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Abstract: This paper presents a new technique for fault diagnosis and estimation of 

unknown inputs in a class of nonlinear systems. The novelty of the approach is governed 

by the use of two interconnected sliding mode observers. The first of the two observers is 

used for fault diagnosis and the second is used for the reconstruction of unknown inputs. 

The two observers exchange their respective reconstructed signals online and in real time. 

Conditions for the convergence are derived. The design is such that the state trajectories 

do not leave the sliding manifold even in presence of unknown inputs and faults. This 

allows for faults and unknown inputs to be reconstructed based on information retrieved 

from the equivalent output error injection signals. 
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1. INTRODUCTION 
 

With the increasing demand for automation as a 

means of achieving optimal performance, high 

quality product, and higher efficiency, engineering 

processes have become more complex to manage and 

operate. The increased complexity, however, brings 

issues such as process reliability, safety and integrity 

to the fore of practical consideration. As these issues 

are related to the conditions under which industrial 

plants operate, it is of paramount importance that 

these deviations (due to faults) from normal 

operating conditions are detected and identified in 

real time. This in turn will prompt the necessary 

actions to prevent or mitigate the consequences of 

major disruptions to operation of industrial plants 

and physical harm to operators. 

 Model based fault detection has been the focus of 

much research over the past three decades; since the 

landmark results of (Beard 1971). The usual strategy 

is to generate residuals which reflect the difference 

between the actual and estimated values of outputs. 

In the no-fault case, the residual is equal to zero. In 

the event of a fault the residual signal acquires a 

nonzero value. If the system is affected by     

disturbances, the effect of faults has to be 

differentiated from that of disturbances in order to 

prevent false alarms (robust fault detection) (Frank 

and Ding 1997). Significant developments have been 

made in this area in linear systems and the existence 

conditions for unknown input observer based fault 

detection filters have been established (Massoumnia, 

Verghese et al. 1989). 

 However, in case of nonlinear systems advances 

have been less rapid. With the exception of (Seliger 

and Frank 1991; Koenig and Mammar 2001), little 

work has so far been reported in the field of fault 

detection in nonlinear systems with unknown inputs. 

Since most engineering systems possess some degree 

of nonlinearity, the area of designing fault detection 

filter for nonlinear systems with unknown inputs 

warrants further investigation. 

 Recently, sliding mode observer theory has 

emerged highly efficient in accounting for the effect 

of disturbances in nonlinear systems. Here the 

dynamics of the system are altered by high speed 

switching. As well as insensitivity to external 

disturbances, other main features of sliding mode 

theory are high accuracy and finite time convergence, 

which make it one of key tools in robust state 

estimation. To this end, some interesting results on 

nonlinear sliding mode observers for robust state 

estimation have been published (Xiong and Saif 

2001; Koshkouei and Zinober 2004). In (Sreedhar, 

Fernandez et al. 1993), a sliding mode observer is 

considered to perform residual based fault detection 

but the paper assumes availability of the full state. 

This restriction of (Sreedhar, Fernandez et al. 1993) 

is overcome in (Koshkouei and Zinober 2004), where 

a disturbance decoupled subsystem is used to 

estimate unavailable states using a sliding mode 
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observer. However, the technique is not extended to 

robust fault detection.  

 The focus of above approaches is mainly on state 

estimation and/or fault detection by residual 

generation. However, they are ineffective in 

detecting, isolating and directly reconstructing faults 

(or fault identification (Chen and Patton 1999)) and 

unknown inputs, simultaneously. The need for 

reconstruction of unknown inputs not only facilitates 

fault detection and identification (as shown in this 

paper) but also plays an important role in the 

enhancement of system robustness properties.  

 The technique presented in this paper involves 

the use a network of two interconnected sliding mode 

observers. The two observers simultaneously 

reconstruct faults and unknown inputs, respectively, 

and exchange their corresponding estimates online. 

As a result, a robust fault detection scheme is 

obtained for nonlinear uncertain systems.  

 

2. SYSTEM DESCRIPTION AND PROBLEM 

FORMULATION 

Following class of nonlinear systems is frequently 

considered in the literature (see for example (Persis 

and Isidori 2001), (Hammouri, Kinnaert et al. 1999)) 

for robust fault studies: 
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( ) ( ) ( ) ( )
m

i i

i

x f x g x u D x d E x µ
=

= + + +∑ɺ  (1) 

 ( ),j jy h x=  1, ,j p= …  (2) 

where, ,   and D Eq qn
x d µ∈ℜ ∈ℜ ∈ℜ  denote the states, 

unknown inputs and faults, respectively. 

[ ]1

T

mu u u= …  and 1

T

py y y =  …  represent the 

control input and output measurements, respectively. 

Vectors d  and µ  are unknown but bounded, that is, 

dd α≤  and µµ α≤ . These bounds can easily be 

ascertained from history of the plant. In the ensuing 

analysis we assume that ( )max ,E Dp m q q≥ ≥ .  

 The approach taken in this paper is based on 

block diagonalisation, through input-output 

linearization, of the system of equations (1)-(2). This 

can be done by the application of a nonlinear 

transformation, of the form ( )z xφ= , based on the 

relative degree [ ]1, , mr r…  of the system (Isidori 

1996). As a result an equivalent linear form is 

obtained, which forms the basis for the design of the 

two interconnected sliding mode observers. 

 We assume that the system (1)-(2) has a vector 

relative degree [ ]1, , mr r…  and, for simplicity,  

 
1

m

ii
r r n

=
= =∑  (3) 

 Remark 1: For the case where r n<  there always 

exist n – r functions, ( )j xφ , such that ( ) 0g jL xφ = ; 

1, ,j r n= + … , provided that the distribution spanned 

by the vector fields 
1( ), , ( )mg x g x…  is involutive 

(Isidori 1996). This implies that the approach 

presented in this paper can well be extended to the 

case when r < n provided that the zero dynamics 

associated with the remaining n – r states are 

asymptotically stable.  

 Furthermore, for the system of equations (1)-(2) 

to assume a special canonical observable form, the 

following two matching conditions must be satisfied 

(Kwatny and Blankenship 2000): 

A1: ( )1( )E zφ − ⊥∈Ω  (4)  

A2: ( )1( )D zφ − ⊥∈ Ω  (5) 

where  

( ) ( ) ( ){ }21 1 1
( ), ( ), , ( ) .ir

i f i f ispan dh z dL h z dL h zφ φ φ−− − −Ω = …   

 It can be easily demonstrated that, provided A1-

A2 hold, the original system (1)-(2), upon input-

output linearization results in the following new 

coordinates ((Khalil 2002; Sharma and Aldeen 

2007)):  1, ,i m∀ = …  

 ( ) ( )

( ) ( )
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1( ) 1 1

( ) ( )
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( ) ( )

                        +
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z z j r
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ρ ψ µ
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= = −
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ɺ …

ɺ    (6) 

 y Cz=  (7) 

where,

( ) ( ) ( ) ( )1 1( ) 1 ( ) 1( ) and ( ).i i

i i

r ri i

r D f i r E f iz L L h z z L L h zρ φ ψ φ− −− −= =  

 This canonical structure facilitates the design of 

fault and unknown input reconstruction filters as 

detailed next. 

   

3. ESTIMATION OF FAULTS AND UNKNOWN 

INPUTS 

This section introduces the main results of the paper 

in terms of a Theorem, which states the structures of 

two interconnected sliding mode based filters. One 

filter is used to reconstruct faults and the other is 

used to reconstruct unknown inputs. The two filters 

operate in parallel and provide updates to each other 

after each iteration.  

Fault reconstruction filter: Based on (6)-(7), we 

introduce the following fault reconstruction filter as 

the first block of the interconnected filter system 
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 (8) 

where 
(.)

( ) 0i

wγ > , are constant gains whose choice 

governs the convergence of estimated states ( )iw  to 

true states ( )iz , as shown in the proof of the theorem 

below. They are defined as 3, ij r∀ = …  

( )

( ) ( ) ( )
( )

( ) ( ) ( ) ( )

1 1 1 10,  if = = 0

0,        otherwise                                  

j

j

j

i i i i i

w j ji

w i

w

k z w z w

k
γ

− −
 > − − =

= 
>

ɶ…

 (9) 

and  
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Also in (8), vector d̂  represents the estimate of 

unknown disturbances obtained from the unknown 

input reconstruction filter described in the sequel. 

Unknown input reconstruction filter:  Similarly, 

based on equations (6)-(7), following unknown input 

reconstruction filter is proposed as the second block 

of the interconnected filter system 
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where
(.)

( ) 0i

ηγ > , defined below, are yet to be 

ascertained, 3, ij r∀ = …  

( )

( ) ( ) ( )
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1 1 1 10,  if = = 0

0,       otherwise                                  

j

j
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k

η

η
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Further, µ̂  in (11) denotes the reconstructed fault 

signal obtained from the fault reconstruction filter 

defined by (8). The expressions for both estimates d̂  

and µ̂  will be derived later on in this section.  

 Remark 2: The structure of two filters in light of 

definitions (10) and (13) ensures that the sliding 

manifolds (which represent zero estimation errors in 

the case at hand) are reached state by state 

(sequentially). That is, asymptotic convergence of 

the th
j state can take place only when all the previous 

states,1, , 1j −… , have converged to their true values. 

As a result, high gain dynamics are obtained with no 

or much reduced peaking phenomenon (Khalil 

2002). 

  Remark 3: Constant filter gains, ( )

(.) 0,iγ >  are 

chosen as per (9) and (12). Initially, first set of 

gains, ( )

(.)

ik , is chosen to ensure estimation error 

dynamics remain uniformly bounded. Then, (as 

shown in the proof of the theorem below) the gains 

are switched, sequentially, to their new values, ( )

(.)

i
k , 

to guarantee the convergence of estimation error to 

zero, state by state.        
 In order to reconstruct faults and unknown inputs, 

the two filters (defined by (8) and (11)) run 

simultaneously in parallel. Each filter injects its 

reconstructed signal into the other online. In the 

following, we summarize the main results of this 

paper in terms of a Theorem. Then the conditions 

required for the stability and asymptotic convergence 

of error dynamics of each filter are established in the 

proof of the Theorem. In this respect, we assume that 

the following (Lipschitz) condition holds. 

 A3. Let ( )ˆ,z z ∈Ω × Ω  where the set nΩ ⊆ ℜ . 

Then, there exists a constant 0pl >  such that 

( )1 1ˆ ˆ ˆ( ) ( ) ( )) ( )i i i ir r r r

f i f i g f i g f i p
L h z L h z L L h z L L h z u l z z

− −− + − ≤ −

 

Theorem: If conditions A1-A3 hold and the 

nonlinear system, (1)-(2), has a well defined relative 

degree n, then the interconnection of (8) with (11) 

can act as fault and unknown input reconstruction 

filters, respectively, to simultaneously reconstruct 

fault signals µ  and unknown inputs d . The 

estimates of fault signal and unknown input are given 

by  ( )( )( )

,  

ˆ
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E
E D
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ξ
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= = 

=
ɶ ; ,wθ η=   

and  µ
+Ω  and 

d

+Ω  symbolize the pseudo inverse of 

µΩ  and 
d

Ω , respectively.  

Proof of theorem: 

Define the observation error of the fault 

reconstruction filters as 

 ( ) ( )( ) ( )i i i

we z w= −  (14) 

and that of unknown input reconstruction filter as 

 ( ) ( )( ) ( )i i i
e zη η= −  (15) 

Then, due to (6) and (8) the error dynamics of the 

fault reconstruction filter are obtained as 
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Similarly, from (6) and (11) the error dynamics of the 

unknown input reconstruction filter are obtained as 
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 In the following, Lyapunov stability theory is 

used to establish the reachability criteria of 

trajectories onto the sliding manifolds   ( ) 0;i

je
ν

=  

 ,j w η∀ =   and  1, , irν∀ = …  in proper sequence of 
ir  

steps. While sequential convergence is being 

obtained, it is ensured in step 1 that the error 

dynamics remain bounded. 

Step 1. ( ) ( )

1
0 i it t≤ ≤  

Assume that ( ) ( ) ( ) ( )( ) ( ) ( ) ( )

1 1 1 10 0  &  0 0i i i iz w z η≠ ≠ . Then, 

due to (9) and (12), following fault and unknown 

input reconstruction filter error dynamics are resulted 
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Setting a composite Lyapunov function as  
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1 2 1

j
i

i i i i

i d
j r

i

i

p i

P r k

l P r

θ θ θ θ µ

θ

θ

λ γ γ α α

ς
λ

∈

  − +  
  =
− −

 As a result, at the end of step 1, ( )
1

0
i

eθ →  and 

remaining error trajectories will be confined to the 

ball *ς .  

Step 2. ( ) ( ) ( )

1 2

i i it t t≤ ≤  

Here the conditions that ensure both 
2

( )i

we and
2

( )ieη  

converge to zero are established. After step 1, 

1

( ) 0i

we →  and 
1

( ) 0ieη →  and remaining errors are 

bounded. As a result and due to (9)-(10) and (12)-

(13), the error dynamics of the interconnected filter 

system can be written as  

 

( )( )( )
( )( )
( ) ( )( )

( ) ( ) ( )

( ) ( )( )

2 1 1

2 3 2 2

3 4 3

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

3 3

1( ) ( )

,

( )

0

                                        

i i

r i ii

r i ii

ii i

eq

ii i i

i ii i i

ir ri i

f i g f i r r

i ii

r r

e sign e

e e k sign e

e e k sign z

e L h L L h u

k sign z

θ θ θ

θ θ θ θ

θ θ θ

θ θ

θ

γ

θ

θ θ δ θ

θ

−

= −

= −

= − −

= ∆ + ∆ + +

− −

ɺ

⌢
ɺ

⋮

ɶɺ

⌢

 (23) 

where ,wθ η=  and the equivalent error signals, 

( ) ( )( )( )1

( )

1 1

i ii

w
eq

sign z wγ −  and ( ) ( )( )( )1

( )

1 1

i ii

eq

sign zηγ η−  are 

extracted by the use of a low pass filter. The 

equivalent error signals ensure that the trajectories 

remain confined to the sliding manifolds 
1 1

( ) ( ) 0i i

we eη= =  

while reachability onto the manifold 
2 2

( ) ( ) 0i i

we eη= =  is 

being achieved. Furthermore, by setting a composite 

Lyapunov function as 

( ) ( ) ( ) ( )( )
2 2

2
2

2

1 ,

/ 2  
i i i i

w

w

V V V e
νη θ

ν θ η= =

 
= + =  

 
∑ ∑  (24) 

we obtain  
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( ) ( ) ( )
2 3 2 2 2 2 3

( ) ( ) ( ) ( ) ( ) ( ) ( )

2

, ,

 
i i i i i i i i

w w

V e e k e e k eθ θ θ θ θ θ θ
θ η θ η= =

= − ≤ − −∑ ∑ɺ  

   (25) 

From this, it is straightforward to conclude that if 

3 2 3 2

( ) ( ) ( ) ( )

max max
 and i i i i

w we k e kη η< <  then 
2

( ) 0i

we → and 

2

( ) 0ieη → in finite time. Existence of such 
2

( )i
kθ is 

guaranteed due to the boundedness of 
3

( )i
eθ ensured in 

step 1. 

Steps 3 to 
1ir −  follow in the same way as Step 2. 

Step .ir  ( ) ( ) ( )

1i i

i i i

r rt t t− ≤ ≤  

It is clear from the above analysis that after 

time ( )

1i

i

rt t −= , ( )i

je
ν

 ( ), ;  1, , 1ij w rη ν= = −…  will 

converge to zero in proper sequence. Thus, the 

resulting error dynamics can be written as  

( )( )
( )( )

( ) ( ) ( )

( )

2 1 1

3 2 2

( ) ( ) ( )

( ) ( ) ( )

1( ) ( )

,

( ) ( )

0

0

                                         

i i

r i ii

r ri i

i i i

eq

i i i

eq

ir ri i

f i g f i r r

i i

e sign e

e k sign e

e L h L L h u

k sign e

θ θ θ

θ θ θ

θ θ

θ θ

γ

θ θ δ θ−

= −

= −

= ∆ + ∆ + +

−

⋮

ɶɺ

 (26) 

Again, choosing a composite Lyapunov function as 

 ( )
2

( ) ( )

1 ,

/ 2
i

i

r

i i

r

w

V e
νθ

ν θ η= =

 
=  

 
∑ ∑  

results in   
( ) ( ) ( )

,
i r ri i

i i i

r

w

V e eθ θ
θ η=

= ∑ɺ ɺ  

( ) ( )( ( ) )1( ) ( ) ( )

,

,

    i i

r i i ri i

ir ri i i

f i g f i r r

w

e L h L L h u kθ θ θ
θ η

θ θ δ θ−

=

≤ ∆ + ∆ + + −∑ ɶ

  (27) 

This implies that if gains ( )

ri

i

wk and ( )

ri

i
kη  are chosen s.t.  

( ) ( ) ( ) ( )1( ) ( )

,
i i

r i ii

ir ri i

w f i g f i r w r
k L h w L L h w u z µδ ψ α−> ∆ + ∆ + +  (28) 

( ) ( ) ( ) ( )1( ) ( )

,
+i i

r i ii

ir ri i

f i g f i r r d
k L h L L h u zη ηη η δ ρ α−> ∆ + ∆ +  (29) 

then ( )

ri

i

we  & ( )

ri

i
eη  will asymptotically converge to zero. 

The existence of such ( )

ri

i
kθ  follows from the Lipschitz 

property of nonlinearities.  

Fault signal estimation: 

As ( ) 0,
ri

i

we →ɺ  rearrangement of (26) ( )wθ = yields  

 ( ) ( )( )1 1 ( )( )i

r ri i

ir i

E f i w w
eq

L L h w k sign eφ µ− −    →   
 (30) 

Hence, combination of equation (30) for all 

1, ,i m= …  results in  

 ( )( )( )

,  

ˆ
r ri i

ii

w w
eq i

k sign eµ µ
∀

 Ω →
 

 (31)  

where,  

( )

( )

( )

( )( )

( )( )

( )( )

( )( )

1 11

1(1)

1 1

1

( )1 ( )1

, 

1 1
( )

( )

;( )

( )

r r

i

r rr r i ii i

m

E
r rm m

w wr
eq

E f

iiir i
w ww wE f i

eqeq i

r
imE f i m q

w w
eq m

sign e
L L h w

k sign ek sign eL L h w

L L h w
k sign e

µ

γ
φ

φ

φ

− −

− −

∀

− −

×

  
   

  
     Ω = =      
  
        

⋮⋮

⋮ ⋮

    (32) 

From (31), we deduce that the estimate of the faults 

µ̂  is obtained as 

 ( )( )( )

,  

ˆ
r ri i

ii

w w
eq i

k sign eµµ +

∀

 → Ω
 

 (33) 

Unknown input estimation: 

Similarly, as ( ) 0,
ri

i
eη →ɺ  rearrangement of (26) ( )θ η=  

gives  

 ( ) ( )( )1 1 ( )( )i

r ri i

ir i

D f i
eq

L L h d k sign eη ηφ η− −    →   
 (34) 

Hence, upon combination of equation (34) for all 

1, ,i m= … , we obtain  

 ( )( )( )

,  

ˆ
r ri i

ii

d
eq i

d k sign eη η
∀

 Ω →
 

 (35) 

where,  

( )

( )

( )

( )( )

( )( )

( )( )

( )( )

1 1
1

1(1)

1 1

1

( )1 ( )1

, 

1 1

( )

( )

;( )

( )

r r

i

r rr r i ii i

m

D

r rm m

r eq

D f

iiir i

d D f i
eqeq i

r

D f m imm q

eq m

sign e

L L h

k sign ek sign eL L h

L L h
k sign e

η η

η ηη η

η η

γ
φ η

φ η

φ η

− −

− −

∀

− −

×

  
              Ω = =                 
  

⋮
⋮

⋮
⋮

   (36) 

Accordingly, by using (35), an estimate of d  is given 

by 

 ( )( )( )

,  

ˆ
r ri i

ii

d
eq i

d k sign eη η
+

∀

 → Ω
 

 (37) 

 

4. APPLICATION EXAMPLE 

Let us consider the nonlinear model of single link 

flexible joint robot system described by following 

equations (Raghavan and Hendrick 1994): 

 

( )

( ) ( )
1 1

sin

m m

R
m l m m m

m m m m

l l

l l m l l

k B K K
u d

J J J J

k mgh
d

J J

τ τ

θ ω

ω θ θ ω µ

θ ω

ω θ θ θ

=

= − − + − +

=

= − − − +

ɺ

ɺ

ɺ

ɺ

 

where, ( ),
m m

θ ω  are, respectively, the position and 

angular velocity of the motor and ( ),
l l

θ ω  represent 

those of the link. The motor is excited by the 

excitation signal u . µ  denotes a fault signal and 

[ ]
TT

m l
d d d=  stands for unknown input vector and/or 

any un-modelled dynamics. The variables ( ),m lθ θ  are 

assumed measurable. Symbols
mJ , 

lJ , k and
RB  

represent the moment of inertia of the motor and link, 

spring constant and viscous friction, respectively. 

The values of these parameters used in the simulation 

are as in (Raghavan and Hendrick 1994). Aim of this 

study is to simulate and reconstruct a fault, µ , in the 

excitation signal of the motor, u , in the presence of 

an unknown inputs, ( ),m ld d .     

 For the simulation study, we assume the unknown 

inputs to be sinusoidal 
md ( )with 0.2

mdα =  and 

sawtooth ( ) with 0.2
ll dd α =  waves with 10 rad/s 
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frequency. The upper bound on fault signal is 

assumed in order of 0.3µα = . Following sets of filter 

gains are chosen in step 1 to satisfy (22)-(22a) and 

ensure boundedness: ( )
1 2 1 2

(1) (1) (2) (2), , ,w w w wk k kγ ≡ (1,2,1,1.5), 

( )
1 2 1 2

(1) (1) (2) (2), , ,k k kη η η ηγ ≡ (1,2,1,1.5). These gains are 

sequentially switched to the new values of 

( )
1 2 1 2

(1) (1) (2) (2), , ,w w w wk k kγ ≡ (1,6,1,4), ( )
1 2 1 2

(1) (1) (2) (2), , ,k k kη η η ηγ ≡  

(1,6,1,4) to ensure convergence of errors to zero as 

per (28)-(29). The equivalent injection signals (as in 

(38)) are extracted by using a low pass filter with a 

cut off frequency of 300 Hz .  

5. SIMULATION RESULTS 

For the simulation study, we assume that system is 

initially ( 0 st = ) at rest and fault free. At this time, 

the filters are switched on with different initial 

condition than that of the system. At time 3 st =  the 

motor’s excitation is switched on resulting in a signal 

of 0.4u =  per unit to be applied. As a result, the 

angular positions of motor and the link change to 

new nonzero steady state values. Then at time 6 st =  

an instantaneous fault occurs whereby 3/4
th

 of the 

excitation signal is lost. Then, the fault is gradually 

cleared during the time interval of 6 st =  to 10 st = . 

The estimated responses of unknown inputs 
md  & 

ld  

and fault signal µ  are demonstrated in figures 1(a)-

(c), respectively. It is clear from these figures that the 

proposed technique is able to asymptotically 

reconstruct the true values of fault and unknown 

inputs present in the nonlinear system. Figure 1(c) 

also reveals that the fault reconstruction filter is 

insensitive to any external disturbances or inputs, as 

demonstrated by the no response of the filter to the 

excitation signal at t = 3 seconds. 

 

Fig.1. Estimation of (a) 
md (b) 

ld  (c) µ  

 

ACKNOWLEDGEMENTS 

This work was supported by National ICT Australia, 

Victorian Node at The University of Melbourne.  

 

 

REFERENCES 

Beard, R. V. (1971). Failure accommodation in linear 

systems through self  reorganization. Dept. of 

Aeronautics and Astronautics, MIT. 

Chen, J. and R. J. Patton (1999). Robust model-based 

fault diagnosis for dynamic systems, Kluwer 

Academic Publishers. 

Frank, P. M. and X. Ding (1997). "Survey of robust 

residual generation and evaluation methods in 

observer-based faults detection systems." Journal 

of Process Control 7(6): 403-424. 

Hammouri, H., M. Kinnaert, et al. (1999). "Observer-

based approach to fault detection and isolation for 

nonlinear systems." IEEE transactions on 

automatic control 44(10): 1879-1884. 

Isidori, A. (1996). Nonlinear Control Systems, 

Springer. 

Khalil, H. K. (2002). Nonlinear Systems, Prentice 

Hall. 

Koenig, D. and S. Mammar (2001). Design of a class 

of reduced order unknown inputs nonlinear 

observer for fault diagnosis. Proceedings of 

American Control Conference, Arlington, VA. 

Koshkouei, A. J. and A. S. I. Zinober (2004). 

"Sliding mode state observation for nonlinear 

systems." International Journal of Control 77(2): 

118-127. 

Kwatny, H. G. and G. L. Blankenship (2000). 

Nonlinear control and analytical mechanics: a 

computational approach, Birkhauser. 

Massoumnia, M. A., G. C. Verghese, et al. (1989). 

"Failure detection and identification." IEEE 

transactions on automatic control 34(3): 316-321. 

Perruquetti, W. and J.-P. Barbot (2002). Sliding 

Mode Control in Engineering, Marcel Dekker. 

Persis, C. D. and A. Isidori (2001). "A geometric 

approach to nonlinear fault detection and 

isolation." IEEE transactions on automatic control 

46(6): 853-865. 

Raghavan, S. and J. K. Hendrick (1994). "Observer 

design for a class of nonlinear systems." 

International Journal of Control 59(2): 515-528. 

Sanchis, R. and H. Nijmeijer (1998). "Sliding 

controller-sliding observer design for nonlinear 

systems." European J. Contr. 4(3): 197-208. 

Seliger, R. and P. M. Frank (1991). Fault diagnosis 

by disturbance decoupled nonlinear observers. 

30th IEEE conference on Decision and Control, 

Brighton, England. 

Sharma, R. and M. Aldeen (2007). Fault detection in 

nonlinear systems with unknown inputs using 

sliding mode observer. American Control 

Conference, New York, USA. 

Sreedhar, R., B. Fernandez, et al. (1993). Robust 

fault detection in nonlinear systems using sliding 

mode observers. 2nd IEEE conference on control 

applications, Vancouver, BC. 

Xiong, Y. and M. Saif (2001). "Sliding mode 

observer for nonlinear uncertain systems." IEEE 

transactions on automatic control 46(12): 2012-

2017. 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

11159


