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Abstract: To overcome sluggish load disturbance response for industrial/chemical processes with slow 
time constant(s), an improved design for on-line autotuning of proportional-integral-derivative (PID) 
controller is proposed in this paper, based on relay identification of the widely used first-order-plus-dead-
time (FOPDT) process model. Using the fitting conditions established for process response at the 
oscillation frequency under a relay test, the identification algorithm is transparently developed. An 
analytical controller tuning method is then developed using an asymptotic constraint established thereby 
for reducing the influence of the slow process time constant on load disturbance rejection. Illustrative 
examples are given to show the effectiveness and merits of the proposed algorithms. 

 

1. INTRODUCTION 

Sluggish load disturbance response is usually resulted for 
processes with slow time constant(s), as widely recognized in 
the process industry. To deal with this problem, model-based 
controller tuning methods have been effectively developed 
(Morari and Zafiriou, 1989; Seborg, Edgar, and Mellichamp, 
2003). Recently improved methods for tuning the 
proportional-integral-derivative (PID) controller, which is 
most commonly used in engineering practice, can be found in 
the literature (Piazzi and Visioli, 2006; Leva, Bascetta and 
Schiavo, 2005; Sree, Srinivas and Chidambaram, 2004; 
Skogestad, 2003; Ho et al., 2003; Sung, Lee and Park, 2002; 
Lee and Edgar, 2002; Hwang and Hsiao, 2002; Tan, Lee and 
Jiang, 2001). For such a controller design, a low-order 
process model is needed, of which the first-order-plus-dead-
time (FOPDT) model structure is mostly used since it can 
effectively reflect the fundamental characteristics of process 
response, in particular for the low frequency range primarily 
referred to controller tuning (Åström and Hägglund, 1995; 
Yu, 2006). Relay identification for obtaining low-order 
process models has received increasing attention in the 
process control community (Atherton, 2006; Hang, Åström 
and Wang, 2001), owing to that such an identification test 
can be performed online while preventing process response 
from drifting too far away from the operational level required 
therein. Based on a single run of unbiased relay feedback, 
Luyben (2001) proposed a FOPDT modeling method by 
defining curvature factors for the relay response shapes of 
stable and unstable processes; Vivek and Chidambaram 
(2005) reported another FOPDT identification algorithm 
using the Fourier analysis of the process relay response; 
Huang, Jeng and Luo (2005) developed a simple formulation 
of FOPDT model for on-line tuning of PI/PID controllers. 
Based on a single run of biased relay test, Shen, Wu and Yu 
(1996) gave a FOPDT modeling method according to the 
sustained oscillation conditions from the describing function 

analysis; Wang, Hang and Zou (1997) derived a FOPDT 
algorithm using the algebra properties of periodic oscillation; 
Kaya and Atherton (2001) developed a FOPDT identification 
method based on the so-called A-locus analysis. 

In this paper, two identification algorithms are respectively 
derived according to whether an unbiased or biased relay test 
is used. Based on the internal model control (IMC) theory, 
(Morari and Zafiriou, 1989), a modified IMC filter design is 
proposed to derive the PID controller within the framework 
of a unity feedback control structure. As a result, apparently 
improved disturbance rejection performance can be obtained. 

2. RELAY IDENTIFICATION ALGORITHMS 

In a relay feedback test for identification, the relay function is 
usually specified as 

{ ( ) } or { ( )  and ( ) }
( )

{ ( ) } or { ( )  and ( ) }
u for e t e t u t u

u t
u for e t e t u t u

ε ε
ε ε

+ + − − +

− − + − −

> ≥ =⎧
= ⎨ < ≤ =⎩

     (1) 

where 0u µ µ+ = ∆ +  and 0u µ µ− = ∆ −  denote, respectively, 
the positive and negative relay magnitudes; ε+  and ε −  
denote, respectively, the positive and negative relay switch 
hysteresis. Note that letting u u+ −= −  and ε ε+ −= −  leads to 
an unbiased relay function. 

When the process response moves into the limit cycle under 
relay feedback, the process output becomes a periodic 
function with the oscillation angular frequency, u u2 / Pω π= . 
By using the idea of time shift, we may view it as a periodic 
signal from the very beginning, so its Fourier transform can 
be derived as 

u os u
u u

os
u os0

( ) lim ( ) d lim ( ) d
P t Pj t j t

tN N
Y j N y t e t N y t e tω ωω

+− −

→∞ →∞
= =∫ ∫     (2) 

where os ( ) ( )y t y t=  for os[ , )t t∈ ∞  and ost  may be taken as 
any relay switch point in steady oscillation, such that the 
influence from the initial response can be excluded.  
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Similarly, it follows that 

os u
u
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u( ) lim ( ) d
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Thereby, the process frequency response at uω  can be 
obtained as 

os u
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Note that the Laplace transform for the relay response can be 
actually decomposed as 

os1

os10
( ) ( ) d ( ) d

t st st

t
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∞− −= +∫ ∫                                      (5) 

where os1t  denotes the moment after which ( )y t  becomes a 
periodic signal. The second integral in (5) can be derived as 
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For Re( ) 0s > , there exists u 0nP se− →  as n → ∞ . Hence, we 
can obtain for Re( ) 0s >  that 
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Likewise, the Laplace transform of the relay output for 
Re( ) 0s >  can be derived as 
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Therefore, the process transfer function for Re( ) 0s >  can be 
obtained as 
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By substituting us jα ω= +  into (8) we can obtain 
os1 os1 u
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                                                                                            (9) 
where (0, )α ∈ ∞  may be viewed as a constant shift operator 
of Laplace transform. Note that 

u( ) 0 / 0G jω α+ →  as α → ∞ . 
It is therefore suggested to choose α  with a numerical 
constraint of os1 u os1 u( ) ( ) 4

os1 u os1 umin{ ( ) ,  ( ) } 10t P t Pu t P e y t P eα α− + − + −+ + > , 
such that both the initial and steady responses of ( )y t  and 

( )u t  under relay feedback can be effectively included in the 
computation of (9). 

To identify a FOPDT model generally in the form of 

p
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sk e
G

s
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τ

−

=
+

                                                                         (10) 

we can establish two fitting conditions by substituting (10) 
into (4), i.e., 

p
u2 2

u 1

k
A

τ ω
=

+
                                                                    (11) 

u u uarctan( )θω τω ϕ− − =                                                       (12) 

By substituting (10) into (9) and letting u( ) jG j A e αϕ
αω α+ = , 

we obtain another fitting condition, 

p
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For the case that a biased relay test is used, the process gain 
can be derived as 
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Accordingly, the other two model parameters, τ  and θ , can 
then be derived from (11) and (12), respectively. 

For the case that an unbiased relay test is used, the three 
model parameters, pk , τ  and θ , can be derived by solving 
(11-13) together. To perform numerical computation possibly 
involved thereby, iterative algorithms such as the Newton-
Raphson method may be used, and correspondingly, a relay 
response fitting constraint can be adopted to determine a 
suitable solution, i.e., 

2
s os s os

1

[ ( ) ( )] /
N

k

y kT t y kT t N ε
=

+ − + <∑ �                                   (15) 

where s os( )y kT t+�  and s os( )y kT t+  denotes respectively the 
model and process responses, sT  is the sampling period and 

u s/N P T= ,  and ε  is a user-specified fitting threshold that 
may be set between 0.01% 1%∼ . 

2. PID TUNING METHOD 

Consider the unity feedback control structure shown in Fig.1, 

 

 

 

 

Fig. 1. Unity feedback control structure 

where C  is a PID controller as mostly used in practice, id  
and od  denote, respectively, load disturbances injected at the 
process input and output sides, and od̂  indicates the load 
disturbance with a transfer function of dG . In many industrial 
cases, the influence of 

od̂  may be transformed into id  to be 
treated (Seborg, Edgar and Mellichamp, 2003). 

It is well known that the IMC theory has been successfully 
applied to PID tuning within the framework of a unity 
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feedback control structure (Skogestad and Postlethwaite, 
2005; Braatz, 1995). The key to the use of IMC theory for the 
closed-loop controller design lies with the choice of a 
suitable IMC filter to construct the desired closed-loop 
complementary sensitivity function. Given a process model 

m A MG G G= , where AG  is an all-pass portion and MG  a 
minimum-phase portion, the IMC-based complementary 
sensitivity function can be ascertained as  

AT G f=                                                                               (16) 

where f  denotes the IMC filter. A conventional IMC filter 
of type I, ( ) 1/( 1)nf s sλ= + , is generally chosen for step 
changes in set-point and load disturbance, and type II, 

( ) ( 1) /( 1)nf s n s sλ λ= + + , is for ramp changes, where n  is 
an integer large enough to make M/f G  proper. Most of 
existing IMC-based tuning methods are based on the filter 
type I, since a step change in set-point or load disturbance 
can be physically regarded as a summation of sinusoidal 
signals of different frequencies. The key feature of IMC filter 
type I is that it can lead to the H2 optimal performance 
objective for step change in set-point and the load 
disturbance acting on the process output side (i.e., od  shown 
in Fig.1). However, for a load disturbance that seeps into the 
process, denoted as id  in Fig.1, the corresponding transfer 
function is in the form of  

i idH GSd=                                                                          (17) 

where 1S T= −  is the sensitivity function. It can be seen that 
the time constant(s) of G  is enclosed in the characteristic 
equation of 

idH , and therefore, affects the achievable 
disturbance rejection, no matter how the IMC filter is tuned 
in T . This can be used to explain why the recovery trajectory 
of the disturbance response is subject to ‘a long tail’, i.e., 
sluggish load disturbance suppression, for a process with 
slow time constant(s).  

To reduce the influence arising from the slow process time 
constant(s) to the load disturbance response, a good idea is to 
eliminate the corresponding pole(s) from the characteristic 
equation of the above load disturbance transfer function, as 
illustrated by Horn et al. (1996) for cancelling the slowest 
pole with rational approximation. It is thus expected that 
1 T−  (i.e., S ), rather than T , has the corresponding zero(s) 
to cancel the slow pole(s) of G , such that the load 
disturbance response is governed only by the time constant of 
T  (i.e., an adjustable parameter in the IMC filter). The 
numerator of 1 T− , however, is unavoidably involved with 
time delay factor(s) for a process with time delay, so it cannot 
be factorized to make exact zero-pole cancellation with the 
denominator of G . The following asymptotic constraint is 
therefore proposed to realize the above idea based on the 
identified FOPDT model of  (10), 

1/
lim (1 ) 0

s
T

τ→−
− =                                                                      (18) 

Correspondingly, the conventional IMC filter is rectified as  

RIMC 2
f

1
( 1)

sf
s

α
λ

+=
+

                                                                 (19) 

where α  is an additional parameter used for satisfying the 
above asymptotic constraint. It follows from (10), (16) and 
(19) that 

RIMC 2
f

( 1)
( 1)

ss eT
s

θα
λ

−+=
+

                                                             (20) 

Substituting (20) into (18) yields  

2f[1 ( 1) ]e
θ
τλα τ

τ
−

= − −                                                          (21) 

It is seen that α  is a function of fλ . Hence, there is 
essentially a single adjustable parameter, fλ , in the proposed 
IMC filter.  

According to the nominal closed-loop relationship  

m

m1
G CT

G C
=

+
                                                                        (22) 

we obtain by substituting (10) and (20) into (22) the desired 
closed-loop controller, 

2
p f

( 1)( 1)
[( 1) ( 1) ]s

s sC
k s s e θ

α τ
λ α −

+ +=
+ − +

                                           (23) 

It can be verified from (23) that 

0
lim
s

C
→

= ∞                                                                             (24) 

Hence, this controller has a property of integral for 
eliminating the steady-state error. To approximate it in a PID 
form for implementation, we hereby adopt the analytical 
approximation approach used in the recent literature (e.g., Liu 
et al., 2005a, b). Let  /C M s= , it follows that 

21 (0)[ (0) (0) ]
2!

MC M M s s
s

′′′= + + +"                                (25) 

Accordingly, the first three terms in the above Maclaurin 
expansion constitute a PID controller, i.e., 

PID c d
i

1C k s
s

τ
τ

= + +                                                              (26) 

where c (0)k M ′=  and i 1/ (0)Mτ =  and d (0) / 2Mτ ′′= . The 
pure derivative in (26) can be practically implemented by 
cascading with a first-order low-pass filter in which the time 
constant can be chosen as d(0.01 ~ 0.1)τ . 

It should be noted that the rational high order approximation 
formula proposed in Liu et al. (2005a) in terms of the linear 
fractional Padé expansion may be used for obtaining further 
enhanced control performance. 

Combining (21), (23) and (25), we can also see that the 
proposed PID controller is essentially tuned by the single 
adjustable parameter, fλ , of the proposed IMC filter. 

To explore the quantitative relationship between the 
disturbance response peak (DP) of a FOPDT process shown 
in (10) and the single tuning parameter fλ  of the proposed 
PID controller, we may normalize the process model of (10) 
by scaling the Laplace variable as s sτ=� , i.e.,  
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By substituting the scaled Laplace variable into (23), we can 
find that the tuning parameter is correspondingly scaled as 

f /λ τ  to obtain the same control effect. That is to say, using  
f /λ τ  for (27) can obtain the same DP with (10) in terms of 
fλ . Hence, we can study the quantitative relationship 

between 
pDP / k , f /λ τ  and /θ τ , regardless of the variation 

of  τ . Based on numerical computations and simulations, the 
result for a unity step change of the load disturbance added to 
the process (shown as id  in Fig.1) is plotted in Fig.2. 

 

 

 

 

 

 

 

 

Fig. 2. Disturbance response peak for FOPDT process 
 
According to the small gain theorem (Zhou, Doyle and 
Glover, 1998), the closed-loop system shown in Fig.1 holds 
robust stability if and only if 

1T
∞

∞

<
∆

                                                                         (28) 

where ( ) /m mG G G∆ = −  denotes the mismatch between the 
model and the real process. Given an upper bound of this 
mismatch, the admissible tuning range of fλ  can be 
numerically determined by substituting (22) into (28). For 
instance, in the case that there exists the process time delay 
uncertainty θ∆ , which may be converted to ( ) 1ss e θ−∆∆ = − , 
the robust stability constraint for tuning fλ  of the proposed 
PID controller can be ascertained by substituting (22) and (26) 
into (28), i.e., 

m PID

m PID

1
1 1s

G C
G C e θ−∆

<
+ −

                                                        (29) 

Based on the quantitative relationship given in Fig.2, it is 
suggested to tune fλ τ=  in the first place. Then by 
monotonously varying fλ  online, the best trade-off between 
the nominal performance of the closed-loop system and its 
robust stability can be conveniently obtained. 

4. ILLUSTRATION 

Example 1. Consider the first-order process widely studied 
in the literature (see, e.g., Shen, Wu and Yu, 1996; Vivek and 
Chidambaram,2005). 

2

1 10 1

seG
s

−

=
+

 

By using a biased relay test, Shen, Wu and Yu (1996) derived 
the process model, 2.005

m 0.999 /(8.118 1)sG e s−= + . Vivek 
and Chidambaram (2005) obtained the process model, 

2
m 0.9467 /(9.5028 1)sG e s−= + , from an unbiased relay 

feedback test. For comparison, unbiased ( 1.0u u+ −= − = ) 
and biased ( 1.3u+ =  and 0.7u− = − ) relay tests with 

0.2ε ε+ −= − =  and 0.1α =  are respectively performed, for 
which the intermediate values of the limit cycle for model 
identification are listed in Table 1.  

Table 1.  Limit cycle data 

Limit Cycle 
Example Relay 

uP  
uA  

uϕ  Aα  
Unbiased 14.4 0.2234 -2.2203 0.1706

Biased 15.57 0.2405 -2.1371  1 
2 0.045%Nσ = 14.03 0.2182 -2.2506  

2 Biased 14.38 0.7051 -2.9108  
3 Unbiased 26.08 0.1831 -2.0573 0.1233

 
Consequently, the proposed algorithm for unbiased relay test 
results in the model, 2.0024

m 1.0048 /(10.049 1)sG e s−= + , and 
the proposed algorithm for biased relay test gives 

2.005
m 1.0001 /(10.001 1)sG e s−= + , both of which indicate 

good identification accuracy. 

Suppose that a random noise of 2(0, 0.045%)NN σ =  is added 
to the process output measurement and feedback under the 
above biased relay test, causing the noise-to-signal ratio 
(NSR) to be 10%. Based on the statistical averaging of 10 
steady oscillation periods for computation, the intermediate 
values of the limit cycle obtained thereby are also listed in 
Table 1. Correspondingly, the proposed algorithm for biased 
relay test results in 1.9971

m 1.0236 /(10.2331 1)sG e s−= + , 
indicating good identification robustness. 

Example 2. Consider the high-order process studied in the 
recent literature (Wang et al., 1997; Kaya and Atherton, 2001) 

5

( 1)
( 1)

ss eG
s

−− +=
+

 

By using a biased relay test, Wang et al. (1997) derived a 
FOPDT model, 4.24

m 1.00 /(2.99 1)sG e s−= + , and Kaya and 
Atherton (2001) gave the model, 5.082

m 1.00 /(2.292 1)sG e s−= + , 
both of which had shown their superiority over many other 
relay identification methods. For comparison, the biased 
relay test in example 1 is performed and correspondingly, the 
proposed algorithm results in the FOPDT model, 

4.8578
m 1.0001 /(2.3017 1)sG e s−= + . The Nyquist plots of these 

FOPDT models are shown in Fig.3. It can be seen that further 
improved fitting is captured by the proposed model. Note that 
the model response obtained hereby coincides with the real 
process at the oscillation frequency, i.e., (-0.686, -j0.1628), as 
shown in Fig.3. 
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Fig. 3. Nyquist plots for example 2 
 
Example 3. Consider the second-order process studied by 
Skogestad (2003) 

3 (20 1)(2 1)

seG
s s

−

=
+ +

 

For improving disturbance rejection performance, a modified 
IMC design for tuning the closed-loop PID controller was 
developed in Skogestad (2003), of which the controller 
parameters are listed in Table 2.  For illustration, an unbiased 
relay test as in example 1 is performed, of which the limit 
cycle data are listed in Table 1. Accordingly, the proposed 
identification algorithm results in the FOPDT model, 

2.7993
m 0.98 /(21.8291 1)sG e s−= + . Based on this model, the 

proposed PID tuning method is used with f 0.9λ =  to obtain 
the same DP with that of Skogestad (2003) for comparison. 
The corresponding controller parameters are listed in Table 2, 
together with the conventional IMC-based PID parameters 
obtained in terms of the exact process model, 0.45λ =  and 
the Maclaurin expansion.  

Table 2.  PID tuning methods 

Controller Parameters 
Methods 

ck  iτ  dτ  
Proposed 13.6248 0.4129 16.263 

Skogestad 12.5 0.8 20 

IMC 11.6614 1.9 22.8324 

 
The closed-loop system response for a step change of load 
disturbance injected into the process is shown in Fig.4. It can 
be seen that, to obtain the same DP, the proposed tuning 
method has reduced the recovery time by almost 80 percent 
in comparison with the conventional IMC filter, and by 
almost 50 percent in comparison with Skogestad (2003). 

To demonstrate robust stability of the proposed tuning 
method, assume that there exists 20% error in modelling the 
original SOPDT parameters. The worst case is that the 
process time delay is actually 20% larger while the two time 
constants are actually 20% smaller. The corresponding load 
disturbance response is shown in Fig.5, which indicates that 

the proposed PID tuning method holds robust stability well in 
the presence of the severe process uncertainty.  

 
(a) 
 

 
 
 
 
 
 
 
 
(b) 
 
 
 
 
 
 
 
 

 

Fig. 4. Nominal disturbance response for example 3 
 
(a) 
 

 

 

 

 

 

 

(b) 

 

 

 

 

 

Fig. 5. Perturbed disturbance response for example 3 
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5. CONCLUSIONS 

Based on relay identification of the widely used FOPDT 
process model, an improved PID autotuning method has been 
developed. The proposed identification algorithms can be 
used for both unbiased and biased relay tests, and can result 
in improved fitting for the process frequency response 
compared to some existing FOPDT identification methods 
recently developed, in particular for the referred low 
frequency range for controller tuning. By proposing a 
modified IMC filter to reduce the influence of the slow 
process time constant on the load disturbance response, the 
corresponding PID controller in a unity feedback control 
structure has been analytically derived using the Maclaurin 
approximation. An important merit of the proposed PID 
design is that there is essentially a single adjustable 
parameter, which can be monotonously tuned on-line to meet 
the best compromise between the nominal closed-loop 
performance for load disturbance rejection and its robust 
stability. The quantitative tuning relationship between this 
adjustable parameter, DP, and the identified FOPDT model 
parameters has been given for practice reference. 
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