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Abstract: Repetitive processes are a distinct class of 2D systems of both theoretical and
practical interest. The stability theory for these processes currently consists of two distinct
concepts termed asymptotic stability and stability along the pass respectively where the former
is a necessary condition for the latter. Recently applications have arisen where asymptotic
stability is too weak and stability along the pass is too strong for meaningful progress to be
made. Previously reported work has defined the concept of strong practical stability for such
cases and produced Linear Matrix Inequality (LMI) based necessary and sufficient conditions
for it to hold. These can then be used as a basis for the design of a stabilizing control law. In
this paper the (more practically relevant) case when there is uncertainty associated with the
process description which is assumed to be of the norm bounded form is considered.
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1. INTRODUCTION

The unique characteristic of a repetitive, or multipass
Rogers et al. (2007), process is a series of sweeps, termed
passes, through a set of dynamics defined over a fixed
finite duration known as the pass length. On each pass
an output, termed the pass profile, is produced which acts
as a forcing function on, and hence contributes to, the
dynamics of the next pass profile. This, in turn, leads
to the unique stabilization problem in that the output
sequence of pass profiles generated can contain oscillations
that increase in amplitude in the pass-to-pass direction.

Physical examples of these processes include long-wall coal
cutting and metal rolling operations Smyth (1992); Rogers
et al. (2007). Also in recent years applications have arisen
where adopting a repetitive process setting for analysis has
distinct advantages over alternatives. Examples of these
so-called algorithmic applications include classes of itera-
tive learning stabilization schemes Amann et al. (1998)
and iterative algorithms for solving nonlinear dynamic
optimal stabilization problems based on the maximum
principle Roberts (2000). In this last case, for example,
use of the repetitive process setting provides the basis for
the development of highly reliable and efficient iterative
solution algorithms and in the former it provides a stability
theory which, unlike many alternatives, provides infor-
mation concerning an absolutely critical problem in this

1 For the duration of the work reported here K. Galkowski was a

Gerhard Mercator Guest Professor in the University of Wuppertal.

application area, i.e. the trade-off between convergence
and the learnt dynamics.

Attempts to stabilize these processes using standard (or
1D) systems theory/algorithms fail (except in a few very
restrictive special cases) precisely because such an ap-
proach ignores their inherent 2D systems structure, i.e. in-
formation propagation occurs from pass-to-pass and along
a given pass and also the initial conditions are reset before
the start of each new pass. To remove these deficiencies, a
rigorous stability theory has been developed Rogers et al.
(2007) based on an abstract model of the dynamics in a
Banach space setting which includes a very large number
of processes with linear dynamics and a constant pass
length as special cases. Also the results of applying this
theory to a range of sub-classes, including the so-called
discrete linear repetitive processes considered here, have
been reported Rogers et al. (2007). This stability theory
consists of the distinct concepts of asymptotic stability and
stability along the pass respectively where the former is a
necessary condition for the latter.

Recognizing the unique control problem, this stability
theory is of the bounded input bounded output (BIBO)
form, i.e. bounded inputs are required to produce bounded
sequences of pass profiles (where boundedness is defined
in terms of the norm on the underlying Banach space).
Asymptotic stability guarantees this property over the
finite and fixed pass length whereas stability along the
pass is stronger in that it requires this property uniformly,
i.e. for all possible values of the pass length (and hence it
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is not surprising that asymptotic stability is a necessary
condition for stability along the pass).

If asymptotic stability holds for discrete linear repetitive
processes then the sequence of pass profiles produced
will converge in the pass-to-pass direction to a so-called
limit profile which is described by a 1D discrete linear
systems state-space model. This fact has clear implications
for the design of stabilization schemes. Moreover, the
condition for asymptotic stability is very easy to test
whereas one of the extra for stability along the pass is much
more involved. This raises the question of whether or not
asymptotic stability alone would be sufficient for at least
some practically relevant cases. The answer Ga lkowski
et al. (2000) for at least some applications is no but for
these it may be acceptable to use so-called strong practical
stability as an alternative to stability along the pass. Note
here that in the optimal control application Roberts (2000)
is all that can ever be achieved and see Rogers et al. (2007)
for discussion centered round the iterative learning control
application area where strong practical stability could be
the most appropriate way forward.

The basis of strong practical stability was developed
in Ga lkowski et al. (2000) and in subsequent work
Dabkowski et al. (2007) it was shown that necessary and
sufficient conditions for this property could be formulated
in LMI terms which immediately give algorithms for the
design of a stabilizing control law. In this paper we extend
all of these results to the (more practically relevant) case
where the model matrices are not exactly known but
belong to some convex set. In this work, the uncertainty is
assumed to be of the so-called norm bounded uncertainty
are investigated.

Throughout this paper, the null and identity matrices
with the required dimensions are denoted by 0 and I
respectively. Moreover, M > 0 (< 0) denotes a real
symmetric positive (negative) definite matrix and (∗) is
used to denote block entries in symmetric LMIs.

2. BACKGROUND

The state-space model of a discrete linear repetitive pro-
cess Rogers et al. (2007) has the following form over
0 ≤ p ≤ α − 1, k ≥ 0

xk+1(p + 1) = Axk+1(p) + Buk+1(p) + B0yk(p)

yk+1(p) = Cxk+1(p) + Duk+1(p) + D0yk(p)
(1)

where α < ∞ is the pass length and on pass k xk(p) ∈ R
n is

the state vector, yk(p) ∈ R
m is the pass profile vector, and

uk(p) ∈ R
r is the vector of control inputs. The boundary

conditions (i.e. the pass state initial vector sequence and
the initial pass profile) are

xk+1(0) = dk+1, k ≥ 0

y0(p) = f(p), 0 ≤ p ≤ α − 1
(2)

where the n×1 vector dk+1 has known constant entries and
f(p) is an m× 1 vector whose entries are known functions
of p. Note also that these are of the simplest possible
form but some applications require the pass state initial
vector on each pass to be a function of points along the
previous pass, and it is possible that these alone can cause
instability. These so-called dynamic boundary conditions
are not considered in this work.

Applying the stability theory of Rogers et al. (2007) to (1)
and (2) now gives the necessary and sufficient condition
for asymptotic stability as r(D0) < 1 where r(·) denotes
the spectral radius of its matrix argument. At first sight,
this result is somewhat surprising in that it is essentially
independent of the plant state dynamics and, in particular,
places no constraints the location of the eigenvalues of the
matrix A which clearly influence the dynamics produced
along any pass. This condition is a result of the finite pass
length and its consequences are discussed next.

Suppose that asymptotic stability holds and the input
sequence applied {uk+1}k converges strongly as k → ∞
(i.e. in the sense of the norm on the underlying function
space) to u∞. Then the strong limit y∞ := limk→∞yk

is termed the limit profile corresponding to this input
sequence. Also the limit profile is given by

x∞(p + 1) = (A + B0(I − D0)−1C)x∞(p) (3)

+ (B + B0(I − D0)−1D)u∞(p)

y∞(p) = (I − D0)−1Cx∞(p)

+ (I − D0)−1Du∞(p)

x∞(0) = d∞

where d∞ is the strong limit of the sequence {dk}k. In
physical terms, this result states that under asymptotic
stability the repetitive dynamics can, after a ’sufficiently
large’ number of passes have elapsed, be replaced by those
of a 1D discrete linear system. This last fact has obvious
implications in terms of the stabilization of these processes
— see Rogers et al. (2007) for a more detailed discussion
of this point.

As an example, consider the case when A = −0.5, B =
1, B0 = 0.5 + β, C = 1, D = 0, D0 = 0, where β is a
real scalar. Asymptotic stability holds in this case with
resulting limit profile

y∞(p + 1) = βy∞(p) + u∞(p)

Hence if |β| ≥ 1, the sequence of pass profiles converge (in
the pass-to-pass direction (k)) to an unstable 1D discrete
linear system. Note also that this occurs even though the
state matrix A is stable in the 1D sense.

The problem here is the finite pass length over which
duration even an unstable 1D discrete linear system can
only produce a bounded output. If the limit profile is
unstable (as a 1D discrete linear system) then clearly
this is, in general, unacceptable. As noted previously in
this paper, however, cases do exist where asymptotic
stability is all that is required or can be achieved (in
the optimal control algorithm Roberts (2000) the matrix
corresponding to A in the discrete linear repetitive process
state space model can never satisfy r(A) < 1).

Stability along the pass prevents this problem from arising
by demanding the BIBO property uniformly with respect
to the pass length and can be analyzed mathematically by
letting α → ∞. This leads to several sets of necessary and
sufficient conditions Rogers et al. (2007) for this property.
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3. STRONG PRACTICAL STABILITY AND
STABILIZATION

A repetitive process evolves over a semi-infinite strip in
the positive quadrant of the 2D domain, i.e. over 0 ≤
p ≤ α, k ≥ 0. Stability along the pass, however, treats the
process as evolving over the complete positive quadrant,
i.e. both p and k are of unbounded duration. For this
reason, stability along the pass can be too strong in some
cases of practical interest — see, for example, Smyth
(1992); Rogers et al. (2007) for further discussion of this
point and illustrative examples.

A similar situation arises for the class of 2D discrete linear
systems, including those described by the extensively stud-
ied Roesser Roesser (1975) and Fornasini Marchesini For-
nasini and Marchesini (1978) state-space models, and this
has led to the concept of so-called practical stability first
introduced in Agathoklis and Bruton (1983) (see also Xu
et al. (1994) for other results on this property). To explain
the motivation for this, it is instructive to briefly consider
the 1D case. In particular, the standard definition of BIBO
stability in the 1D case demands that the output sequence
y(i) of a BIBO stable system remains bounded in ampli-
tude for all input signals that were bounded in amplitude,
where the term ’bounded in amplitude’ is interpreted in
terms of the norm on the underlying function space. Note,
however, that the input and output signals may be of
unbounded duration, i.e. i may be unbounded, and in
many cases i is a temporal variable.

The 1D definition of BIBO stability has been extended to
the 2D (and nD, n ≥ 3) case by considering input signals
which are unbounded in both variables. The basic idea of
practical stability in the sense of Agathoklis and Bruton
(1983) for 2D systems is to consider BIBO stability when
the input signals are of unbounded duration in at most one
variable. Next we proceed in a similar manner to develop
and characterize so-called strong practical stability for dis-
crete linear repetitive processes described by (1) and (2).

Consider the case when p = 0. Then it is easy to see
that r(D0) < 1, i.e. asymptotic stability, is a necessary
condition. Also consideration of the current pass dynamics
alone, i.e. with the previous pass terms in (1) deleted, leads
immediately to r(A) < 1 as another necessary condition.
These two conditions alone can be regarded as a weak
form of practical stability but, as the numerical example
in the previous section illustrates, they cannot prevent the
possibility of a limit profile which is unstable as a 1D linear
system.

Suppose now that r(D0) < 1 and r(A) < 1 hold. Then
it follows from routine arguments that strong practical
stability will be completely characterized by considering
the cases of p finite and k → ∞, and p → ∞ and k
finite respectively. Both these cases result in limit profiles
described by 1D discrete linear systems — in the first case
the limit profile is given by (3) and in the second it is the
so-called vertical limit profile described by

yk+1(∞) =
(
C(I − A)−1B0 + D0

)
yk(∞) (4)

+
(
C(I − A)−1B + D

)
uk(∞)

xk+1(∞) = (I − A)−1B0yk(∞)

+ (I − A)−1Buk(∞)

Now we can introduce the following definition of strong
practical stability.

Definition 1. A discrete linear repetitive process described
by (1) and (2) is said to be strongly practically stable when

• it is asymptotically stable,
• r(A) < 1,
• the limit profile (3) is stable in the 1D sense, and
• the limit profile (4) is stable in the 1D sense.

The following result is a straightforward consequence of
the above definition.

Theorem 2. A discrete linear repetitive process described
by (1) and (2) is strongly practically stable if, and only if,

r(D0) < 1 (5)

r(A) < 1

r(A + B0(I − D0)−1C) < 1

r(C(I − A)−1B0 + D0) < 1

The essential difference with stability along the pass is
that both limit profiles are stable, but in between growth
can occur in the pass profile sequence but these must be
damped out as the dynamics evolve in k and p. Note also
that the third and the fourth conditions in (5) involve
matrix sums, products and inversions. This makes them
potentially very awkward for extension to control law
design and robust stability when, for example, some or
all of the matrices in the process state-space model are
subject to additive perturbations.

The route to developing computationally efficient tests for
the third condition in Theorem 2 (with a natural extension
to control law design) is via 1D singular linear systems
theory for the state-space model

Ex(h + 1) = Âx(h) + B̂u(h) (6)

y(h) = Ĉx(h) + D̂u(h)

where E is a singular matrix. In particular, the condition
r(A+B0(Im−D0)−1C) < 1 of Theorem 2 is easily seen to
be equivalent to stability (admissibility) of the 1D singular
linear system with state-space model

E1z(h + 1) =

[
A B0

C D0 − I

]
z(h) +

[
B
D

]
u(h) (7)

where

E1 =

[
I 0
0 0

]
(8)

or
E1z(h + 1) = A1z(h) + Πu(h) (9)

Similarly, the condition r(C(I − A)−1B0 + D0) < 1 of
Theorem 2 is equivalent to stability (admissibility) of the
1D singular linear system

E2z(h + 1) =

[
A − I B0

C D0

]
z(h) +

[
B
D

]
u(h) (10)
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where

E2 =

[
0 0
0 I

]
(11)

or
E2z(h + 1) = A2z(h) + Πu(h) (12)

Also, as shown in Dabkowski et al. (2007), it is possible
to develop LMI stability (admissibility) conditions for the
models of (7) and (10) which are hence equivalent to the
third and the fourth conditions of (5). Also these LMIs
lead to control law design algorithms as discussed next.

The control law considered here is

uk+1(p) = K1xk+1(p) + K2yk(p) (13)

which is the sum of current pass state feedback (xk+1(p))
and feedforward (in the k direction) from the previous
pass pass profile. A simpler structure would result if
current pass state feedback alone could be used but it is
known that this is only possible in a few very restrictive
special cases. Note also that the previous pass profile
is a measured output and here we assume that it not
significantly corrupted by noise etc. Moreover, the current
pass state vector in this control law could be replaced by
the current pass profile or estimated using an observer if
not all entries are available for measurement.

LMI based stability tests and algorithms for designing K1

and K2 in (13) have been reported in Dabkowski et al.
(2007) and are omitted here due to space limitations. Next,
we extend these results to the robust case.

4. ROBUST STABILIZATION

In most practical cases, the process state-space model will
not be known exactly. Instead, we have (at best) nominal
values for the entries in these models and to proceed we
must assume that the true entries lie in some uncertainty
set around the nominal. If this set is convex then we can
proceed to obtain control laws which will stabilize any
state-space model where the entries of the matrices which
define it lie in this set. In what follows, one commonly
used approach to model the uncertainty is used, i.e. the
so-called norm bounded uncertainty.

The state-space model of the uncertain discrete linear
repetitive processes considered here is of the form

xk+1(p + 1) = (A + ∆A)xk+1(p) + (B + ∆B)uk+1(p)
+ (B0 + ∆B0)yk(p)

yk+1(p) = (C + ∆C)xk+1(p) + (D + ∆D)uk+1(p)
+ (D0 + ∆D0)yk(p)

(14)
where the matrices ∆A, ∆B, ∆B0, ∆C, ∆D, ∆D0 rep-
resent the admissible uncertainties and are assumed to
satisfy[

∆A ∆B0 ∆B
∆C ∆D0 ∆D

]
=

[
H1

H2

]
F [ M1 M2 M3 ] (15)

where H and M are some known constant matrices with
compatible dimensions end F is an unknown matrix which
satisfies

FTF ≤ I (16)
We will also require the following well known result.

Lemma 3. Suppose that H and M are known real matrices
of appropriate dimensions and the unknown matrix F
satisfies FTF ≤ I. Then for any ǫ > 0

HFM + MTFT HT � ǫHHT +
1

ǫ
MT M (17)

The following is the main result of this paper.

Theorem 4. Suppose that a control law of the form (13)
is applied to a discrete linear repetitive process described
by (14) with uncertainty satisfying (15)–(16). Then the
controlled process is strongly practically stable if the
following LMIs hold




W2 − G2 − GT

2 ∗ ∗
D0G2 + DR2 −W2 + ǫ1H2H

T
2 ∗

M2G2 + M3R2 0 −ǫ1In



 < 0 (18)




W1 − G1 − GT

1 ∗ ∗
AG1 + BR1 −W1 + ǫ2H1H

T
1 ∗

M1G1 + M3R1 0 −ǫ2In



 < 0 (19)





−X1
11 + AG1 + BR1 + (AG1 + BR1)T

+ǫ34H1H
T
1

CG1 + DR1 + (B0G2 + BR2)T + ǫ34H2H
T
1

−G1 + (AG1β1 + BR1β1)T

(B0G2β1 + BR2β1)T

M1G1 + M3R1

0
0
0

∗
D0G2 − G2 + DR2 + (D0G2 − G2 + DR2)T

+ǫ34H2H
T
2

(CG1β1 + DR1β1)T

Y 1
22 − G2 + (D0G2β1 − G2β1 + DR2β1)T

0
M2G2 + M3R2

0
0

∗ ∗
∗ ∗

X1
11 − G1β1 − (G1β1)T ∗

X1
21 X1

22 − G2β1 − (G2β1)T

0 0
0 0

M1G1β1 + M3R1β1 0
0 M2G2β1 + M3R2β1

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

−ǫ3In ∗ ∗ ∗
0 −ǫ3In ∗ ∗
0 0 −ǫ3In ∗
0 0 0 −ǫ3In





< 0 (20)
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



AG1 − G1 + BR1 + (AG1 − G1 + BR1)T

+4ǫ4H1H
T
1

CG1 + DR1 + (B0G2 + BR2)T + 4ǫ4H2H
T
1

Y 2
11 − G1 + (AG1β2 − G1β2 + BR1β2)T

(B0G2β2 + BR2β2)T

M1G1 + M3R1

0
0
0

∗
−X2

22 + D0G2 + DR2 + (D0G2 + DR2)T

+4ǫ4H2H
T
2

(CG1β2 + DR1β2)T

−G2 + (D0G2β2 + DR2β2)T

0
M2G2 + M3R2

0
0

∗ ∗
∗ ∗

X2
11 − G1β2 − (G1β2)T ∗

X2
21 X2

22 − G2β2 − (G2β2)T

0 0
0 0

M1G1β1 + M3R1β1 0
0 M2G2β1 + M3R2β1

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

−ǫ4In ∗ ∗ ∗
0 −ǫ4In ∗ ∗
0 0 −ǫ4In ∗
0 0 0 −ǫ4In





< 0 (21)

for a given β1 > 1, β2 > 1 with the variables W1 > 0,
W2 > 0, X1

11 = (X1
11)T , X1

22 = (X1
22)T , X2

11 = (X2
11)T ,

X2
22 = (X2

22)T , X1
21, X2

21, Y 2
11, Y 1

22, G1, G2, R1, R2, ǫ1 > 0,
ǫ2 > 0, ǫ3 > 0, ǫ4 > 0.

If these LMIs hold, the control law matrices are given by

K1 = R1G
−1

1 , K2 = R2G
−1

2 (22)

Proof. The proof relies on representing the requirements
of (5) for the uncertain process of (14) with the control law
of (13) applied in LMI form. This can be accomplished by
the use of results for singular discrete linear systems given
in Chaabane et al. (2007), Lemma 3 and routine (but com-
plicated) application of the Schur’s complement formula
and congruence transforms. The details are omitted here
due space limitations. (For the proof in the case with no
uncertainty see Dabkowski et al. (2007).)

4.1 Numerical Example

Example 1. Consider the case when the pass length α = 50
and

A =

[
1.82 −1.66 1.56
−1.97 −1.99 −1.06
1.29 −2.43 1.87

]

B =

[
0.673 0.0825
0.706 −0.309
−0.424 −0.139

]
, B0 =

[
−0.975
−1.23
−1.25

]

C = [ −0.553 −0.427 1.12 ]

D = [ −0.656 −0.0482 ] , D0 = −1.18

with boundary conditions

xk+1(0) = [ 10 10 10 ]
T

y0(p) = 0, 0 ≤ p ≤ 49

Also

H1 =





0.053 0.0020 0.065

0.040 0.036 0.054

0.027 0.051 0.085





H2 = [ 0.016 0.0076 0.011 ]

M1 =





0.0062 0.018 0.042

0.030 0.025 0.039

0.040 0.036 0.027



 ,M2 =





0.050

0.039

0.22





M3 =





0.038 0.016

0.0044 0.0024

0.038 0.0079





This process is asymptotically, and hence practically, un-
stable — as confirmed by the pass profile sequence shown
in Fig. 1.

In this case, the LMIs of Theorem 4 LMIs are feasible and
for β1 = β′

1 = 5.0, β2 = β′

2 = 19.0

K1 =

[
0.719 −0.677 2.03
−19.9 3.69 −9.42

]
,K2 =

[
−1.0
−1.38

]

for β1 = β′′

1 = 7.0, β2 = β′′

2 = 17.0

K1 =

[
0.716 −0.700 2.06
−20.1 3.28 −8.80

]
,K2 =

[
−0.988
−1.56

]

Sequences of pass profiles for these controlled processes are
shown in Figures 2 and 3 respectively.

From these plots, it is clearly seen that strong practical
stability guarantees the stable limit profile but, in contrast
what would happen under stability along the pass, oscilla-
tions appear the pass profile sequence but are eventually
damped out in both p and k. These responses also show
that β1 and β2 can be used to influence these oscillations
(note the difference in the values on the pass profile axis in
these plots). How to exploit this feature to the maximum
extent is the subject of current research. Finally, note
that positive results from this will also have relevance in
the design of control laws for 2D discrete linear systems
described by the Roesser and Fornasini Marchesini state-
space models given the strong links these have with the
discrete linear repetitive processes considered here.
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Fig. 1. Pass profile dynamics for the uncontrolled process.
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Fig. 2. Pass profile dynamics for the controlled process
when β1 = 5.0 and β2 = 19.0.
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Fig. 3. Pass profile dynamics for the controlled process
when β1 = 7.0 and β2 = 17.0.

5. CONCLUSIONS

This paper has produced new results on so-called strong
practical stability of discrete linear repetitive processes.

These extend previous work to allow for control law design
when there is uncertainty associated with the process
state-space model which here is assumed to be of the
norm bounded type. The resulting design algorithms are
LMI based. Future work should include the extension of
these results to other models of uncertainty and rules
for selecting the parameters β1 and β2 in the main new
result to maximum advantage. In the longer term, the
application to iterative learning control will be considered.
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