Fundamental Filtering Limitations in Linear Non-Gaussian Systems
Abstract
The Kalman filter is known to be the optimal linear filter for linear non-Gaussian systems. However, nonlinear filters such as Kalman filter banks and more recent numerical methods such as the particle filter are sometimes superior in performance. Here a procedure to a priori decide how much can be gained using nonlinear filters, without having to resort to Monte Carlo simulations, is outlined. The procedure is derived in terms of the posterior Cramer-Rao lower bound. Results are shown for a class of standard distributions and models in practice.