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Abstract: This paper is concerned with the development of a control system for rotational maneuver and 
vibration suppression of a flexible spacecraft. It is assumed that the system parameters are unknown. The 
design approach presented here treats the problem of spacecraft attitude control separately from the elastic 
vibration suppression problem. As a stepping stone, a state feedback sliding mode control command is 
designed for the reaction wheel to achieve the reference trajectory tracking control of attitude angle. This 
is followed by the design of an adaptive sliding mode control (ASMC) law using only the output for robust 
stabilization of spacecraft in the presence of parametric uncertainty and external disturbances. Although 
this controller has the ability to reject the disturbance, deal with uncertainty and to ensure that the system 
output errors asymptotically converge to the sliding mode during the commanded motion, it excites the 
elastic modes of flexible appendages. The undesirable vibration is actively suppressed by applying 
feedback control voltages to the piezoceramic actuators, in which the control voltages are determined 
using the modal velocity feedback control method. Both analytical and numerical results are presented to 
show the theoretical and practical merits of this hybrid approach 

 

1. INTRODUCTION 

Modern spacecraft often employ large, complex and 
lightweight structures such as solar arrays to achieve 
increased functionality at a reduced launch cost. The 
combination of large and lightweight design results in these 
space structures being extremely flexible and having low-
frequency fundamental vibration modes. Orbital operations, 
such as slewing maneuvers, will induce vibrations in these 
flexible structures that can degrade operational performance. 
Dynamical models of spacecraft are also nonlinear and 
include the rigid and flexible mode interaction. Moreover, the 
parameters of spacecraft are not precisely known. All of these 
issues create considerable difficulty in the design of control 
systems for attitude tracking of flexible spacecraft. 

To reduce vibrations the use of smart structures with 
advanced control algorithms are investigated as a potential 
solution to efficiently maneuver lightweight flexible 
spacecraft and minimize the excitation of structural 
resonances during operations.  Piezoelectric twist actuators 
used for this application are based on anisotropic straining of 
the host structure using directionally attached isotropic 
actuators or using piezoelectric fibers integrated into the 
composite structural members. Fanson and Caughey (1990) 
proposed positive position feedback (PPF) control where the 
structural position coordinate is fed directly to the 
compensator and the product of the compensator and a scalar 
gain is fed back positively to the structure. Hu and Ma (2005, 
2006) have extended this approach. The design of active 
controllers using piezoelectric actuators for vibration control 

of flexible spacecraft systems has also been considered 
theoretically by various authors (Singh and Arahio, 1999; 
Song and  Agrawal, 2001; Gennaro, 1998). 

Sliding mode control (SMC) schemes have been proposed for 
spacecraft attitude control system design (Crassidis and 
Markley, 1996; Lo and Chen, 1995). In a practical situation, 
the measurement of the flexible mode responses is extremely 
difficult. Thus, there is a need to design a control system for 
torque control which does not require the measurement of all 
of the state variables. Based on output feedback, controllers 
for maneuvering flexible spacecraft have been designed 
(Zeng et al., 1999; Singh and Zhang, 2004). However, in this 
approach, the structure of the uncertainty has to be known for 
the controller design. Thus the objective is to design an 
adaptive and robust control law which is simple and has a 
good tracking precision in the presence of disturbances, yet is 
independent of system parameters. 

The contribution of this paper lies in the design of a simple 
but effective control system for rotation maneuvers and 
elastic mode stabilization of a flexible spacecraft. It is 
assumed that the spacecraft parameters are completely 
unknown and its model is also of finite but arbitrary order. 
The control scheme consists of two separate feedback control 
loops for accomplishing the objectives of vibration reduction 
and accurate pointing simultaneously. More precisely, the 
desired control torque is designed based on a continuous 
version of the adaptive sliding mode control (ASMC) design 
technique to force the tracking error to asymptotically 
approach zero, and also to only use the attitude angle and 
angular rate for feedback. Moreover, a priori bounds on the 
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uncertainty and the disturbance are released by using an 
adaptive learning law. With the presence of this outer 
feedback controller, the inner feedback controller based on 
modal velocity feedback control is then designed to actively 
suppress the vibration (flexible motion) of the system. This is 
then extended to incorporate the attitude controller and inner 
feedback controller to achieve the reference trajectory 
tracking and vibration suppression, in which a reference 
trajectory generator of third order is chosen. Numerical 
simulations performed on a five-mode model of the 
spacecraft with flexible appendage during attitude tracking 
demonstrate the effectiveness and feasibility of the method.  

2. FLEXIBLE SPACECRAFT AND CONTROL PROBLEM 

Using the extended Hamilton’s principle, the equations of 
motion for the flexible spacecraft with surface mounted PZT 
sensors and actuators can be written as (Hu and Ma, 2005)  

2 ( )TJ q Mq q u d t+ Φ = ++θ θ�� � � ��                      (1) 

2( )T Mq Cq K M q BvΦ + + − −+ =θ θ�� �� �� �                (2) 

TCv B q=                                    (3)        

where [ ]1 2 nΦ = φ φ φ� " , [ ]1 2
T

nq q q q= " , and 

( )j xφ and ( )jq t  ( )1,2, ,j n= …  are the assumed mode 
shapes and generalized co-ordinates, respectively. Hu and Ma 
(2005) gave further details of the model derivation. 

In this work, we are interested in deriving a control system 
such that, in the closed-loop system, the attitude angle ( )tθ  
tracks the reference trajectory ( )r tθ  in the presence of 
external disturbance and parametric uncertainty, and at the 
same time the induced elastic oscillations are actively 
damped out. The reference command is generated by the 
third-order system (Singh and Arahio, 1999)  

2 3 *3 3 ( ) 0r c r c r c+ + + − =θ λ θ λ θ λ θ θ��� �� �                (4) 

where 0c >λ  and *θ  is the desired terminal value of the 
angle. For a proper choice of reference trajectory, the 
spacecraft attains the desired orientation, as θ  converges to 

rθ . For the design of the controller, it is assumed that the 
system parameters are not known. Moreover, the controller 
must only use the measured signals θ  and θ� , since the 
elastic modes q  and q�  are not available.  

3. CONTROL STRATEGY 

3.1. Attitude Control Subsystem  

We first formulate the sliding mode controller to determine 
the flywheel torque such that reference angle trajectory 
tracking is accomplished and the elastic oscillations remain 
bounded during the tracking. To do this, as a first step, we 
rewrite Eqs. (1) and (2) as 

1 1
1

( , , ) uC q K q f q
J

− − + =θ θ θ�� ��                     (5) 

where ( )
1 2

1

2 ( ), ,
Tq Mq M Mq d tf q

J

−+ Φ −
=

θ θ
θ θ

� ���  is the 

lumped perturbation including external disturbance torque, 
nonlinear couple terms and possible parametric uncertainty, 

( )1
1

TJ J M −= − Φ Φ� � , 
1

1
1

M CC
J

−Φ
=
�

 and 
1

1
1

M KK
J

−Φ
=
�

. 

Note that the effect of the inner-loop, which will increase the 
damping of the flexible structure by the control using the 
piezoceramic actuators, is neglected here for simplicity, but 
will be considered later.  

Throughout this paper, the following assumptions are used: 

Assumption 1: The elastic oscillation and its rate are 
bounded, that is ( )q t  and ( )q t�  are bounded during the 

whole attitude tracking process. The notation x  in this 

paper denotes the Euclidean norm of vector x , and X  is 
the induced two-norm of a matrix X .  

Assumption 2: The external disturbance ( )d t to the 
spacecraft system given in Eq. (1) is bounded. 

Assumption 3: Given the assumptions 1 and 2, there exist 
positive constant scalars 0γ , 1γ  and 2γ  such that  

( ) 2 1 0, ,f q ≤ + +θ θ γ θ γ θ γ� �                       (6) 

for all t +∈\ . 

For the purpose of design, let the attitude tracking error be 

r= −θ θ θ� , and select a switching surface in the error state 
space as 

0

t
p i d= + + ∫σ θ λ θ λ θ τ�� � �                           (7) 

where 0p >λ  and 0i >λ .  

To derive the control law such that the surface 0=σ  attracts 
all trajectories, a Lyapunov based approach is used. A 
candidate Lypunov function is chosen as  

2

1 2
V =

σ                                        (8) 

The derivative of 1V  along the trajectory of Eq. (7) is given 
by  

( )1 1 1
1

( ) p i r
uV C q K q f
J

⎛ ⎞
= + − + + + −⎜ ⎟⎝ ⎠

σ σ λ θ λ θ θ�� � ��� � i     (9) 

In view of Eq. (9), to make 1 0V <� , one option is to choose 
( )u t  of the form 
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( ) ( )
( )

1 1 1

2 1 0 sgn( )

p i rC qu J K q⎡= − − + − + −⎢⎣
⎤− + + ⎦

βσ λ θ λ θ θ

γ θ γ θ γ σ

� �� � ��

�
      (10) 

where 0>β  is a constant. 

Substituting the control u  given in Eq. (10) into Eq. (9) 
yields 

( )2
1 2 1 0

2

( )

0

V f= − − − + +

≤ − ≤

βσ σ γ θ γ θ γ σ

βσ

�� i
          (11) 

Since 1V is a positive definite function of σ and 1V� is negative 
semi-definite, according to Eq. (12), it follows that σ  is 
bounded function and 1( )V ∞ exists. Integrating both sides of 
Eq. (11) with respect to time gives 

2
1 10

( ) (0) ( )d V V
∞

≤ − ∞ < ∞∫ βσ τ τ                  (12) 

Also, in view of Eqs. (7) and (10), σ�  is bounded. It then 
follows from Barbalat’s lemma (Slotine and Li, 1991) that 

( ) 0t →σ  as t → ∞ , which implies that the tracking error 

converges to zero, 0→θ�  and 0→θ��  as t → ∞ . Thus, in the 
closed-loop system, the attitude angle asymptotically follows 
the given reference trajectory rθ . Now the following theorem 
can be stated. 

Theorem 1: Consider the system given by Eqs. (1)-(3) with 
the assumptions 1-3. If the control law is designed according 
to Eq. (10), and the switching surface function is selected as 
given in Eq. (7), then the switching variable ( )tσ  will 

converge to zero, and the tracking errors 0→θ�  and 0→θ��  
as t → ∞ .  

Remark 1. The synthesis of the control law in Eq. (10) has 
two problems: 

1. It is necessary to measure the elastic vibration deflection 
and its rate information in the attitude control loop. Although 
a dynamical compensator can be used to estimate q  and q� , 
this will increase the complexity of the control system. 
Therefore, there is a great benefit in synthesizing a controller 
using only the attitude measurements, namely the attitude 
angle and its derivative, for feedback in attitude control loop. 

2. It is seen that Eq. (10) is obtained only if the system 
parameters ( 1C , 1K , 1J , 2γ , 1γ  and )0γ  are completely 
known. When there are parameter variations in the system, 
exact cancellation of the variation in Eq. (9) is not possible 
and one cannot guarantee that the derivative of Lyapunov 
function is semi-definite, as given in Eq. (11).  

To overcome these drawbacks, we will design an adaptive 
output feedback sliding mode controller for the spacecraft 
system in the presence of parametric uncertainty and external 
disturbance. A modified control law is obtained from Eq. (10) 
as follows. It is assumed that scalar 1J  is unknown but that 
its sign is assumed to be known. Note that the sign of the 

scalar parameter 1J  is known by computation using the 
model parameters.  

Let 1̂J  be the estimated of the unknown parameter 1J , and 
ˆiγ  ( )1, 2, 3i =  be the estimates of the unknown bound 

parameters iγ  ( )1, 2, 3i = , in which 3γ  is selected to satisfy 

0 1 1 3C q K q+ + <γ γ� . Note that from assumptions 1-3, there 
does exist a positive constant 3γ  such this inequality is 
guaranteed to be satisfied in the domain of interest.  

Denote  

[ ]2 1 3
TΨ = γ γ γ ,    1

T⎡ ⎤ϒ = ⎣ ⎦θ θ�             (13) 

This definition will be used later to prove stability of the 
following proposed control scheme. Now, based on Theorem 
1 and this definition, we have the following theorem. 

Theorem 2. Consider the flexible spacecraft system defined 
by Eqs. (1)-(3), with the assumptions 1-3 and switching 
surface Eq. (7). Assume the sign of scalar parameter 1J  is 
known. If the adaptive sliding mode controller is chosen to be 

( )
( )

1

2 1 3

ˆ

垐� sgn( )

p i ru J ⎡= − + + −⎢⎣
⎤+ + + ⎦

βσ λ θ λ θ θ

γ θ γ θ γ σ

�� � ��

�
               (14) 

with the adaptation law  

( )
( )2 1 3 1

1ˆ

垐 � sgn( ) sgn( )

p i rJ

J

⎡= + + −⎢⎣
⎤+ + + ⎦

βσ λ θ λ θ θ
α

γ θ γ θ γ σ σ

� �� � ��

�
        (15a) 

1ˆ −Ψ = Γ ϒ σ�                                (15b) 

where Γ  is a positive definite symmetric matrix and 
0>α  ,then 2 0V ≤ − <βσ�  holds and this will in turn lead to 

the convergence of the switching variable ( ) 0t →σ  and 

attitude tracking error 0→θ�  as t → ∞ .  

Proof. To show the resulting control scheme achieves the 
control objective, consider the following candidate Lyapunov 
function  

1 2 2
2 12 1

1TV J
J

⎛ ⎞
= + Ψ ΓΨ +⎜ ⎟⎝ ⎠

σ α� � �                  (16) 

where [ ] [ ]2 1 3 2 2 1 1 3 3垐 �T TΨ = = − − −γ γ γ γ γ γ γ γ γ� � � �  and 

1 1 1̂J J J= −�  denote the parameter errors. 

Differentiating 2V  with respect to time and substituting the 
time derivative of sliding surface σ�  and control law u  into 
Eq. (14) with the adaptation law yields 
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( )
( )

2
2 2 1 3

2 1 3

2

垐 � T

V ≤ + + −

− + + − Ψ ϒ

= −

σ γ θ γ θ γ βσ

γ θ γ θ γ σ σ

βσ

��

� �            (17) 

where the identity 1 1
1 1

1 1ˆ 1J J
J J

= − �  has been used in the 

derivation.  Barbalat’s lemma (Slotine and Li, 1991) can be 
used to show σ  converges to zero such that the tracking error 

converges to zero, 0→θ�  and 0→θ��  as t → ∞ .  

3.2. Vibration Control Subsystem 

To suppress the vibrations of the flexible structures, we adopt 
the modal velocity feedback control method (Iyer and Singh, 
1991) to determine the control input voltages for the 
piezoceramic actuators. Here we assume that the elastic 
displacement and its velocity can be measured by 
piezoceramic sensors. When the switching variable ( )tσ  is 

identically zero, r= −θ θ θ�  and r= −θ θ θ�� � �  will approach 
zero. For simplicity, let us assume rθ  is a constant trajectory. 
Then, the elastic vibration becomes decoupled from the rigid 
body motion. Imposing this condition, Eq. (2) becomes 

Mq Cq Kq Bv+ + = −�� �                                (18) 
For this case, suppose that the feedback control law for the 
stabilization of the elastic modes is chosen to be of the form  

1v B Fq−= �                                        (19) 

where 1 2diag( , )F f f=  is a diagonal matrix with positive 

elements if , and 1B−  is understood as the pseudoinverse of 
B . 

To establish the stability of the structural dynamics given by 
Eq. (18), we consider a quadratic positive definite Lyapunov 
function of the form  

( )1
3 2

T TV q Mq q Kq= +� �                           (20) 

The derivative of 3V , using Eq. (18), is given by  

3 ( ) 0T T TV q Mq q Kq q Fq t= + ≤ − ≤� � �� � �               (21) 
One can conclude that the trajectory of the system given by 
the solution to Eq. (18) eventually lies in the set E  (Iyer and 
Singh, 1991), where 

( ){ }2, , ( ) 0T T NE q q Fq t= ∈ =� �\           (22) 

The motion of Eq. (18), confined to the set E , evolves 
according to  

f f fx A x=�                                   (23) 

where 
0

f
I

A
K C

⎡ ⎤
= ⎢ ⎥− −⎣ ⎦

 

Associated with the system given by Eq. (18), an output 
vector may be defined as 

0 T
v f fy C x B x⎡ ⎤= = ⎣ ⎦                           (24) 

According to this definition, y  is identically zero whenever 

fx  belongs to the set E . Now if the matrix pair ( ),v fC A  is 

observable, then 0y =  implies that 0fx = , and it follows 

that the equilibrium point ( ), 0
TT T

fx q q= =�  of the 

equations of motion (18), with the control law Eq. (19), is 
globally exponentially stable.  

Theorem 3. Consider the closed-loop system given by Eqs. 
(1), (2), (3), (14) and (19). Suppose that the hypothesis of 
Theorem 2 is satisfied and that the system Eq. (18) with 
controller given by Eq. (19) is stable. Then in the closed-loop 
system 0→θ� , 0→θ�� , 0q →  and 0q →� , as t → ∞ . 

Proof: The proof is omitted. 

Remark 2: Note that the proposed control scheme has the 
following characteristics. 
1. For the attitude control subsystem, the measurement of the 
flexible modes is not necessary. Due to the difficulty in 
measuring q  and q�  this is a great advantage for 
implementation of the attitude controller. 

2. In practice, a suitable estimate for the lumped perturbation 
is difficult as we are not able to anticipate the variation in the 
bounds of the uncertainties. Overestimation may result in 
unnecessarily high gains and large chattering which degrade 
system performance. Underestimation, on the other hand, is 
not permitted as it may lead to instability. The proposed 
adaptation law to estimate the lumped perturbation solves this 
problem and alleviates the difficulty arising from 
assumptions about the flexible modes, parameter variations, 
disturbances and other system uncertainties. 

4. SIMULATION AND COMPARISON RESULTS 

In order to demonstrate the effectiveness of the proposed 
control schemes, numerical simulations have been performed 
and are presented in this section. The complete spacecraft 
model given by Hu and Ma (2005) is used for the simulations. 
The first five modal frequencies of the flexible appendage are 
3.161, 16.954, 47.233, 94.557, and 153.003 rad/s, and all 
modal damping ratios are assumed to be 0.004. Only the first 
two low-order modes of the five modes in the flexible system 
model are considered for vibration suppression. In the 
simulation, it is desired to slew the spacecraft to a target 
angle 70° and the initial conditions are assumed to 
be (0) 0=θ , (0) 0=θ� , (0) 0q = and (0) 0q =� . In addition, 
practical implementations will restrict the moment available 
from the flywheel, and thus the control input is bounded with 
a saturation value of 1 Nm. Here the vibration level is 
described by the energy function T T

qqE q q q K q= +� � . The 
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external disturbance is assumed to be of the form 
( ) 3sin(0.05 ) 1.5cos(0.02 )d t t t= + .  

Fig. 1 gives the simulation plots for the case of ASMC with 
step input reference. It is noted that an acceptable angle 
response is achieved and the vibrations achieves a maximum 
amplitude of 0.004 Nm in energy. Moreover, the settling time 
is less than 40s. This reflects the effectiveness of the 
proposed ASMC for atttiude control and flexible structural 
vibrations suppression. 

 

    
 

 

 

 

 

 

 

 

                            (a)                                                  (b) 

 

 

 

 

 

    (c) 

Fig. 1. Time response with ASMC control with a step input 
command 
 
The simulation was repeated using the smooth reference 
command instead of the step command. The simulation 
results are shown in Fig. 2. Comparing Figs. 1 and 2 shows 
that the attitude angle response is similar in both cases. The 
smooth input gave a significantly smaller vibration response, 
with the maximum amplitude of the energy being less than 
0.0003 Nm. The modal vibration response was found to have 
almost zero vibration after 30s. A step input command will 
always excite the vibration modes of a structure, and the 
smooth input command using Eq. (4) acts as a low pass filter. 
The required attitude angle was achieved with settling time of 
30s, and no overshoot was observed.  

The case of the adaptive sliding mode controller integrated 
with a modal velocity feedback (MVF) compensator with the 
smooth reference command was also studied. Figure 3 shows 
the results of employing this combination. The imposed 
desired angular displacement is accurately achieved and the 

relatively large amplitude vibrations excited by rapid 
maneuvers can be actively suppressed, as shown in Fig. 3(b). 
This demonstrates the validity of active vibration reduction 
based on the modal velocity feedback control technique using 
piezoelectric materials as sensors/actuators.  

Extensive simulations were also performed using different 
parameter uncertainty and disturbance inputs. These results 
show that in the closed-loop system attitude control and 
vibration stabilization were achieved in spite of perturbations 
in the system. Moreover, the flexibility in the choice of 
control parameters can be utilized to obtain desirable 
performance while meeting the constraints on the control 
magnitude and elastic deflection. 

 

 

 

 

 

 

 

 

 

                       (a)                                               (b) 

 

 

 

 

 

 

(c) 
Fig.2. Time response with ASMC control with a smooth 
input command 
 

5. CONCLUSIONS 

In this paper, a robust adaptive control system was derived 
for the attitude tracking and vibration suppression of an 
orbiting spacecraft with flexible appendages with bonded 
piezoelectric actuators/sensors. The system parameters are 
assumed to be uncertain and the truncated model of the 
spacecraft has a finite but arbitrary dimension. The design 
approach presented here treats the problem of spacecraft 
attitude control separately from the elastic vibration 
suppression problem. A third-order reference command 
generator was chosen for output tracking. For the attitude 
tracking subsystem, two controllers are designed based on 
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sliding mode control techniques. The first, a direct sliding 
mode controller, is a full-state feedback controller and 
achieves asymptotic attitude tracking, but the system 
parameters need to be known. This controller is then 
redesigned such that the need to measure the elastic modes 
and the system parameters is eliminated, in which parametric 
uncertainty and additive bounded disturbance are 
compensated by using an adaptive updating law. This 
adaptive controller has several design parameters that can be 
adjusted to obtain desirable response characteristics. For 
actively damping elastic motion, the vibration compensator is 
separately designed based on modal velocity feedback control 
method to determine the control voltage for the piezoelectric 
actuators. The benefits of the proposed control methodology 
are demonstrated on a five-mode model of a spacecraft with a 
flexible appendage. Simulation results show that control of 
the attitude tracking and the vibration reduction can be 
accomplished using adaptive output feedback sliding mode in 
spite of the uncertainties in the system parameters and the 
external disturbance.  

 
 

 

 

 

 

 

 

                   

                            (a)                                          (b) 
 

 

 

 

 

 

 

 

                                                        (c) 

Fig.3. Time response with ASMC control + MVF 
compensator with the smooth reference command 
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