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Abstract: An approach to devising the upper level of control systems for multiagent systems
has been developed. Problems related to automation of action planning, including those bound
up with the mode of cooperative mission performance, are considered. A new efficient logic

apparatus for intelligent control is proposed.

1. INTRODUCTION

This paper discusses issues related to improving the po-
tential of intelligent control of moving objects or groups of
objects. This improvement is based on development and
implementation new logic methods of knowledge represen-
tion and processing.

The term intelligent control is becoming standard in the
field of computer-aided control (see Sinha (1996); Astrom
(1992)).

We have to agree with Astrom (1992), even if the word
intelligence is interpreted in a quite restrictive sense, it
appears that contemporary control systems have pass a
long way before these can justify the term intelligent.

Generally speaking, real-time knowledge-based (KB) sys-
tems have to constantly refer to what has happened, what
is going on, and what may happen (see Gabbay (1992)).
Furthermore, KB systems have to cope with the problem
of interaction with a constantly evolving world. As far as
planning is concerned, these have to be capable of pre-
dicting changes, proposing and triggering actions on the
basis of these predictions. These systems have to notice,
when definite predictions are no longer plausible. All this
necessitates the appearance of expressive languages and
powerful inference formalisms. However, usually, instead of
operating with a general temporal logic, the requirement
to reasoning have to be restricted (see Ramamonjison
(1995)) in the aspect of both the possibility of expression
of temporal relations in the form of production rules and
implementation of some heuristic structurization of control
processes, e.g., in the form of a multi-agent KB system
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(MAS) with some time- or data-driven meta-rules related
to interaction of these agents.

In section 2 below a new expressive logical language
LF and new method of deduction are described. The
formulas of this language consist of some large-dimension
structural elements such as type quantifiers. So, there
are only two logic symbols V and 3 in LF, and these
are used as a set of connectives of LF. A new logic
calculus JF and complete strategies of computer-aided
(automated) deduction, which are based on a unique and
unary inference rule, have been developed. This calculus
possesses many other properties, which provide for the
reduction of the combinatorial complexity of deduction in
comparison with other known systems of computer-aided
deduction, e.g., resolution and Hentzen-type systems.

The principal ideas behind the proposed technique are
outlined, and an example of application of MAS for the
purpose of control of moving objects are considered.

2. A NEW LOGIC FOR DYNAMICAL MODELLING
AND CONTROL

The proposed formalism of representation and processing
knowledge is intended to further develop a logic calculus

J of positive-constructed formulas (PCFs) (see Vassilyev
(2000)).

2.1 A new language LF with descriptive semantics

Let us denote the set of all conjuncts as Con and assume
that a conjunct be either a finite set of usual atomic
formulas (atoms) of the 1-st order language or F, where F
satisfies the property A C F for each A € Con. The empty
conjunct is denoted by T. Atoms of any conjunct (except
for T and F) may contain individual variables, individual
constants and function letters.

The language LF of positively constructed formulas
(PCFs) is defined as follows:
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(1) if A € Con, then KX:A is a K-formula, where X is
a set of individual variables, K € {V,3};

(2) if B € Con, ® is a set of K-formulas, then MY:B &
is an M-formula, where M € {V,3}y, M # K, Y is a
set of individual variables;

(3) each PCF is either an V-formula or an 3-formula.

Let nodes of the PCF’s tree-structure be called the posi-
tive quantifiers (PQs), and without loss of generality, we
usually assume that

I) aroot of PCF is V:T (the corresponding sets of variables
and atoms are empty ones),

II) each leaf is an J-node, i.e. it contains the sign 3.

Any node 3X:A that immediately follows the root of PCF
is called the base of the PCF (let us speak that A is a
base of facts). A subformula, whose root is a base of the
whole PCF, is called the basic subformula. Let any of the
immediate successors VY : B of a base 3X : A be called
questions to AX:A.

The semantics of PCF F is defined by a common semantics
of a corresponding formula (F)* in the 1-st order predicate
calculus:

(1) if A € Con, A ¢ {F, T}, then A%¥ = &{a:a € A},
F¥ = False, T¥ = True (propositional constants);

(2) let X ={x1,...,2m}, then

(3X:A @) =3z; ... Fa, (A%&(D)Y),

(VXA U)* =V ...V, (AY—(0)%),

where (®)* = &{(a)" : a € D},

(U) =v{(a)" : a € T}.

The common concepts of logic satisfiability, validity, in-
consistency, equivalence, free and bound occurrences of

variables, etc. for a PCF F are understood likewise for
(F)*. Suppose that

IIT) inside each of the basic subformulas, any variable
cannot be free and bound simultaneously, furthermore, it
cannot be bounded by different PQs simultaneously.

Proposition 1. The language LF of PCFs is complete
w.r.t. expressibility in the 1-st order predicate calculus.

The following theorem formulates a statement on some
comparative complexity of PCF-representation vs the clas-
sical one.

Theorem 2. Yk > 0 there exists a sequence of the Boolean
functions fi, ..., f, such that

C(n)pcp X k’kT < C(TL)CNF7

where C(n) pcr is the complexity of PCF-representation of
the f,, and C(n)cnr is the complexity of representation of
frn in the conjunctive normal form.

2.2 A new calculus JF with descriptive semantics

In the process of reasoning, one often proves a statement
F by refuting its negation. We intend to proceed similarly.

A question VY : B to a base 3X: A has an answer © iff
O is a mapping (substitution) ¥ — H* and BO C A,
where H*° is a Herbrand universe based on variables from

X, constants and functional letters that occur in AU B. If
X = @, and there are no constants and functional letters

in AU B, then H* % &.

Now we proceed to the definition of the unique inference
rule. If PCF F has the structure V:T{¥, 3X:A ®}, where
¥ is a list of other basic subformulas (subtrees) of F, and
® contains a subformula VY': B {3Z;:C; V;}, 17, then
the result wF of application of the unary inference rule
w to the question VY :B with the answer © : Y — H®
represents the formula

WwF=VY: T{¥,{3XUZ:AUC,0 dUV,0}, 1}

After appropriate renaming some of the bound variables
inside each subformula the expression wF shall satisfy all
the requirements to PCFs. We will imply such renaming
each time when we apply the rule w. The same will relate
to the following simplifying substitutions:

(1) 3IX:F @&/ 3:F, ie. 3X: F ® will be replaced by
3:F

(2) V: T{W,3: F}/V: T ¥ if U # 0.

Any finite sequence of PCFs F,wF,w?F,...,w"F, where
WF =ww 1F),w! =w,w"F =V:T 3:F,is called a
deduction of F in calculus JF =< V:T 3:F, w > (with
the axiom V: T 3:F).

Suppose that a search strategy verifies the questions in
consecutive order, without omissions (while repeating the
verification only when the whole cycle of questions is over),
and it does not use repeated application of w to a question
with the same O (QA-method, i.e. question-answering
method of computer-aided (automated) deduction).

Note, a step of search for answers © is used very often
in the deduction procedure, so it needs special attention.
As mentioned above, an answer © to a question VY :
B exists if there is a matching BO C A, where A, B
are some sets of atoms, A is a base of facts. So, we
have to find all such substitutions ©. Therefore, we have
to do with the classical matching problem. In order to
solve it, one may use various subsumption algorithms. We
employ the algorithm proposed by S.Ferilli, N.Di Mauro,
T.M.A.Basile and F.Esposito (see Ferilli (2003)). It has a
polynomial complexity and allows one to find all of the
matching substitutions.

Theorem 8. The calculus JF' is consistent and complete,
i.e. for any PCF F F —(F)* iff yp F.

2.8 Simple example of automated deduction

Example 1. Consider the following example: “Any pro-
duction centre is accessible for mobile robots. Some robots
have no access to any offices. Therefore, none of offices is a
production centre.” The formal record of this text in terms
of the 1-st order predicate calculus is A = (A1 & A2 — B),
where

Ay =Vz(R(z) — Vy(Cly) — Alz,y))),
Ag = 3z(R(x) &Vy(O(y) — ~A(z,y))),
B =Vz(C(z) — ~O(x)).

The negation of A is A1&A3&—B and Ay, A3, - B can be
represented as the PCF's
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APCF = Vay: R(x),C(y) 3:A(z,y),
AT =V T 3Jwq:R(xy) Yy1:0(y1), A(z1,1) 3:F,
(=B)PF =V:T F29:0(x2),C(x2).

Therefore, F = (=A)PF =

V:T 3:T { Vey:R(z),C(y) 3:A(z,y),
V:T Jz1:R(z1) Vy1:0(n1
V:T 3:]92 ZO(SCQ), C(Ig) }

We can obtain an example of deduction of F in JF"

F;

wF =V:T Jz1:R(z1) { Vzy:R(x),C(y) I:A(x,y),
vyl O( ) (xhyl) 3 F7

2F V T E|5€1$2 R(Jil),O(.ﬁg),C(l‘Q)
{ Vay:R(z),C(y) 3:A(z,y),
Yy1:0(y1), A(x1,91) 3:F }

WF=V:T 3zi29:R(x ), (z3), C(xo
{ Vay: R(z),C(y) 3 A(fm Y),
Vy1:0(y1), A(z1,y1) 3:F }
WwF=V:T 3:F.
So, we do not destroy the formula’s structure likewise in
Robinson (1965), and, therefore, our deduction technique

is quite compatible with the heuristics (see other proper-
ties of PCFs in the section 3).

)7A('/L‘1ay1) El:Fa

),A(.’El,l‘g)

2.4 Language LFC and calculus JFC with constructive
semantics for planning and control

It is known that a logic approach to artificial intelligence
often implies the need of constructive semantics. In some
logics, classical and constructive semantics simply coincide
(Prolog systems). We consider a modification JFC of the
calculus JF', while providing the desirable constructive
semantics and constructive search for the plans of actions.
For example, as far as applications are concerned, coordi-
nated actions of n agents are ensured by the logic specifi-
cation of feasibility of particular actions realizable only as
a result of combined (may be simultaneous) exploitation
of the functional capabilities of several agents operating as
a group. The searching plan is constructed automatically,
while applying deduction of a specification of the goal from
the specification of functional capabilities of the controlled
objects considered as separate ones or those joined into a
group.

Theorem 4. Let G1 — G4 be the problem specified by the
first-order formula, where Gy is an arbitrary formula (it
describes the conditions and constructive means of prob-
lem solving), and G is a goal of the form (G2)"°F =Vz :
A (3y1 : By,...,3Un : By), then the JF-deduction of the
formula (G1 & ~G2)PF is constructive (e.g. transformable
to an intuitionistic deduction in the known sequential
calculus LJ (see Takeuti (1978))).

Hence a limitation of the application of w only at the
expense of above formulas (LF-language) gives a new
calculus JFC and ensures the property of constructiveness
of any deduction obtained.

The basic calculus JF' allows one to construct different
other modifications of its semantics without changes of
both the axiom and the inference rule (again only at the
expense of some limitations of usage of w).

2.5 Nonmonotonic logic calculi. An example of application

As far as control is concerned, it is usually desirable to take
into account the outdating of facts with time. Therefore,
it is necessary to transform our calculus JF (JFC) into a
nonmonotonic form. Our modification of the calculus JFC
(or JF) into the form of a nonmonotonic constructive
(or, resp., nonmonotonic classical) logic is based on the
description of the agents’ actions allowed by PCF's of the
form Vz : A(z)& B*(z) 3y : C(Z,y), where the symbol
x belongs to a metalanguage and is used for limitation
of the use of w. If A(Zv), B(Zy) C D, where v is a
substitution of variables, and D is the base of facts, then
the outdating facts B(Z+), which are contained in D, have
to be labeled by symbol * and may not be used in the
process of subsequent deduction. In the similar manner,
by limiting the use of the rule w, as noted above for JFC,
we arrive at nonmonotonic logic LFC* (resp. LF™).

As an example, consider the following situation. Let there
be two support vessels (vessel 1, and vessel 2), two AUV,
and a definite object (sample) on the sea bottom. One
of the logic specifications of feasible actions can be the
statement that the specimen can be lifted by an AUV
alone or, at least, by two AUVs operating jointly and
delivered to the nearest vessel. Another specification could
state a possibility of ascertaining — which of the two
vessels is the nearest from the viewpoint of delivery of
the object (sample) (vessel 1 or vessel 2). The goal can
be described in the form of a specification that requires
delivering the object (sample) to vessel 1 or vessel 2. The
logic formalization of both this situation and the goal goes
beyond Horn’s formalism of Prolog but remains within the
frames of applicability of calculus JFC*.

Let us examine this situation, while considering it in terms
of our formalism.

Now we have to formalize the following rules:

(1) AUV can be located close to the object (sample) to
catch hold of it by its manipulators.

(2) If an object and an AUV are located close to each
other, and this AUV does not perform other job
assignments (tasks), then either this AUV can catch
hold of the object and transfer into a busy state or, if
there is another AUV, then the two AUVs can both
catch hold of the object simultaneously and transfer
themselves into the busy state.

(3) If an AUV with the object captured are located near
the support vessel, then this AUV unloads the object
and returns into the free state.

(4) If two AUVs with the object are located near the
support vessel, then these unload the object and
return into the free state.

(5) The object can be unloaded from an AUV near the
support vessel.

(6) Goal: the object is located on either the support
vessel 1 or support vessel 2.
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In terms of the LF language the problem is formalized
as follows. First of all, consider the predicates and their
interpretation.

R(z) — “x is an AUV”,
G(z) — “z is an object”,

x) — “x is a support vessel”,
(x) — “z is in free state”,

(z,y) — “a differs from y”,
(z,y) — “x is near the y”,
Ty (z,y) — “x captures y”,
To(x,y,2) — “x and y capture 2”.

=

e 0000000
oo

The initial state:
Iry,79,8,A,B: R(r1), R(r2), G(s), K(A), K(B),
F(Tl),F(T‘Q),D(Tl,T2>,D(’I‘Q,’ﬁ) (O)

The rules:
Va,y: G(z), R(y) — 3: P(y,z) (1)

Va:,y: G(x),R(y),P(y,x),F(y)—
{3: T (y, x)
3: T —Vz: R(2),D(y, 2), P(z,x), F(z) — 3: Ta(y, 2, x)

(2)

Ve,y,z: G(z), R(y), Ty (y,x), K(2), N(z,z)—
3: Lz, 2), F(y) (3)

V$7y,Z,UZ G(x),R(y),R(z),TQ*(y,z7x),K(u)7N(:r,u)—
3: L(z,u), Fy), F(z) (4)

J: N(z, A
Vo: G(z) — { 3 NEJ},B)) (5)
The goal (more exactly, negation of the goal):
] V:L(s,A)—3: F
EI'T_{V:L(S,B)—H:F (6)

Hence to solve our problem we have to find a deduction of
PCF: V: T (0) { (1), (2), (3), (4), (5), V: T (6) }.

By applying the technique proposed above we can obtain
real plans, which are expected to represent the solution of
the initial problem. For example, one of the possible plans
based on the initial state, when the support vessel A is the
nearest to the object, and there is one AUV, which can lift
the object, is as follows.

(1) Basing on rule 1, the AUV is getting close to the
object.

Basing on rule 2, the AUV catches hold of the object.
Basing on rule 5, the AUV recognizes the support

2)
3)
vessel A as the nearest one.
)
)

(
(
(4) Basing on rule 3, the AUV is moving to the support
vessel A with the object.

(5) Basing on the goal rule 6,the AUV unloads the object

onto the support vessel A.

It can easily be seen, there are six possible plans, which
can be generated with the aid of this formalization. Fur-
thermore, there can be another, ever more complicated

situations, which can be handled with the application of
our techniques.

3. DISCUSSION

(1) Consider abovementioned peculiarities of the lan-
guage LF. Unlike that in predicate calculus lan-
guage syntax, PCFs have rather unconventional and
exquisite form.

(a) Any formula, which is written in LF, is char-
acterized by a large-block structure and has only
positive quantifiers.

(b) Any PCF has a simple and regular structure,i.e.
the formula is to some extent characterized by
predictability of its structure determined by the
order of 3- and V-nodes, which alternate at each
other branch.

(¢) The negation of PCF is merely obtained by re-
placement of the symbols 3,V and vice versa
(after what canonization follows).

(d) The PCF-representation is more compact than
the representation in terms of the known lan-
guage of clauses (see Davis (1960)) in the resolu-
tion method (see Robinson (1965)). Furthermore,
it is more compact than representations in terms
of standard disjunctive and conjunctive normal
forms.

(e) It is not necessary to preprocess (scolemize) the
formulas by eliminating of all existential quanti-
fiers. The scolemization procedure related to this
elimination leads to elevating the complexity of
terms (see Davis (1960)).

(f) The natural structure of the knowledge in LF
is retained better. We mean here also that the
description of the knowledge in the original
form does not employ ”theoretical” quantifiers
Va, Jx. Instead of these, type quantifiers Va (A —
U), Jz(A&L) with simple and natural forms of
conditions A (e.g., without symbols V,3 inside
of A) are employed. The PCF structure retains
mainly the original structure of knowledge, when
the knowledge is written in the form of an ex-
pression constructed of atoms (and/or their nega-
tions) with the aid of positive quantifiers and
logic connectives &,V. In this case, the PCF
structure may differ from the initial structure
merely by appending auxiliary quantifiers K :
T (instead of some connectives &,V mentioned
above) and/or replacing the negations of atoms
- A with the structures V: A 3: F.

Consider peculiarities (1d)—(1f) in greater de-
tail. In order to illustrate these consider the fol-
lowing example.

Example 2. The formula

Ve(AY — (3y; BE V...V 3y BY), (1)
where BE = Ci&...&CL, A% = A& .. &A;,

i = 1,k, in terms of the PCF-representation has
l+n-k atoms. In terms of the language of clauses
it’ll assume the form
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(A1 V.. VoAV
(i1,-ik)E(T,m)*

CLv...vCE), (2)

i.e. contains (I + k)n* atoms (n* clauses)!

It is also obvious that, except for the auxiliary
quantifiers, the number of atoms in the PCF-
representation is not larger than in any classical
disjunctive (conjunctive) normal form.

It can readily be seen, the representation (2) of
the initial formula (1) is not only more compli-
cated but also substantially destroys the initial
structure, although in LF the initial formula
retains the initial structure

Ve : A {Jy1: B1,...,3yk : Br}

The language of clauses has been used in the
resolution method (see Russell (1995)) since its
representation (2) — in comparison with formu-
las of the classical predicate calculus — was ho-
geneous. This has allowed J.Robinson to base on
Herbrand’s results (see Herbrand (1930)) and de-
velop a popular method of automated deduction
with one inference rule known as the resolution
rule.

(2) Now we need to emphasize quite important advan-
tages of calculus JF, which are due not only to
peculiar properties of our exquisite language, but also
to the proper deductive power of the calculus. Let us
consider these advantages.

(a) Unlike that in many other known logic calculi,
e.g., those of Hentzen type, our calculus JF has
only one inference rule (w). Availability of only
one rule causes a smaller combinatorial space.
However, this is not the main advantage of our
calculus. The set of important merits of JF in-
cludes not only uniqueness of its inference rule
but also its unary character (e.g., in comparison
with the resolution method). Another advantage
of JF — obvious from the view-point of decres-
cence of combinatorics — is that the inference rule
w is a large-block one, likewise the language LF
itself. Such a rule aids to additional reduction
of complexity of the combinatorial space (unlike
that of the resolution rule which is also unique,
but it is binary and small-block one).

The implementation of our deduction system
JF implies that the procedure of search for
substitutions © in order to apply the inference
rule w is based on a subsumption algorithm pro-
posed by S.Ferilli, N.Di Mauro, T.M.A.Basile and
F.Esposito (see Ferilli (2003)), which is charac-
terized by polynomial complexity. Application of
the algorithm makes the combinatorial space for
searching of deductions ever smaller.

(b) The deduction (refutation) technique described
has centered on application of w to the questions
only, i.e. to the successors of PCF roots. Appli-
cation of w only to questions is based on the
properties (1a), (1b) and allows one to focus ” the
attention of the technique” on the local fragments
of PCF, without any loss of completeness of the
technique.

(¢c) The deduction technique can be described in
pithy terms of the question-answering procedure
instead of technical terms of formal deducibility
(i-e. in terms of logic connectives, atoms, etc.).

(d) Owing to properties (1a), (1b), (1f), (2b), (2¢),
the deduction technique is quite compatible with
heuristics of specific applications as well as with
general heuristics of control of deduction. Owing

o (2a), the deduction process consists of large-
block steps and, so, is well observable and control-
lable.

(e) The deduction technique offers natural OR-
parallelism, because the refutations of basic sub-
formulas are executed independently of one an-
other.

(f) The deductions obtained are quite interpretable
by man owing to properties (2c), (2d). This inter-
pretability is quite important from the viewpoint
of man-machine applications.

So, conceptually, language LF and calculus JF
are not only machine-oriented, but also human-
oriented: the implementation of the our tech-
niques for the purpose of specific applications
may use these two capabilities to some greater
or lesser extent.

(g) Due to the peculiar properties of language LF
and calculus JF discussed in the section 2, our
logic has another very important merit: its se-
mantics can be modified without any changes of
axiom 3 : F and inference rule w. Such mod-
ifications are implemented merely by some re-
strictions of applying w and allow us to trans-
form classical semantics of calculus JF in non-
monotonous semantics, constructive (intuitionis-
tic) semantics, etc.

The calculus JF has been implemented in the form of the
software system “PCF Prover”, which proves to be more
efficient in the sense reducing the length of deduction, e.g.,
in comparison with such advanced systems of computer-
aided deduction as “OTTER” (see Kalman (2001)) and
“Vampire” (see Riazanov (2003)).

4. CONCLUSION

Some problems related to automation of control processes
have been investigated and discussed. Such automation is
essential for information-based control systems of moving
objects. The idea is to enhance the control potential
of such systems through the use of a new method of
knowledge representation and processing.

We have proposed new logic aids and considered fun-
damental issues related to application of these aids for
the purpose of modeling functions and control of moving
objects (including applications to AUV). On the basis of
computer experiments with the system for constructing
logic deductions we concluded that logic aids we elabo-
rated are more advanced than known prototypes.

In the nearest future we intend to develop :

(1) a special logic programming language on the basis of
PCFs;
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(2) new algorithms for multisequencing of deductions in
our PCFs calculus, which aid to ever more efficient
implementation of the calculus on such computer
clusters as MVS 1000/X;

(3) modifications of our calculi for constraint satisfaction
problems and constraint logic programming with ap-
plications to intelligent control.

REFERENCES

K. J. Astrom and T. J. McAvoy. Intelligent Control:
an Overview and Evaluation. In: D. White, D. Sofge,
editors, Handbook on Intelligent Control, pages 3-34,
Van Nostrand Reinhold, New York, 1992.

M. Davis, H. Putnam. A Computing Procedure for
Quantification Theory. Journal of ACM, pages 201-215,
July 1960.

S. Ferilli, N. Di Mauro, T.M.A. Basile and F. Esposito. A
Complete Subsumption Algorithm. In: A. Cappelli and
F. Turini, editors, AI*IA 2003:Advances in Artificial
Intelligence, Proceedings of 6th Congress of the Italian
Association for Artificial Intelligence, pages 1-13, 2003.

D. Gabbay and M. Reynolds. Towards a Computational
Treatment of Time. In: D.M. Gabbay, C.J. Hogger,
J.A. Robinson, editors, Handbook of Logic in Artificial
Intelligence and Logic Programming, pages 351-437,
Clarendon Press, Oxford, 1995.

J. Herbrand. Recherches sur la théorie de la demonstra-
tion. Travauzr de la Soc. des Sci. et des Lettres de
Varsovie, vol. 111, pages 33-160, 1930.

J. A. Kalman. Automated reasoning with Otter. Rinton
Press, Princeton, N.J., 2001.

D. Ramamonjison, P. Morizet-Mathoudeaux and N.
Lefort. A Real-Time Knowledge-Based System for Plow-
ing Support. 11-th Conf. on Al for Applications, pages
313-319, 1995.

A. Riazanov and A. Voronkov. Limited Resource Strategy
in Resolution Theorem Proving. Journal of Symbolic
Computation, pages 101-115, July-August 2003.

J.A. Robinson. A Machine-Oriented Logic Based on
Resolution Principle. Journal of ACM, pages 23—41,
January 1965.

S. J. Russell, P. Norvig. Artificial Intelligence: A Modern
Approach. Prentice-Hall, Inc., 1995.

N. K. Sinha and M. M. Gupta. Toward Intelligent
Machines. In: M. Gupta, N. Sinha, editors, Intelligent
Control Systems. Theory and Applications, pages 804—
807. IEEE Press, New York, 1996.

G. Takeuti. The Theory of Proofs. Mir, Moscow, 1978.

S. N. Vassilyev, A. K. Zherlov, E. A. Fedosov, B. E.
Fedunov. Intelligent Control of Dynamical Systems.
FIZMATLIT, Moscow, 2000.

13718



