a1 x t  ,u t  , t =̇1= x4

ẋ2t =a2x t  ,ut  , t =̇2=x5

ẋ
3
t =a

3
 x t ,u t  , t =̇

3
= x

6

ẋ
4
t =a

4
x t  ,ut , t =̈

1
=u

1

ẋ
5
t =a

5
 x t  ,u t  , t =̈

2
=u

2

ẋ
6
t =a

6
x t ,u t  , t =̈

3
=u

3

ẋ
7
t =a

7
x t ,u t  , t = f

c
x t 

̇x=[
̇x q

̇x q̇

ẋ c
]=[

xq̇
u

f
c
x t ]      (5)  

t 1a1t 1b
t 2a2t 2b
t 3a3t 3b
p z=�Sa1 S 1a 2S 1C 2a3 S 1C 23

Ca2S 2a3 S 23z g

       (6)

Based on these constraints  the seven  f  functions in (7) are

determined, all of which should be greater than 0 in order the

constraints  to be satisfied.  The dynamics  of the constraint-

state is defined as given in (8). The  function used in (8) is

given in (9).

f 1xt  , t =1�t 1a0

f 2xt  ,t =t1b�10

f 3xt  , t =2�t 2a0

f 4x t  ,t =t 2b�20

f 5xt  , t =3�t3a0

f 6xt , t =t 3b�30

f 7xt , t =1000  p z�zg0

                 (7)

ẋ ct = f c x t =∑
i=1

7

[ f i xt ]
2� f i           (8)

� f i={0, for f ix t  , t 0

1, for f ix t  , t 0} for i=1,2,...7     (9)

The initial and final conditions for the constraint-state are set

to  0. Since the  function is positive when the constraint is

not  satisfied  and  zero when  satisfied,  the derivative  of the

constraint-state  happens to be either  positive (if  any of the

constraints  is not satisfied) or zero. The conditions that the

initial  and final  values  are zero,  and the  derivative is  non-

negative force the constraint-state to remain zero throughout

the protraction period. In this way all the seven constraints in

(7) are satisfied.

It is a common approach to use the integral of torque squares

as an index of energy dissipation in the actuators of robotic

manipulators  (Bobrow et al., 2001; Garg et al., 2002;  Liu et

al., 2000 ). The torque vector of the three joint leg system is

given in (10). Combining the torque square integration with

the final  state  conditions  leads to the objective  function in

(11), for which again the notation of Kirk (1970) is followed.

The optimization problem can be stated as in (12). This leads

to a two point boundary value problem in which the state and

control variables are not constrained by any boundaries, the

final time  tf is fixed, and xt f  is free (in fact it is not free,
but it can be considered as free in the formulation since the

requirement  is  imposed  in  the  objective  function  by
h x t f  ,t f  ). 

Q t = Q xt  ,u t = Q t , ̇t  ,̈ t 

= M q ̈qC  q , ̇qG q 
         (10)

J u =h xt f  ,t f J s x s ,u 

=h xt f  , t f ∫
t0

t f

g  x t  ,u t  , t dt

=x t f � xtf 
T D hxt f � x tf 

∫
t 0

t f

Q x t  ,u t 
T D g

Q x t  ,u t dt

   (11)

Minimize J u 
subject to

̇x t =a  x t  ,u t  , t 

xt o=xo

              (12)

Following  the  optimal  control  approach  (Kirk,  1970),  the

Hamiltonian  function  can be given as  in  (13),  where pt 
corresponds to the costate vector.
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H  x t  ,u t  , p t  , t 

=g xt  ,u t  , t p t 
T
a x t  ,u t  , t 

 (13)

The  necessary  and  boundary  conditions  for  an  optimal

solution can be written as follows:

Necessary conditions for optimality:

̇x
∗
t =a x

∗
t  ,u

∗
t  , t                   (14)

̇p
∗ t =

�∂ H

∂x
 x

∗ t  ,u
∗ t  , p

∗t  , t           (15)

0=
∂H
∂u

x
∗t  ,u

∗ t  , p
∗t  , t               (16)

Boundary conditions:

xt 0=x0                               (17)

pt f =
∂h
∂x

xt f
                        (18)

The first two equations  of the necessary conditions make up

two differential equations whose initial and final conditions

are  given  by  the  boundary  conditions  equations.  The

trajectory  of  input  vector   is  approximated  with  a  dense

discretization  of  51  instants,  which  results  in  quite  a  high

dimensional optimization input of 3×51 length. Starting with

an  initial  input  trajectory,  namely  51  values  of  the  vector

u t  for  the  discretized  instances, the  state  and  costate
equations can be solved numerically, by forward and reverse

integrations,  respectively.  The  third  equation  of  necessary

conditions is in fact nothing but the gradient of the objective

function with respect to the input vector. Therefore, u t  can
be updated in the negative direction of this gradient in order

to minimize the objective function, as in (19), where i stands

for  the  iteration  number.  After  some  iteration  the  optimal

u t  trajectory, which makes the third necessary condition as

close  as  possible  to  0,  can  be  achieved.  This  technique  is

called  “the  method  of  steepest  descent  for  two-point

boundary-value  problems”  (Kirk,  1970).  The  initial u t 
trajectory in this work is taken to be a zero matrix of 3×51

dimension. The value of  α in (19) is determined by a one-

dimensional  search  in  every  step.  The  optimization  is

terminated  when  the  difference  between  two  successive

objective functions is less than 0.01.

u
i1 

t k =u
i 
t k �

∂H
∂u

t k  ,

t k= k�1
t f

50
, k=1,2 , ... ,51

         (19)

3.2 Optimization with Objective Function Modification 

In  the  objective  function  of  (11),  there  are  two  terms,

respectively  related  to  final  state  conditions  and  energy

integration.  These  terms  are  weighted  by  the  constant

matrices of Dh and D g , respectively. These two are taken to

be diagonal matrices as in (20).

Table  2. Sequential  values  of the weights of the objective

function for "objective function modified optimization"

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

dh 1 10 1 10 1 10

dg 10 1 10 1 100 1

Dh=dh[
500 0 0 0 0 0 0

0 500 0 0 0 0 0

0 0 500 0 0 0 0

0 0 0 20 0 0 0

0 0 0 0 20 0 0

0 0 0 0 0 20 0

0 0 0 0 0 0 10
7

]   Dg=d g[10
6

0 0

0 10
6

0

0 0 10
6]

               (20)

The  elements  of  the Dh and  D g matrices  are  arranged  to

have  comparable  values  in  the  two  terms  of  the  objective

function.  The entry corresponding to the constraint-state  in

the Dh matrix is chosen to be very large in order to guarantee

the  satisfaction  of  the  constraints.  The  dh and  dg
 values

determine the relative strength of the two terms with respect

to each other. Choosing a large dh and a small dg
 results in a

better  achievement  of  final  state  requirements  with  little

decrease in total energy dissipation; while  a small  dh and a

large  dg
 results in a big decrease of total energy dissipation

with non-achievement of final state requirements. Therefore,

there  is  a  trade-off  between  the  two  considerations

represented  by  these  two  terms.  Another  problem is  that,

whatever  values  these  two  parameters  are  assigned,  the

optimization stops in a local optimum which does not give a

satisfactory trajectory. For example, even though dh is chosen

very large compared to  dg the optimization stops at a local

minimum in which the tip point is not brought to the desired

tip  point  position.  Therefore,  the  problem is  of  two  fold:

sticking  to  local  optimums,  and  trade-off  between  the  two

terms.

The approach adopted to overcome these two problems is to

make optimizations with changing the  dh and  dg parameters

sequentially. In this way the local optimum is jumped over by

the  change  of  objective  function,  and  the  two  terms  are

enforced  sequentially  one  after  the  other.  The  steps  of

optimization with objective function modification are given

as follows:

Step 1:  

i) Initialize  u t k =0 for k=0,1 ,... ,51.

ii) dh=dh,1; dg=dg,1.

iii) Perform optimization.

iv) Output u t k =u t k 
[2]

for k=0,1 , ... ,51.

Step i:  

v) Initialize  u t k =u t k 
[i�1]

for k=0,1 , ... ,51.

vi) dh=dh,i; dg=dg,i.

vii)Perform optimization.

viii)Output u t k =u t k 
[i]

for k=0,1 ,... ,51.

for i=2,...,6.
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The changing values of  dh and  dg are given in  Table 2. In

Steps 1-4, a regular change is followed. In the step before the

last, the jump of dg is increased to give a last impulse in the

direction of increased dg, before the actual values of the last

step are applied.

For the protraction movement it is possible to define a region

of  departure  in  the  backward  of  the  leg,  and  a  region  of

arrival  in  the forward.  These  regions  are  determined  to be

two  squares  whose  corners  are  given  as  [(8,-7,-9);(12,-7,-

9);(12,-3,-9);(8,-3,-9)] and [(8,3,-9);(12,3,-9);(12,7,-9);(8,7,-

9)] (cm), respectively, with respect to the body frame. The tip

point  is  assumed  to  depart  from a  point  in  the  square  of

departure to a point in the square of arrival. The ground level

is taken to be -9 cm in the z-direction. Nine points from each

square are chosen as the sample positions for optimization.

Eight of these are distributed homogeneously throughout the

periphery of the square, and the remaining is taken to be the

centre point. As a result,  9× 9=81 initial-final position pairs

are used in the optimization; therefore, a total of  81 optimal

trajectories are obtained to represent the protraction from the

square of departure to the square of arrival. These trajectories

are used in Section 4 to interpolate a trajectory for any given

initial-final  position points in those squares.  The set  of the

initial  and  final  point  positions  used  for  optimization  are

given in Table 3.

3.3 Comparative Results of “Optimization With Single

Objective Function” and “Optimization With Objective

Function Modification” 

In  Fig.  2 the  joint  angles,  velocities,  and  accelerations

resulted  from  the  81  optimizations  with  “single  objective

function”  are  given  in  the  first  three  rows.  The  single

objective function corresponds to only Step 6 of Table 2. The

last row in Fig. 2 shows the tip point position errors  between

the actual tip point and the desired final tip point positions.

Among the results in Fig. 2, a few of the optimizations ended

with  feasible  trajectories,  which  came  close  to  the  desired

final tip point position with a movement of lifting up the tip

point in the start. Some of these feasible ones are shown by

arrows in some of the figures in Fig. 2. Most of the remaining

optimizations created infeasible trajectories which cannot be

considered  as  a  proper  protraction  at  all.  Not  only  the

infeasible ones but also the few feasible trajectories are the

local  minimums  of  the  single  objective  function.  A  much

more improvement of those trajectories is possible with the

objective function modified optimization.

In  Fig.  3 the joint  angles,  velocities,  accelerations,  and tip

point position errors resulted from the 81 optimizations with

“objective function modification” are given. It is immediately

realized how structured the figures are compared to the ones

in Fig. 2. In 79 of the results given in Fig. 3, the optimization

was successful to create a proper protraction: In the starting

phase the leg is first retracted towards the body with raising

the tip point above the ground level; in the middle phase the

protraction towards  the front  is  maintained;  and in the end

phase the leg is extracted carrying the tip point towards the

desired final position. 

Table  3. Set  of  initial  and  final  point  positions  used  for

optimization.

Set of Initial Positions (m) Set of Final Positions (m)

x(b) y(b) z(b)

0.08 -0.03 -0.09

0.08 -0.05 -0.09

0.08 -0.07 -0.09

0.10 -0.03 -0.09

0.10 -0.05 -0.09

0.10 -0.07 -0.09

0.12 -0.03 -0.09

0.12 -0.05 -0.09

0.12 -0.07 -0.09

x(b) y(b) z(b)

0.08 0.03 -0.09

0.08 0.05 -0.09

0.08 0.07 -0.09

0.10 0.03 -0.09

0.10 0.05 -0.09

0.10 0.07 -0.09

0.12 0.03 -0.09

0.12 0.05 -0.09

0.12 0.07 -0.09

Among  the  81  optimizations  in  Fig.  3,  only  two  of  them

resulted in a different behaviour. These two are shown with

arrows on the figures.  In these two, the optimization did not

manage to bring the tip point to the desired final position. 

A  comparison  of  the  two  optimizations  regarding  to  cost

minimization  is  given  in  Fig.  4.  This  figure  shows  the

improvement  for  an  infeasible  case  with  “single  objective

function  optimization”.  The  fist  row figures  show  the  leg

movement  from different  sights  for  the  optimization result

with  “single  objective  function”.  The  second  row  figures

show  the  leg  movement  for  the  optimization  result  with

“objective  function  modification”.  It  is  clear  that  the

movement on the second row figures corresponds to a proper

protraction.  The figures  in the last  row of  Fig.  4 show the

main cost function values (nominal cost), whose parameters

are given by the Step 6 of Table 2. The dashed lines show the

values for “optimization with single objective function”, and

the  solid  lines  show  the  values  for  “optimization  with

modified  objective  function”.  The  most  left  one  of  these

depict  the  change  of the  main  objective  function (nominal

cost). The ultimate aim of both optimizations is to minimize

this function. As expected the cost decreases continuously in

the case of “optimization with single objective function”. In

the  case  of  “optimization  with  objective  function

modification” the nominal cost increases and decreases with

the modifications in the cost function. However,  ultimately

when the nominal cost function of  Step 6 is used, the result is

considerably  lower  than  the  one  with  “optimization  with

single  objective  function”.  The  middle  figure  in  the  row

depicts  the value of h x t f  ,t f  ,  which is  related with  the
achievement of final state requirements with the  dh value in

Step 6.  A lower value of this  function means that the final

state requirements are attained better. It is seen that this value

is  lower  in  the  “optimization  with  objective  function

modification”  compared  to  the  case  of  “optimization  with

single  objective  function”.  The  right  most  figure  in  the

bottom  row  of  Fig.  4 depicts  the  value  of

∫
t 0

t f

g x t  ,u t  , t dt which  signifies  the  sum  of  torque

squares with  the  dg value in  Step 6. The difference for this

value  between  the  two  cases  is  striking.  In  the  case  of
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“optimization  with  objective  function  modification”  it  is

possible to observe a step by step decrease of this value to

much  more  lower  values  compared  to  the  one  in

“optimization with single objective function”. 

The  “optimization  with  single  objective  function”  suffers

from the  local  optimums  which  mostly  lead  to  infeasible

trajectories.  With the  “optimization with  objective  function

modification”  it  is  possible  to  jump  over  these  local

optimums  and  generate  more  feasible  and  efficient

trajectories.  With  the  six  steps  and  the  associated  cost

parameters  mentioned  in  Table  2,  the  “optimization  with

objective function modification” was successful  to generate

feasible and more efficient trajectories for the 79 cases of the

81  optimizations.  These  results,  however,  are  sure  not  the

global optimums, since the optimization is still based on the

gradient  information.  A  problem  related  to  “optimization

with  objective  function  modification”  is  the  long  time

required  for  the  termination.  As  can  be  seen  in  Fig.  4

“optimization  with  objective  function  modification”

necessitates around 200 iterations which is quite much for a

gradient  based  optimization.  However,  the  improvement  is

considerable  and leads to  satisfactory results  to be used in

controller design. The long time of termination did not create

a problem for this work since the optimization is performed

only  to  create  a  training  set  to  be  used  in  the  design  of

protraction controller.

4. GENERALIZATION OF OPTIMAL TRAJECTORIES

WITH INTERPOLATION

4.1 Manipulation of Optimal Trajectories

The optimization is capable of decreasing the torque square

sum  with  approaching  the  tip  point  to  the  final  position;

however this approaching does not result in exact placement

of the tip point to the desired final position. Most of the time

slight, but sometimes considerable, position differences occur

between the actual and desired final tip point positions. For

the  interpolation  purposes,  this  is  an  improper  situation

regarding  to  the  data  set.  In  order  to  overcome  this  final

position deviation, the optimized trajectories are modified to

bring  the  final  tip  points  to  the  desired  positions.  This  is

performed by adding the difference vector between the actual

and desired final positions to all position vectors, multiplied

by a weight  decreasing towards the start of trajectory (21).

This manipulation effects the most  successful  optimizations

in  a  negligible  amount.  However,  the  less  successful

optimizations, in which the final point position is not close to

the  desired  position,  are  manipulated  in  a  considerable

amount.  The  effect  of  optimal  trajectory  manipulation  is

shown in Fig. 6 for two sample initial-final position pairs.

Pmod t k =Popt k  P f�Pmod t 51
k

51
,

k=0,1,2 , ...,51.

    (21)

Fig. 2. Results of "optimization with single objective

function". Rows from top to bottom:   Joint angles, joint

angle velocities, joint angle accelerations, tip point position

errors.

Fig.  3.  Results  of  “optimization  with  objective  function

modification". Rows from top to bottom:   Joint angles, joint

angle velocities,  joint angle accelerations, tip point position

errors.
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4.2 RBFNN for Interpolation:

In  order  to  generalize  the  optimal  trajectories  for  the

continuous domain of anterior and posterior tip point position

regions,  it  is  necessary  to  construct  an  interpolation

algorithm, which generates the trajectory for any given initial

and final tip point positions. For this purpose a RBFNN with

pure-linear  output  neurons  is a proper  choice (Fig.  5).  The

inputs of this interpolating  network are the coordinates of the

initial and final tip point positions, which makes up to 6 input

variables.  The  outputs  are  the  tip  point  positions

corresponding to the 51 discretized instances throughout the

protraction period, which makes up to a total of 153 output

variables. The inner neurons in an RBFNN correspond to the

representatives  of  clusters  of  the  input  space.  The weights

between the input and inner neurons determine the location of

the representatives  in the input  space. Given any input,  its

distance to the representatives are calculated,  and the inner

neurons  are  activated  with  an  inverse  proportion  to  this

distance. Namely,  the representative which is closest to the

input  is activated the most.  The weights  between the inner

and output neurons generate the output vectors corresponding

to  the  representative  neurons.  Since  these  weights  are

multiplied with the activation of inner neurons, the output is a

weighted sum of the effect of all representatives. 

Training  of  the  RBFNN  according  to  the  optimized

trajectories  is  a  matter  of  generating  the  inner  neurons,

namely  the  cluster  representatives,  and  the  weights

corresponding  to  those.  The  number  of  neurons  to  be

generated  is  a  matter  of  design  preference,  in  which  data

storage  capabilities  should  be considered.  In this  work the

function,  newrb(), in  the  neural  network  toolbox  of

MATLAB is utilized for training the RBFNN with 30 inner

neurons. The output values of the RBFNN are given in (22).

Two trajectories produced by the interpolation of the RBFNN

for two sample initial-final position points from the training

set are shown in Fig. 6. 

[output ]
j
=∑

n=1

30

w
nj
a
n
=∑

n=1

30

w
nj
gaussian ∑

i=1

6

∣[ input ]
i
�c

in
∣

i=1,2 ,... ,6 ; n=1,2 , ... ,30 ; j=1,2 , ... ,153

(22)

In  Fig.  7, three slides are given to show the Robot-EA308

while  its right  middle leg is protracting following  the path

generated by the controller. The left most figure shows how

the leg is pulled towards the body while the tip point is raised

up. In the middle and right-most figures the whole protraction

can be seen from different perspectives.  These results,  and

also  the  joint  angle  trajectories  in  Fig.  3,  reveal  that  the

energy optimal protraction has the following  character: The

leg is pulled towards the body while the tip point is raised up;

then it is stretched out while the tip point is going down to

approach to the destination. This behaviour is quite different

from the  conventionally  adapted protraction  movements  in

which the leg is first stretched out while raising the tip point,

and  then  pulled  towards  the  body  while  the  tip  point  is

approached down to the destination.

6. CONCLUSIONS

In this work the protraction movement of a three-joint robot

leg is  handled.  In  multi  legged  system applications  mostly

some  limited  protraction  behaviours  are  adopted  based  on

intuitive  feeling  of  physical  behaviour.  Those  applications

limit the freedom of leg placements since the system can use

only the preplanned structures. Moreover, mostly the adopted

behaviours  are  not  optimized  considering  energy

consumption. The optimization presented in this work creates

energy optimal trajectories for any given initial-final tip point

position  pairs.  With  the  generalization  of  the  optimized

trajectories it is shown that the system does not need to be

limited  to  some  specific  protraction  behaviours,  but  it  can

handle  any  protraction  once  the  initial-final  tip  point

positions are given in the range of design. The result of this

work  shows  that  an  energy  optimal  protraction  is

characterized by pulling the leg towards the body, rather than

stretching out, in the rising phase of the movement.  

The optimization is based on the gradient descent algorithm,

with  the  Hamiltonian  formulation  for  optimal  control

problems. The conventional application suffers from sticking

to  infeasible  and  inefficient  local  optimums.  To  overcome

this,  the approach of “optimization  with  objective  function

modification”  is  introduced.  The  results  reveal  that  this

Fig. 4. Results of "optimization with single objective

function" (the first row and the dashed lines in the last row)

and "optimization with objective function modification" (the

second row and solid lines in the last row). (Initial tip point

position: [12, -7, -9] (cm); final tip point position: [8, 2, -9]

(cm).)

Fig. 5. Trajectory interpolating RBFNN.                               
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method is successful to overcome both feasible and infeasible

local optimum solutions of conventional  “optimization with

single  objective  function”.  The  optimal  trajectories  are

generalized  to  a  continuous  space  by  interpolation  using

RBFNN. 

For  the  optimization algorithm a  considerable  drawback  is

the long duration for the termination. This is because a full

optimization is performed for every step, namely for all the

objective  functions  described by the  steps.  This  was  not  a

problem  for  the  work  presented  here,  because  the

optimization is performed once and the recorded results are

used in generalizations. However,  this may be a significant

problem  in  some  applications  in  which  fast  responses  of

optimization are  required.  The improvement  of the idea of

“optimization  with  modified  objective  function”  in  the

direction of speeding up the  algorithm remains  as a  future

work.  A  crucial  attempt  may  be  to  modify  the  objective

function  not  in  steps  of  sequential  optimizations,  but

continuously throughout a single optimization. This might be

performed by some intelligent  and continuous  modification

of the objective function based on the values of a nominal

objective function and its gradient. 
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Fig. 6. The trajectories produced as a result of the

interpolation with the RBFNN for two trained input of initial-

final tip point positions. (unit: m)

Fig. 7. Protraction of the right middle leg of robot EA308,

following the trajectory generated by the controller. The

initial and final tip point positions are [0.11, -0.06, -0.09] and

[0.11, 0.06, -0.09], respectively. 
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