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Abstract: This paper presents a new dual mode nonlinear model predictive controller (NMPC) that is 
based on the combination of the finite horizon NMPC with the infinite horizon predictive controller 
(IHMPC). The resulting nonlinear controller is shown to be stable when the IHMPC is globally stabilizing. 
The main advantage of the proposed controller in comparison to the IHMPC is a better performance as the 
model nonlinearities are taken into account in the computation of the control law. The advantage of the 
proposed controller compared to the existing dual mode NMPC is that constraints are also considered in 
the linear controller that is supposed to control the system when the state enters the terminal set. The 
performance of the proposed controller is compared to the stable IHMPC through simulation of an 
industrial styrene polymerization reactor. 

 

1. INTRODUCTION 

Nowadays, the objective of any control system focuses on the 
manipulation of the control inputs in such a way that it can 
satisfy a variety of operating criteria (economic, safety, 
environmental or product quality) that may change depending 
on the characteristics of the process (Camacho and Bordons, 
1999). Model Predictive Control (MPC) was developed in the 
70’s when the conventional PID controllers showed to be 
inadequate to comply with this sort of demand in the 
controller performance (Henson, 1998). MPC demonstrated 
to be a powerful tool to face such control challenges. 

The acronym MPC stands for a class of control algorithms 
related to the control of the future behavior of the plant 
through the explicit use of a model of the process. At each 
sampling step, MPC computes in open loop a sequence of 
control actions that optimizes the future behavior of the plant. 
The first control action is injected into the plant and at the 
next sampling step the procedure is repeated. In general, 
MPC designates the class of controllers in which a linear 
model is used to predict the dynamic behavior, a linear or 
quadratic cost function is considered and linear constraints 
are considered in the states and inputs of the system. 
Analogously, NMPC refers to those model predictive 
controllers, which are based on non-linear models and/or 
consider a non-quadratic cost function and non linear 
constraints (Qin and Badgwell, 2000; Allgöwer et al., 2004). 

The use of NMPC tends to increase as many chemical 
processes are essentially non-linear, which makes inadequate 
the application of linear models to describe the process 
dynamics (Findeisen and Allgöwer, 2002). In the usual 
approach of NMPC, the closed loop stability of the system is 
not assured, and for each specific system, a heuristic tuning 

should be pursued and there is no guarantee that this 
approach will be successful (Camacho and Bordons, 2004). 
The usual practice of NMPC is to use finite output and 
control horizons, which do not necessarily produce closed 
loop stability. Theoretically, we could consider infinite 
control and output horizons, but this would lead to an infinite 
dimension optimization problem. Usually, it is not possible to 
compute the optimal control sequence with the infinite 
horizon for a nonlinear system. There are several different 
ways to obtain closed loop stability with the NMPC with 
finite horizon (Allgöwer et al., 2004). The common approach 
to guarantee stability is to make use of the Lyapunov method, 
by adding equality and inequality constraint as well as 
penalty weights to the optimization problem (Allgöwer, et al., 
2004, Camacho and Bordons, 2004). 

Some key ingredients of a stabilizing MPC are the terminal 
set and the terminal cost. The terminal state corresponds to 
the predicted state at the end of the prediction horizon. In the 
usual stabilizing approach, we force the terminal state to 
reach a terminal set that contains the terminal state at steady 
state. Associated to the terminal state, there is a terminal cost 
that appears as a new term in the control cost. The MPCs 
with guaranteed stability can be classified as follows: MPC 
with equality terminal constraint (Mayne and Michalska, 
1990); MPC with terminal cost (Bitmead, 1990, Rawlings 
and Muske, 1993, Alamir and Bornard, 1995); MPC with 
terminal inequality constraint (Michalska and Main, 1993) 
and MPC with terminal cost and terminal constraint (Chen 
and Allgöwer, 1998). 

A method to obtain a stable NMPC was proposed by Mayne 
and Michalska (1993). The proposed strategy, which is 
denominated dual mode control, is based on the inclusion of 
an inequality constraint that forces the terminal state to lie in 
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a terminal region Ω at the end of the of the prediction horizon 
p. When the state is outside the terminal region, the control 
action is provided by the conventional NMPC with the above 
constraint. Once, the state is in Ω, the controller is switched 
to a linear controller previously defined and that is assumed 
positive invariant in Ω. One limitation of this approach is 
that the linear controller that is activated when the system 
state enters the terminal set Ω does not consider explicitly the 
constraints that are included in the NMPC. Thus, the 
assumptions behind this controller are not completely true 
when, for instance, it is expected that one or more inputs will 
be saturated at the terminal steady state. Usually, this case 
may happen when there is, in the control structure, an 
optimization layer that defines the optimal terminal steady 
state. 

In this work, it is proposed a NMPC with dual mode in which 
the controller that is activated when the predicted state at the 
end of the output horizon enters the terminal set, is the 
extended infinite horizon MPC (Odloak, 2004). This 
controller can be designed to be stabilizing inside Ω, even 
when a constraint as the input saturation becomes active. The 
basic idea is to modify the control cost function of the NMPC 
by adding the cost of the IHMPC in such a way that the 
global cost becomes a Lyapunov function for the closed loop 
system. 

In the next section of this work, it is presented the NMPC 
with dual mode that is proposed here. Next it is discussed the 
conditions, which can guarantee the stability of the proposed 
dual mode NMPC. Then, it is simulated the application of the 
proposed controller to a polymerization reactor. Finally, in 
the last section it is presented the conclusions of this work. 

 

2. THE DUAL MODE NMPC 

The dual NMPC proposed in this work is composed of a 
NMPC with finite control and prediction horizons and an 
extended IHMPC that is based on a linear model with finite 
control horizon and infinite output horizon. This controller 
differs from the one proposed by Mayne and Michalska 
(1993) in the sense that, here, it is assumed that the IHMPC is 
globally stabilizing but has a poor performance when the 
operating point is far from the normal operating point. So, the 
dual mode approach is adopted in order to improve the 
performance of the closed loop system while maintaining 
stability. 

Suppose that, the nonlinear deterministic system is 
represented by the following discrete time model 

( )( 1) ( ), ( )
( ) ( )

x k f x k u k
y k C x k

+ =

=
    (1) 

where  is the state vector,  is the input 
vector, k is the present sampling instant and  is the 
output vector. Suppose also, that at normal operating 
conditions  and . 
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In the dual mode controller proposed here (Figure 1), the 
NMPC, which uses the model defined in (1), has a finite 
prediction horizon equal to p and a finite control horizon, 
which is also equal to p. So, it is assumed that the NMPC part 
of the controller actuates from time k until time k+p-1. The 
linear IHMPC has a control horizon equal to 1 and an infinite 
output prediction horizon. Thus, it defines the control action 
applied at time k+p and considers the output predictions from 
time k+p+1 to ∞. Then, the optimization problem that defines 
the dual mode controller considers an infinite output horizon 
and computes a sequence of control actions from time k until 
time k+p. 

 

Fig. 1. The proposed dual mode NMPC 

The infinite horizon MPC is based on the following time 
invariant linear model: 

( ) ( ) ( )
( ) ( )
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where A and B are matrices of appropriate dimensions. 
Suppose also that A has all its eigenvalues strictly inside the 
unit circle.  

The cost function of the IHMPC is defined as follows 
(Odloak, 2004): 
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where ( ) ( ) SPe k j y k j y+ = + −

( ) ( ) ( 1)u k u k u k

 is the error of the output 
prediction taking into account the effect of the future control 
actions, Δ = − − , SPy  is the reference for the 

output and ny
kδ ∈ℜ
ny nyQ

 is a vector of slack variables. 

Matrices ×∈ℜ nu nR ×∈ℜ,  and u ny nyS ×∈ℜ  are 
assumed to be positive definite. The vector of slacks is 
included in the control cost to prevent the cost to become 
unbounded due to a possible offset in the controlled output. 
With this purpose, each slack corresponds to the steady state 
error in a controlled output. The weight matrix S should be 
selected such that the controller will prefer to force the slacks 
to zero or at least minimize them depending on the available 
degrees of freedom of the system (Odloak, 2004). 

In the context of the dual mode MPC, the cost defined in (3) 
will correspond to the cost related to time instants k+p to ∞ 
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and the control horizon is equal to one, which corresponds to 
a single control move applied to the system at time k+p. So, 
it is convenient to write this cost as follows: 

( )

( ) ( )
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1
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k k
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At any future time instant, the state can be computed by 
applying recursively the model defined in (2): 
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j
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Substituting (5) into the IHMPC cost represented in (4), the 
following expression is obtained: 
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In order to the above cost to be bounded, it can be proved that 
the following constraint has to be satisfied: 

( )
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Now, as the linear system is stable, one can define 

1
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∞
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and (7) becomes 
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Substituting the stability condition defined in the above 
equation into the IHMPC cost represented in (6), the cost can 
be written as follows: 
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and Q  is obtained as the solution to the following Lyapunov 
equation: 

T T TA QA Q A C QCA− = −  
The cost function of the conventional NMPC is expressed as 
follows:  
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where the slack is also included in the term related to NMPC 
to preserve the continuity between the nonlinear and linear 
parts of the controller.  

In the controller proposed here, it is assumed that m = p and 
the cost function for the dual mode controller is defined as 
follows:  

( ) ( ) ( )2 1( ) ( ) ( )V x k V x k V x k p= + +     (11) 

Then, substituting (9) and (10) in Eq. (11), one obtain: 
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Equation (12) defines the cost of the dual mode NMPC, 
which should be minimized taking into the usual constraints 
in the inputs of the system: 

min max

max max

( ) , 0,1,...,
( )

u u k j u j
u u k j u

≤ + ≤ =
−Δ ≤ Δ + ≤ Δ

p
  (13) 

 

3. STABILITY OF THE DUAL MODE NMPC 

The proposed dual mode NMPC will be stable if the 
following conditions are satisfied: 

a). The set ℵ is contained in the set , or the normal 
operating set is contained in the terminal set. This means that 
the IHMPC is stable for all the normal operating conditions 
of the system. However, the stability of this controller may 

Ω
A  
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result in a poor performance of the closed loop system in 
such a way that it cannot be used in practice. 

The infinite horizon MPC considered here is obtained from 
the solution to the optimization problem where V1 is 
minimized subject to constraints (13). If the model defined in 
(2) represents the plant exactly, then, it can be shown that 
cost V1 will be bounded and strictly decreasing as long as 
weight S is sufficiently large. Thus, the controller is 
stabilizing for the linear system. 

b). For any  and ( )x k p+ ∈ℵ ( )u k p+ ∈ Ω  there is a control 
action  such that following inequality is feasible ( 1)p+ +u k

( ) (
( )( )
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and  satisfies (13). (u k p+ +1)

)
)

If conditions (a) and (b) are satisfied, then the optimization 
problem that minimizes  subject to constraints (13) 

is always feasible for any . Also,  will be 
bounded and decreasing, and so the dual mode NMPC will be 
converging. 

( ( )V x k

( )x k ∈ℵ ( ( )V x k

4. EXAMPLE: INDUSTRIAL POLYMERIZATION 
REACTOR 

In order to compare the performance of the proposed dual 
mode NMPC to the globally stable linear IHMPC, the 
controllers were tested by simulation in a free radical initiated 
bulk and solution of styrene polymerization in a 3000 liter 
jacketed CSTR (see Figure 2). 

 

 

Fig. 2. Styrene polymerization reactor. 

The model of the polymerization process is described by the 
following equations (Sotomayor et al., 2007): 
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where: 

A : area of heat transfer  
Cp : specific heat of the fluid in the reactor 
Cpc : specific heat of the fluid in the cooling jacket 

f : initiator efficiency 
h : global heat transfer coefficient 

[I] : concentration of initiator in the reactor 
[If] : concentration of initiator in feed stream 
ki : kinetic constants of the polymerization 

reaction 
[M] : concentration of monomer in the reactor 
[Mf] : concentration of monomer in the feed stream 
Qi : flowrate of initiator 
Qc : flowrate of cooling fluid to the jacket  
Qm : flowrate of monomer  
Qs : flowrate of solvent 
Qt : flowrate of the outlet stream of the reactor  
t : time 
T : temperature in the reactor 
Tc : temperature of the cooling fluid  
Tcf : inlet temperature of the cooling fluid 
Tf : temperature of the feed 
V : volume of the reactor 
Vc : volume of the cooling jacket 

-ΔHr : heat of the polymerization reaction 
ρ : density of the reacting fluid 
ρc : density of the cooling fluid 

 
The numerical values of the model parameters and usual 
operating conditions of the reactor can be found in 
Sotomayor et al. (2007). The control objective in the reactor 
is to maintain the reaction temperature (T) at the desired 
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value by manipulating the flow of initiator (Qi) and the flow 
of fluid to the cooling jacket (Qc).  

The tuning parameters of the dual mode NMPC are the 
following: 

2p = , , ,  10Q = 4 4 0
1 10

0 2
R − ⎡ ⎤

= × ⎢ ⎥
⎣ ⎦

2000S =

[ ]max 600 600 Tu = , ,  [ ]min 0 0 Tu = [ ]max 40 50 TuΔ =
 
Figure 3(a) shows the responses of the NMPC when the set 
point of the reactor temperature suffers a change from 353.56 
K to 356.56 K. It is also shown the responses of the IHMPC 
with the same tuning parameters as the dual mode NMPC 
except the control horizon m, which is made equal to one. As 
the system has two manipulated inputs and only one 
controlled output, the trajectories of the inputs and the 
resulting steady states are quite different. Figure 3(b) shows 
the cost V for the two controllers. It is clear that the 
performance of the proposed nonlinear controller is 
substantially better than the performance of the linear 
controller. 

 

 

 
Fig. 3(a). Closed loop responses for an increase of 3 K in the 

set point of the reactor temperature: (⎯⎯) dual mode 
NMPC, (⎯   ⎯) IHMPC. 

 

Fig. 3(a)(Cont.). Closed loop responses for an increase of 3 K 
in the set point of the reactor temperature: (⎯⎯) dual mode 
NMPC, (⎯   ⎯) IHMPC. 

 

 

Fig. 3(b). Cost function profile: (⎯⎯) dual mode NMPC, 
(⎯   ⎯) IHMPC. 

Figure 4 shows the responses of the closed loop system with 
these controllers for a step change of 5 K in the temperature 
of the feed stream, while the set point of the reactor 
temperature is kept at 353.56 K . Again, the performance of 
the proposed nonlinear controller is much better than the 
performance of IHMPC. Observing the response of flow of 
cooling fluid (Qc), it can be noted that this input is kept 
saturated at is maximum value for time instants after 12 h. 
This means that, in this case, we cannot apply the usual 
approach of the dual mode NMPC, which assumes that inside 
the terminal set we use a linear unconstrained controller.  

5. CONCLUSIONS 

In this work it is proposed a dual mode NMPC that combines 
the conventional finite horizon NMPC with the infinite 
horizon linear MPC. It is assumed that the system is working 
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in an operating region where IHMPC is globally stabilizing 
and the controller is developed according to the ideas of 
Odloak (2004). 

 

     

 

 

Fig. 4. Closed loop responses for an increase of 5 K in the 
feed temperature: (⎯⎯) dual mode NMPC, (⎯   ⎯) 
IHMPC. 

It is shown that the cost function of the conventional NMPC 
can be extended to include the cost of the IHMPC and the 
resulting infinite horizon cost can be made bounded without 
the inclusion of hard constraints. In the proposed controller, 
the nonlinear part of the controller has finite output and input 
horizons, while the linear part of the controller has infinite 
output horizon and control horizon equal to one. The basic 

difference between the proposed approach and the existing 
ones is that constraints can also be imposed in the linear 
controller that is activated when the state enters the terminal 
set, which enforces a more realist scenario to the control 
problem. The proposed approach was tested by simulation in 
a polymerization reactor for temperature tracking and 
temperature regulation. 
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