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Abstract: This paper proposes a new concept of robust control – Model Bridge Control (MBC).  The 
MBC is  a  multi-degree  of freedom control based on the model bridge principle (MBP) that the gaps 
between objects and  achievements are bridged by individual models. The key of MBC is the error 
compensation by the model which covers both gain and phase of the error. This breaks through the trade-
off between the robust stability and performances, and yields  high robustness and high performances 
simultaneously  beyond the small gain theorem. A new robust stability criteria and systematic design 
method are presented. 

 

1. INTRODUCTION 

In control systems, there is the trade-off between  the robust 
stability and the sensitivity. To manage the trade-off, 
weighting functions are introduced on the basis of the small 
gain theorem. They are integrated  in a generalize plant. The 
controller is designed by ∞H control (Doyle et al. 1989) or 
LMI  such that the ∞H  norm of the generalized plant is less 
than 1.This approach , however, suffers from the following 
problems. 
(1) the resulting control system is conservative. 
(2) The trade-off is tight  because the total norm of  the 

gathered system is forced to be small. 
(3) The choice of the weighting function is complicated to 

get the solution. 
(4) Since performance assignment is indirect, there is a case 

that the response is not desirable even if the problem is 
solved 

(5) The controller, sometimes ,have higher order exceed the 
plant and yields slow responses, because the design is 
prepared to treat the worst case. 

In  this paper, a new robust control is proposed for 
breakthrough of above problems. It is called as the model 
bridge control (MBC) and can yield high robustness and 
high performances simultaneously beyond  the  small gain 
theorem.  The concept, the configuration of MBC and the 
new robust stability criteria are proposed. The numerical 
example shows  usefulness  of MBC . 
 

2.  WHAT IS MODEL BRIDGE CONTROL 
 

Two definitions are proposed.  
 
<Definition 1>: Model Bridge Principle (MBP) 
The model bridge principle (MBP) is that gaps between 
objects and achievements are bridged by models respectively. 
 

<Definition 2:>  Model Bridge Control(MBC) 
The model bridge control (MBC) is a multi-degree  of 
freedom control  which bridges the gap between the model 
error and the robust stability, and the gaps between external 
signals and their responses by individual models on the basis 
of  MBP. 
 

The grasp of the concept , analysis , design and realization of 
MBC are achieved according to the flow shown in Fig.1, 
where the left hand is the objects and the right hand is the 
achievements, and they are bridged by blocks respectively. 
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      Fig.1  The flow of MBC 

 

3. MODEL BRIDGE PARAMETRIZATION 
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First of all, consider the top of the flow, the grasps of the 
concept of MBC.  The basic model bridge control system 
(MBCS) is given as the model bridge parametrization 
(MBPZ) shown in Fig.2.  

+ -

yur
d

++
)(sP

+-
)(sN

Gp(s)

Gm(s)

e H(s)  
 

Fig.2  basic configuration of MBCS(MBPZ) 
 

It   is   similar to the internal model control (Morari  1989), 
but differs from IMC in multi degree-of freedom. According  
to  MBP, )()( sRsG mm

p
×∈ is the control subject with 

perturbation. )()( sRsG mm
m

×∈  is the plant model 
compensated by feedforward model of the error for robust 
stability. . It is assumed that )(sG p and )(sGm are 
invertible. )()( sRsP mm×∈ is the reference controller for 
reference input r ,which involves inverse model of the plant 
for good responses, )()( sRsN mm×∈  is the disturbance 
compensator for d  , which generates the inverse model of the 
plant for disturbance rejection. )()( sRsH mm×∈  is the low-
pass filter for noise reduction. In this paper,  let 1)( =sH .  
 

4.  ERROR COMPENSATION 
 

Second, consider the error compensation that is the key 
of MBC.  In Fig.2, The controlled system )(sG p  is 
given by 
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where )(sGij  is the model and  )(1 sij∆+ is the error. 
satisfying the following assumptions.  
 
<Assumption 1>  
the number of  unstable poles of   

)())(1( sGs ijij∆+ is equal to that of  )(sGij . 
 
<Assumption 2>  

 0)(1 ≥ω∀≤ω∆+ ijij kj                                (2) 

 
<Assumption 3> 

00))(1( ≥ω∀≤ω∆+∠≤ω− jl ijij                 (3) 

 
The assumption 2 is verified by 
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In assumption 3, the left hand of (3) implies the phase of  
time delay ijl . Thus, ijl  satisfying assumption 2 is easily 
estimated such that the step response of  ijsl

ij esG −)(   follows 
the response of the plant )())(1( sGs ijij∆+  at raising part as 

shown in Fig.3, where  the real line is )())(1( sGs ijij∆+ , the 
dotted line is )(sGij  and  the chain line is ijsl

ij esG −)(  
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               Fig.3 estimation of  ijl  

From these assumptions,  the error models for )(1 sij∆+  are 
given by 
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where p=1 or 2 from numerical experiences.  If smaller error 
are required,  then increase p . 

 
The error  compensated plant is represented by 
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Let 
)()()( sGssG mp δ=                                               (7) 

where 
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If the  error compensation is adequate, then  
1)( →δ sii  and  )(0)( jisij ≠→δ                      (9) 

The e depending on the model error in Fig.2 is reduced and 
increases the robust stability. 
 

5. FEEDBACK  CONFIGURATION  OF MBC 
 
In order to stabilize MBC for unstable plants or to analyze 
MBC, the basic MBCS  is transformed to the feedback 
configuration shown in Fig.4, where             
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              Fig.4  MBCS(the feedback configuration) 
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If the error compensation is perfect, then )()( sGsG mp = and 
the outputs y  to reference r and disturbance d  are given by 

)()()()( srsPsGsy m=                                          (11) 
)()()]()()([)( sdsGsNsPsGIsy mm−=                  (12) 

respectively. It should be noted that  the response to  the 
reference r  can be adjusted linearly by )(sP  and  disturbance 
rejection can be performed linearly by )(sN .  The )(sP  and  

)(sN  are designed to make both (11) and (12) diagonal in 
order to reduce the interactions which affects the robustness 
under the following assumptions. 
 
<Assumption 4> unstable zeroes of  )(sGm  are row zeroes .  
 
<Assumption 5> )(sGm  can be decoupled by state feedback.  
 
Even if the original )(sGm  does not satisfy  the assumptions,  
the pre-compensation makes them  satisfied (Asagi 2004, 
Wang 2006, Watanabe 2006).  

 
6. DESIGN OF  P(s) 

 
Consider the observable block diagonal realization of  

)(sGm for (11) and (12) to be diagonal. Let the state space 
form of the i-throw of )(sGm  be 
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where  ),( ii BA is controllable and ),( ii Ac  is observable. It is 
assumed that 
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and )(sGIj are inner with unstable zeros of  )(sGm .Let  
 aQBAsIFIsP ])([)( 1−−+=                                    (18)  
where BFA −  is stable and  aQ is a free parameter. 
Substituting (14) and (18) into the left hand of (11) yields  
 )()()()()()( 1 srBQBFAsICsrsPsGsy am

−+−==        (19) 
The transient response  can be adjusted by F and the steady 
state one by aQ . we design them to satisfy 
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considering the internal stability, where  
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10 <γ<  for robust stability explained later.  
Such F and  aQ  can be obtained  by the decoupling method 
as follows.  
Let 
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From the assumption,  
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is non-singular. Let 
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[ ]mmdiag νν αα=Ω L11  
The F and aQ  satisfying (20) are given by 

ΨΩΦ= −− 11F                                                     (24) 
11 −− ΩΦ=aQ                                                       (25) 

For )()( sGsG mp ≠ , this implies from (7) and (20) that  
















δ=

)()(0

0)()(
)(

)()(

Im

11

sGsG

sGsG
s

sPsG

Fm

IF

p

O
         (26) 

If the error compensation are adequate, then (26) approaches 
to (20) and is said to be robust decoupling. 

 

7. DESIGN OF  N(s) 
 
Next, consider the design of  )(sN  and let  

})({)()( 111 KKCAsICIQKKCAsIFQsN ba
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where mnRK ×∈  and   mm
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The transient response can be adjusted by K and the steady 
state one by bQ . In order to make ∞H norm of )(sN  near 
one for robust stability (Izuta and Watanabe 2002), K. is 
given by 
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    TYCK =                                                             (29) 
where 0≥= TYY  is the stabilizing  solution of the Riccati 
equation 
     0)()( =−α++α+ CYYCYIAIAY TT               (30) 
for 0≥α  such that IA α+  does not contain  any eigenvalues at 
the imaginary axis. The transient responses to disturbances can 
be adjusted by 0≥α . 
The parameter  bQ is given from (20) and (28) by 

KBFACIQb
1)( −+−+=                                       (31) 

to yield zero steady  state error to step disturbances. 
It follows from the structure (15) ,(16) ,(24),(25) and (29) that  

)(sN  becomes 
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8.  STABILITY CRITERIA 

 
With above )(sP and )(sN , we consider robust stability for 
the case that  )()( sGsG mp ≠ . Equations (11) and (12) 
become 
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respectively, where 
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)()())()(()(2 sNsPsGsGIsE mp −+=                   (36) 

 
<Lemma 1> The necessary and sufficient condition for the 
system  shown in Fig.4 to be stable is  that  the vector plot  of  

)(det)(det 21 ω=ω jEjE                                        (37) 
does not circle the origin.    
 
It follows from (26)  and (32) that  
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]In order to check the stability of (38), we introduce the 
diagonal dominant matrix is defined  as follows. 
 
Consider 
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for  arbitrary Cs ∈  and all i, then  Z  is said to be the row 
dominant. If 
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for  arbitrary Cs ∈  and all i, then  Z  is said to be the column 
dominant. If  Z  is the row dominant  or the column 
dominant , then Z  is said to be diagonal dominant.  
 
<Lemma 2> (Rosenbrock 1974)  Consider that )(sZ  is 
diagonal dominant and  Γ  is  the closed contour in the 
complex plane. Let  )(sZii encircle the origin  iµ  times and  

)(det sZ  encircles the origin µ  times, as s travels Γ  once . 
Then,  we have 

     ∑µ=µ
=
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Equation(38), Lemma 1 and 2 yield the following lemma. 
 
<Lemma 3>  If the vector plot of  
   )()()(}1)({1 ωωω−ωδ+ jNjGjGj iIiFiii  
does not encircle  the origin  and   
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is met, then the system shown in Fig.2 is stable.  
 
The lemma 3 is transformed to the illustrative one. 
 
<Lemma 4> Consider Fig.5,  
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 Fig. 5 Stability condition 1 

 
where   

)()()(0 ωωω= jNjGjGE iIiFi                                 (44) 
1)()()(0 −ωωω= jNjGjGF iIiFi                             (45) 

)()()()(0 ωωωωδ= jNjGjGjJ iIiFi                         (46) 
If the circle with center J  and  radius ir  does not encircle the 
point F, then the system is stable. 
 
We introduce the following assumptions 
 
<Assumption 6> 
 Diagonal elements of )(sδ satisfy 
   0,1)()()( ≥ω∀≤ω≤ωδ≤ω jWjjW XiiiiIii   (47) 
where )()(),( sRsWsW IiiXii ∈  and 
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00)( ≥ω∀≤ωδ∠≤ω− jL iiii                          (48)  
<Assumption 7>   
Non-diagonal  elements  satisfy 
   0,1)()( ≥ω∀≤ω≤ωδ jWj Xijij                      (49) 

where  )()( sRsWXij ∈ . 

 
These assumptions can be confirmed in the similar manner of  
assumptions 1~3. From these assumptions, the  point J exists 
in the area ABCD shown in Fig.6, where 
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)()()()(0 ωωωω= jNjGjGjWD iIiFiIii                   (53) 
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                  Fig.6  Area of J 
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The area which covers the circle with radius iR  and 
center  A,B,C, D in Fig.6 is shown as abcd in Fig.7, 
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Since the circle in Fig.5 stays in the area abcd in Fig.7, 
lemma 4 yields  
<Theorem 1>  If the area abcd  does not encircle F, then the 
system is robustly stable for arbitrary model error satisfying 
assumptions 6 and 7. 
 
If follows from (9) that the error compensation makes the 
area abcd  shrunk small  and near E. Furthermore, Equation 
(21) implies that  0F  turns clockwise and half, and maintains  
near point (-1,0).These increase robust stability and allow 
time constant τ in (21) to be small . Thus, the high robust 
stability and high performance can be obtained 
simultaneously.  
 

9.  STATE SPACE MODEL OF MBC 
 
For realization of MBC, derive the state space configuration 
of MBCS. The )(sGc  in Fig.4 is represented by 
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Substituting (59) into 
)}()()(){()}()()(1{)( 1 sysNsrsPsGsNsPsu m −−= −  

yields 
)}]()(){()([)()( sczsysQsrQsfzsu ba −−+−=         (60) 

)}()({)()( 1 skysbukcAsIsz ++−= −                  (61) 
The state space configuration of Fig.4 is denoted  in  Fig.8.  
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                    Fig.8 the state space model of MBC 
 
(Remark 1)  The realization (15) and (16) of  )(sGm  is 
observable, but  the controllability is not guaranteed. There is 
a case that (61) is uncontrollable by u. It does not become 
problems, because (61) is stabilized by K  and the control 
system is internally stable. Equation (61) is said to be a 
robust observer. 
(Remark 2) The MBC has higher degree of freedom by 1  
than Youla parametirzation(Youla 1976). 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

6170



 
 

 

 
10. NUMERICAL EXAMPLE 

 
Finally, a numerical example is presented. Consider  the 
unstable system with errors 



















++−+

++−+=

)4(
2

)1.01(
1

)1(
1

)25.01(
1

)3(
1

)2.01(
1

)1(
1

)2.01(
1

)(

22

23

ssss

sssssG p   (62) 

and its model 
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In ∞H  control,  model error )(sI ∆+  is defined as 
   )())(()( sGsIsG p ∆+=                                          (64) 
This yields  
    IsGsGs p −=∆ − )()()( 1                                       (65) 
The weighting function satisfying 
    0,)()]([max ≥ωω<ω∆σ jWj T                          (66) 
is given by 
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The weighting function to the sensitivity is chosen by 
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∞H control problem can not be solved for even small dk  such 
that 001.0=dk . 
   
On the other hand, model bridge  control can give the solution 
easily by using  error  compensators 
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For the error compensated plant with (69),  )(sP and  )(sN  are 
designed  according  to above sections. The responses to step 
reference inputs sr /11 =  and sr /6.02 = ,  and  disturbances 
with amplitude 0.2 at 15=t  are shown in Fig.9 for 1=τ and  

0=α . 
  
      

 

 
 

 
 
 
 

Fig.9  Responses 

 
 

11. CONCLUSIONS 
 

This paper proposed a new robust control, Model Bridge 
Control. The feature of MBC is to yield high robustness and 
high performances simultaneously under large model error 
beyond the small gain theorem. The key is multi-degree of 
freedom involving error compensation. It breaks through the 
trade-off which conventional robust control suffers from. The 
MBC can be designed easily from robust decoupling and 
robust observer for even cases where ∞H control  does not 
have a solution. Future works are to add various model 
bridges  for various control purposes. 
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