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1. INTRODUCTION

The solution to the so-called “adaptive control”
problem is akin to the elusive search for the “Holy
Grail” in the context of feedback control system
design. In spite of forty years of research, several
books and hundreds of articles we still lack, in our
view, a universally accepted design methodology
for adaptive control which is based on sound the-
oretical issues and suitable for engineering imple-
mentations in real-life control systems. In this pa-
per we overview some recent progress in adaptive
designs that employ multiple-models. Currently
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available results seem to be very promising, but
still require a great deal of theoretical and prag-
matic research to arrive at the “Holy Grail” of
adaptive control. Thus, the solution to the adap-
tive control problem is still not available.

We first discuss a general philosophy for designing
“robust” adaptive multivariable feedback control
systems for linear time-invariant (LTI) plants that
include both unmodeled dynamics and uncertain
real parameters in the plant state-space descrip-
tion. The adjective “adaptive” refers to the fact
that the real parameter uncertainty and perfor-
mance requirements require the implementation
of a feedback architecture with greater complex-
ity than that of the best possible non-adaptive
controller. The word “robust” refers to the desire
that the adaptive control system remains stable
and also meets the posed performance specifica-



tions for all-possible “legal” parameter values and
unmodeled dynamics.

In order to place our remarks in a proper perspec-
tive we pose a set of basic engineering questions
that naturally arise when we deal with adaptive
control:

(1). What do we gain by using adaptive control?

(2). How do we fairly predict and compare per-
formance improvements (if any) of a proposed
adaptive design vis-à-vis the “best nonadaptive”
one?

(3). How do we design adaptive controllers with
guaranteed robust-stability and robust-performance
in the presence of unmodeled dynamics and un-
measurable plant disturbances and sensor noises?

(4). Is the increased complexity of an adaptive
controller justified by the performance improve-
ment? What should be the level of complexity for
performance guarantees?

Even though there is no precise universally ac-
cepted definition of “adaptive control” the above
questions are (or should be) at the heart of adap-
tive control research; they have motivated the
discussion perspective adopted in this paper.

It is important to stress at this point that the
vast majority of approaches to adaptive control
deal with the case of constant uncertain uncertain
real parameters. However, from an engineering
perspective, the true value of an adaptive system
can only be judged by its performance when the
uncertain real parameters change “slowly with
time”, within predefined limits.

Thus, one designs and tests an adaptive system
for constant real parameters, using whatever the-
oretical approaches developed, but it should be
also tested for time-varying parameters as well.

The current accepted concept of a robust (non-
adaptive) feedback control system, for linear time-
invariant (LTI) plants, is that the designed com-
pensator must be such so as to guarantee (if pos-
sible) closed-loop stability and to also meet posed
performance specifications, most often reflecting
superior disturbance-rejection. This attribute is
often referred to as “stability- and performance-
robustness.” The physical plant is assumed to
belong to a “legal family” of possible plants,
where the nominal plant together with frequency-
dependent upper bounds on unmodeled dynam-
ics and upper- and lower-bounds on key uncer-
tain real parameters defines this “legal family” of
plants. The performance specifications are explic-
itly stated in the frequency domain; they typically
require superior disturbance-rejection in the lower
frequency region while safeguarding for excessive
control action at higher frequencies. At present,

robust synthesis can not deal with slowly-varying
parameters, from a theoretical perspective.

It is highly desirable that the above attributes
of nonadaptive robust feedback systems be also
reflected in the design of robust adaptive con-
trollers as well. Thus, in our view, an adaptive
control design must explicitly yield stability- and
performance-robustness guarantees, not just sta-
bility (which has been the central focus of almost
all adaptive control methodologies).

1.1 Brief Historical Perspective

Early approaches to adaptive control, such as the
model-reference adaptive control (MRAC) method
and its variants, were concerned with real-time
parameter identification and simultaneous adjust-
ment of the loop-gain. Representative references
are (Landau, 1979; Narendra and Annaswamy,
1988; Sastry and Bodson, 1989; Åström and Wit-
tenmark, 1995; Ioannou and Sun, 1996). In the
MRAC method the emphasis was on proving
global convergence to the uncertain real param-
eter and while using deterministic Lyapunov (hy-
perstability) arguments for inferring closed-loop
stability. However, the assumptions required for
stability and convergence did not include the
presence of unmodeled dynamics, unmeasurable
disturbances and sensor noise. Moreover, no ex-
plicit and quantifiable performance requirement
was posed for the adaptive system; rather the
“goodness” of the MRAC design was judged
by the nature of the command-following error
based upon simulations. It turned out that clas-
sical MRAC systems can become unstable in the
presence of plant disturbances, sensor noise and
high-frequency unmodeled dynamics (Rohrs et al.,
1985). Moreover the MRAC methodology was lim-
ited to single-input single-output (SISO) plants;
attempts to extend the MRAC methodology to
the multi-input multi-output (MIMO) case were
extremely cumbersome. Because of these short-
comings, we shall not further address the MRAC
methodology in the sequel.

Later, and the more recent, approaches to the
adaptive problem involved multiple-model tech-
niques which, in principle, are applicable to the
MIMO case. The (large) real-parameter uncer-
tainty set was subdivided into smaller parame-
ter subsets; each parameter subset gives rise to
a different “plant model set” with reduced real-
parameter uncertainty. One then designed a set
of control gains or dynamic compensators for each
model set so that, if indeed the true parameter was
“close” to a specific model, then a “satisfactory”
performance was obtained.

In one of the multiple-model approaches, the iden-
tification of the most likely model is carried out



by a “supervisor” which switches different con-
trollers, based primarily on deterministic concepts
(Morse, 1996, 1997, 1998, 2004; Narendra and
Balakrishnan, 1997; Anderson et al., 2000, 2001;
Hespanha et al., 2001). These proofs and results
were presented for the case of SISO systems. The
second approach relied upon stochastic designs
that generated on-line posterior probabilities re-
flecting which of the models was more likely. In the
latter approach the controllers could be designed
either by classical LQG methods (Willner, 1973;
Greene, 1975; Athans et al., 1977; Shomber, 1980;
Greene and Willsky, 1980; Schiller and Maybeck,
1997; Maybeck and Griffin, 1997; Schott and Be-
quette, 1997) or by more sophisticated methods
(Fekri et al., 2004a,b,c; Fekri, 2005). In the latter
approach one can deal with MIMO designs. A
different, more direct approach, called unfalsified
control, also merits mention (Safonov and Tsao,
1995, 1997; Jun and Safonov, 1999); although we
shall not discuss it in this paper. We also do not
discuss numerous approaches to adaptive control
utilizing “intelligent” methods, such as neuro-
fuzzy designs, since they are void of any analytical
insights.

In all the proposed multiple-model adaptive meth-
ods the complexity of the adaptive feedback sys-
tem directly depends on the number of models
employed, N . By decreasing the size of the para-
metric subsets one obtains more models. Thus,
all multiple model approaches must address the
following:

(a) how to divide the initial large parameter
uncertain set into N smaller parameter subsets,

(b) how to determine the “size” or “boundary” of
each parameter subset, and

(c) how large should N be? Presumably the
“larger” the N , the “better” the performance of
the adaptive system is.

1.2 Our Design Philosophy

In this paper we shall focus upon “robust per-
formance” requirements on the adaptive system
implemented by one of the available multiple-
model methods. We follow the recent research on
“Robust Multiple-Model Adaptive Control (RM-
MAC),” (Fekri et al., 2004a,b,c; Fekri, 2005),
which will be discussed in more detail in the
sequel.

If we turn our attention to the non-adaptive
literature there exists a well-documented de-
sign methodology, and associated Matlab design
software, for linear time-invariant multivariable
plants (both SISO and MIMO) that addresses
simultaneously both robust-stability and robust-

performance in the presence of unmodeled dynam-
ics and parametric uncertainty as well as unmea-
surable plant disturbances and sensor noise. This
methodology, pioneered by Doyle et al., is often
called the mixed-µ design method. The mixed-
µ design method incorporates the state-of-the-
art in non-adaptive multivariable robust control
synthesis and exploits the proper use of frequency-
domain weights to quantify desired performance.
Typically, using the mixed-µ design method, one
finds that as the size of the parametric uncer-
tainty is reduced the guaranteed desired perfor-
mance, say disturbance-rejection, increases. Un-
fortunately, very little has been done in integrat-
ing the non-adaptive mixed-µ design methodology
with that of robust adaptive control studies; even
though it should be apparent that the mixed-
µ design method should provide us guidance on
the selection and number, N , of the models to
be used in any multiple-model adaptive control
scheme. Notable exceptions are (Kosut and An-
derson, 1988; Anderson et al., 2000; Fekri et al.,
2004a,b,c; Fekri, 2005).

We now summarize our design philosophy regard-
ing adaptive control designs that employ multiple
models. We assume that:

(1). Independent of the size of uncertainty for the
plant real parameter(s), the plant always contains
unmodeled dynamics whose size can be bounded
a priori only in the frequency domain. Therefore,
the adaptive design must explicitly reflect these
frequency-domain bounds upon the unmodeled
dynamics. The presence of unmodeled dynamics
immediately brings into sharp focus the fact that
we must use the state-of-the-art in nonadaptive
robust control synthesis, i.e. mixed-µ synthesis
(Young et al., 1992, 1995; Young, 1994; Zhou et
al., 1996; Zhou, 1998; Balas, 2003; Balas et al.,
2004); and associated Matlab software (Balas,
2003; Balas et al., 2004).

(2). The plant is subject to unmeasurable plant
disturbances whose impact upon the chosen per-
formance variables (error signals) must be mini-
mized, i.e. we must have superior “disturbance-
rejection”. The modern trend is to use frequency-
depended weights to emphasise and define supe-
rior disturbance-rejection performance. This de-
sign objective can also be accommodated by the
mixed-µ design methodology.

(3). The plant measurements are not perfect; thus
sensor measurements are corrupted by unmeasur-
able sensor noise. The performance variables must
be “insensitive”, to the degree possible, to such
sensor noise.

(4). Performance requirements must be explicitly
defined, up to constants whose values can be op-
timized for superior performance. In the mixed-µ



design methodology these “disturbance-rejection”
performance requirements are explicitly quanti-
fied by frequency-domain weights typically involv-
ing the selected “error signals” and the control
variables.

(5). Given the information in (1) to (4), we can de-
sign the best “global non-adaptive robust compen-
sator (GNARC)” for the entire (large) uncertain
real-parameter set and taking into account both
the unmodeled dynamics and the performance
requirements. This non-adaptive feedback design
must be optimized so as to yield the best possible
performance, i.e. superior disturbance-rejection
with reasonable control effort. The GNARC then
provides a yardstick (lower-bound) for perfor-
mance, so that any performance improvements by
more complex adaptive designs can be quantified.
It is self-evident that the GNARC must be de-
signed using the mixed-µ synthesis methodology.

(6). An upper-bound for adaptive performance can
be obtained by optimizing the performance un-
der the assumption that the real-parameter val-
ues are known exactly, but still reflecting the
presence of complex-valued unmodeled dynam-
ics and frequency-dependent performance require-
ments. This implies that we compute for a large
number of grid points in the original parame-
ter uncertainty set a “fixed non-adaptive robust
compensator (FNARC)” which defines the best
possible performance for each parameter value.
The FNARC design is carried out using the
complex-µ synthesis methodology, since we still
must take into account the unmodeled dynamics
and frequency-dependent performance specifica-
tions. We use the same quantitative performance
requirements as in part (5) above. The set of
the FNARCs corresponds to having an infinite
number of models in the multiple-model imple-
mentation.

The difference between the lower-bound on per-
formance from the GNARC in part (5) and the
FNARC upper-bound from part (6) provides a
valuable quantitative decision aid to the designer
on what performance improvements are possible
by some multiple-model adaptive control method.
The designer must then make a quantifiable choice
on the degree of performance improvement that
he/she desires from the adaptive system. As we
shall show in the sequel, this approach will then
define the number of models (parameter subsets)
required, N , and their numerical specification
(boundary of parameter subsets) in a natural
manner.

One possible approach is that the designer de-
mands that the adaptive performance equals or
exceeds a certain percentage, say 75%, of the (best
possible) FNARC performance for each parameter
value. Another possible approach is to demand

that the adaptive system yield a performance that
equals a certain multiple, say 10, of the (lower-
bound) GNARC performance, if possible (there
may be inherent limitations due to non-minimum
phase zeros and/or unstable poles) and consistent
with the FNARC upper-bound. Yet another ap-
proach is to fix the number N of the models,
i.e. specify the complexity of a multiple-model
scheme, and maximize the performance for each
model. Many other approaches are also possible
which use both the GNARC lower-bound and the
FNARC upper-bound upon performance.

By following the above performance-driven metho-
dology one directly arrives at the number, N , of
required models in the adaptive multiple-model
system, as well as the quantification of each
model. In general, the more stringent the perfor-
mance requirements on any adaptive implemen-
tation – consistent, of course, with the FNARC
upper-bound – the larger the number of models
and the greater the complexity of the multiple-
model adaptive system. We stress that such a
systematic definition of the required models and
numerical specification would not be possible if
we did not explicitly pose the performance speci-
fications and optimized performance to the extent
possible.

The procedure summarized above can be used
with any of the adaptive multiple-model meth-
ods. We shall illustrate its detailed design and
properties by using the multiple-model method
in the context of dynamic hypothesis-testing,
which involves generating the posterior probabil-
ity for each model, the so-called Robust Multiple-
Model Adaptive Control (RMMAC) architecture.
However, it can also be used in conjunction
with the “switching” supervisory controllers de-
veloped by Morse, Anderson, Hespanha and oth-
ers. The important point to remember is that
all multiple-model adaptive schemes require the
definition of the minimum number of models
required to achieve both robust-stability and
robust-performance, and these can only be defined
after we pose realistic performance requirements
for the adaptive system as discussed above.

In Section 2 we present an overview of four dif-
ferent multiple-model architectures for adaptive
estimation, identification and control. In Section
3 we discuss the designs of the robust dynamic
compensators, such as the GNARC and FNARC
discussed above, and how to determine the num-
ber N of models in the multiple-model architec-
tures, as well as the collection of the compen-
sators. In Section 4 we focus upon the “identi-
fication” aspect of the RMMAC. In Section 5 we
present numerical results, using the RMMAC, for
a non-trivial dynamic control problem. Section
6 discusses the commonalties and differences of



the supervisory switching multiple model adaptive
control (SMMAC) and RMMAC architectures and
we summarize our conclusions in Section 7.

2. MULTIPLE-MODEL ARCHITECTURES IN
ADAPTIVE CONTROL

In this section we shall discuss the architectures
that utilize multiple-models. We follow a historical
development that traces the concepts over the
past 40 years or so. First we shall discuss the
architecture associated with multiple-model adap-
tive estimation (MMAE). Second, we discuss the
early extension of the MMAE concepts to clas-
sical multiple-model adaptive control (CMMAC).
Third, we present architectures associated with
SMMAC. Finally, we discuss the architecture as-
sociated with robust multiple-model adaptive con-
trol (RMMAC).

2.1 Multiple-Model Adaptive Estimation (MMAE)

One of the first uses of multiple-models was moti-
vated by the need for accurate stochastic state-
estimation for dynamic systems subject to sig-
nificant parameter uncertainty. In such problems
the estimation accuracy provided by standard
Kalman filters was not adequate. For some early
references regarding MMAE see (Magill, 1965;
Lainiotis, 1971; Athans and Chang, 1976; Hawkes
and Moore, 1976; Chang and Athans, 1978). We
remark that MMAE algorithm was also referred
to as “partitioned estimation”, especially in the
research by Lainiotis.

Fig. 1 shows the architecture of the MMAE sys-
tem. It is assumed that a linear time-invariant
plant is driven by white process noise, as well
as a known deterministic input signal, and gen-
erates measurements that are corrupted by white
noise. If there is no parameter uncertainty in the
plant, then the Kalman filter (KF) is the opti-
mal state-estimation algorithm; see, for example,
(Gelb, 1974; Anderson and Moore, 1979). More-
over, under the usual linear-gaussian assumptions,
the KF state-estimate is the true conditional mean
of the state. If the plant has an uncertain real-
parameter vector, p, one can imagine that it is
“close” to one of a finite discrete parameter set,
PD = {p1, p2, . . . , pN}. One can then design a
bank of standard Kalman filters (KFs) where
each KF uses one of the discrete parameters pk

in its implementation, k=1,2, . . . , N . It turns
out that, if indeed the true plant parameter is
identical to one of its discrete values – and this
is modeled as the hypothesis H = Hk, then the
conditional probability density of the state is the
sum of gaussian densities. Then, the MMAE of
Fig. 1 will indeed generate the true conditional
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Fig. 1. The MMAE architecture for adaptive esti-
mation.

mean of the state and one can calculate the true
conditional covariance matrix; see, for example,
(Athans and Chang, 1976); (Anderson and Moore,
1979, Chap. 10).

Appendix I summarizes the notation and formulas
associated with the MMAE algorithm

From a technical point of view the MMAE system
of Fig. 1 blends optimal estimation concepts (i.e.
Kalman filtering) and dynamic hypothesis-testing
concepts that lead to a system identification al-
gorithm. As explained in Appendix I, each KF
generates a “local” state estimate, x̂k(t|t) and a
residual (or innovations) signal, rk(t), which is the
difference between the actual measurement and
the predicted measurement (the residual is pre-
cisely the prediction error common to all adaptive
systems). Furthermore, the (steady-state) residual
covariance matrix, Sk, k = 1, 2, . . . , N , associated
with each KF can be computed off-line. The key
to the MMAE algorithm is the so-called “posterior
probability evaluator (PPE)” which calculates, in
real time, the posterior conditional probability
that each model generates the data, i.e. Pk(t) =
Prob{H = Hk|Y (t)}, k = 1, 2, . . . , N . Thus, the
PPE represents an identification subsystem. The
“global” state-estimate is then obtained by the
probabilistic weighting of the local state-estimates
as shown in Fig. 1; this “global” state estimate is
precisely the true conditional mean of the state
given the set Y (t) of past measurements and con-
trols. The true conditional covariance can also be
calculated on-line; see Appendix I for mathemat-
ical details.

The key property of the MMAE algorithm is that,
under suitable assumptions, one of the posterior
probabilities, say Pj , Pj(t) → 1, where j in-
dexes the model that is “closest” to the correct
hypothesis H = Hj , even though the actual
plant parameter is different than pj , as t → ∞.
These asymptotic convergence results hinge upon
information-theoretic arguments and involve non-



trivial stationarity and ergodicity assumptions.
The detailed convergence proofs involve either
the so-called “Baram Proximity Measure (BPM)”,
(see Baram, 1976; Baram and Sandell, 1978b,a),
as discussed in Appendix II or the Kullback in-
formation metric (see Anderson and Moore, 1979,
pp.267–279). The detailed proofs are beyond the
scope of this paper. These (asymptotic) conver-
gence results to the “nearest probabilistic neigh-
bor” using the BPM represent the key “system-
identification” algorithms associated with both
the CMMAC and the RMMAC algorithms dis-
cussed in the sequel.

It should be noted that the MMAE architecture
is essentially identical to that of the “sum of
Gaussians” estimators used extensively in nonlin-
ear filtering (Anderson and Moore, 1979) which
utilize banks of extended Kalman filters. Further-
more, it is important to stress that the blend of
dynamic hypothesis-testing concepts and optimal
estimation theory is the workhorse of all mod-
ern defense and civilian surveillance and fusion
algorithms that employ several sensors, several
targets (crossing, manoeuvring, disappearing, re-
appearing, etc.)

2.2 Classical Multiple-Model Adaptive Control
(CMMAC)

The intriguing convergence properties of the
MMAE algorithm, coupled with the robustness
shortcomings of MRAC systems to disturbances
and sensor noise, gave rise to the classical MMAC
algorithms which simply integrated design con-
cepts from Linear-Quadratic-Gaussian (LQG) con-
trol system design (Kwakernaak and Sivan, 1972;
Anderson and Moore, 1990) with the MMAE
architecture. The classical MMAC architecture
(CMMAC) is shown in Fig. 2. Each “local” state-
estimate of the (steady-state) KF, x̂k(t|t), k =
1, 2, . . . , N , is multiplied by the associated linear-
quadratic (LQ) optimal control-gain matrix, Gk,
to generate a “local” control signal uk(t) by

uk(t) = −Gkx̂k(t|t), k = 1, 2, . . . , N (2.1)

Using precisely the same MMAE calculation by
the PPE of the posterior probabilities Pk(t), the
“global” control applied to the plant – and to
the bank of KFs – is obtained by probabilistic
weighting of the local controls, i.e.

u(t) =

N∑

k=1

Pk(t)uk(t) (2.2)

The CMMAC algorithm of Fig. 2 represented a
purely ad-hoc approach to adaptive control. It
is not optimal in a stochastic LQG sense (Will-
ner, 1973). However, several adaptations, exten-
sions and simulations have been reported (Greene,
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Fig. 2. The CMMAC algorithm where the “local”
KF state estimates get multiplied by “local”
LQ gains to form “local” controls which, in
turn, generate a probabilistically weighted
“global” control.

1975; Shomber, 1980; Athans et al., 1977; Greene
and Willsky, 1980; Schiller and Maybeck, 1997;
Maybeck and Griffin, 1997; Schott and Bequette,
1997). In the context of this paper it is important
to stress that no robustness to unmodeled dynam-
ics was considered in early CMMAC designs (such
robustness issues were unknown in the 1970s) and
that performance specifications were generated by
LQG “tricks” and not with the frequency-weight
concepts widely adopted at present.

It is also noteworthy to mention that a “switch-
ing” version of the CMMAC can be implemented
in which the “local” control with the largest pos-
terior probability is used as the “global” control;
such switching versions of the CMMAC are much
more sensitive to the stochastic signals. Finally,
in retrospect, the fact that both the “local” KF
state estimates and their residuals, via the pos-
terior probabilities, were combined in the genera-
tion of the “global” adaptive control has certain
shortcomings, because one mixes state-estimation
and feedback control generation. In the CMMAC
architecture no clear-cut “separation-principle”
of an “identification” subsystem and a “control”
subsystem is made.

2.3 Supervisory Switching Multiple-Model Adapt-
ive Control (SMMAC)

During the past decade a different, more de-
terministic, approach to adaptive control using
multiple models has been initiated (Morse, 1996,
1997, 1998, 2004; Anderson et al., 2000, 2001;
Hespanha et al., 2001) and research along these
lines is still in progress. The methodology is called
Supervisory Switching Multiple-Model Adaptive
Control (SMMAC). The architecture of the SM-
MAC algorithms is shown in Fig. 3 (which is an
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Fig. 3. The SMMAC architecture.

adaptation of Fig. 1 in (Hespanha et al., 2001),
so that comparisons with the CMMAC and RM-
MAC become easier). We remark that in SMMAC
architectures there exists a “separation” between
identification and control (unlike the CMMAC).

We briefly discuss the SMMAC architecture to
point out some similarities and differences to the
CMMAC of Fig. 2 and the RMMAC architecture
to be discussed below. The approach is determinis-
tic and the goal is to prove “local” bounded-input
bounded-output stability of the SMMAC system
under certain assumptions. The plant-disturbance
and sensor-noise signals are assumed bounded
rather than being characterized as stochastic pro-
cesses as in CMMAC and RMMAC. The pres-
ence of unmodeled dynamics is also considered,
although the bound on the unmodeled dynamics
is simply an H∞ bound. The theoretical results
to date are restricted to single-input single-output
(SISO) systems, although research is underway to
extend them to the MIMO case.

In reference to Fig. 3, the SMMAC employs a
finite number of stable deterministic estimators
(Luenberger observers), called multi-estimators
and denoted by Ek(s), k = 1, 2, . . . , N , designed
for a grid of distinct parameter values pk ∈ P ,
where P is the compact real-parameter set. The
output of each estimator yk(t) is compared with
the measured (true plant) output y(t) to form
the estimation (prediction) errors ek(t) = yk(t) −
y(t), k = 1, 2, . . . , N . We remark that the errors
ek(t) in Fig. 3 are completely analogous to the
residuals rk(t) in the MMAE (Fig. 1), the CM-
MAC (Fig. 2) and the RMMAC (Fig. 4). The
monitoring signal generator, M(s), is a dynamical
system that generates monitoring signals µk(t);
these are suitably-defined integral norms of the es-
timation errors ek(t). The size of these monitoring
signals indicates which of the multi-estimators is
“closer” to the true plant. In addition to the bank
of multi-estimators, it is assumed that a family
of multi-controllers, Ck(s), k = 1, 2, . . . , N , has
been designed so that each provides satisfactory

stable feedback performance for at least one dis-
crete parameter pk ∈ PD. The basic idea is to
use the monitoring signals µk(t) to “switch-in”
the suitable controller. This is accomplished by a
switching logic S which generates a signal σ(t) ∈
PD that can be used to switch-in the appropriate
controller. A key property of the switching logic
S is that it keeps its output σ(t) constant over
some suitably long “dwell time”; this avoids rapid
switching of the controllers and allows most tran-
sients to die-out between controller switchings.
The details of the switching logic differ in the cited
SMMAC references.

The basic structural difference between the CM-
MAC and the SMMAC – compare Figs. 2 and
3 – is that in the SMMAC the “identification”
process is completely separated from the “con-
trol” process. Even in the case of the CMMAC
that the largest posterior probability switches the
corresponding LQ control gain, the identification
and control get mixed-up. The separation of the
identification and control processes in the SM-
MAC seems to have an advantage, coupled with
the idea of infrequent controller-switching. Oth-
erwise, the KFs in the CMMAC serve the same
objective as the multi-estimators of the SMMAC.
Moreover, the multi-controllers in the SMMAC
can be more complex than the simple LQ-gains in
the CMMAC. Some potential shortcomings of the
SMMAC methodology will be discussed after we
present the RMMAC approach below. Unfortu-
nately, SMMAC numerical simulations have been
reported for only a couple of (very) academic SISO
plants.

2.4 Robust Multiple-Model Adaptive Control
(RMMAC)

We now present the newest multiple-model ar-
chitecture which we call RMMAC, to empha-
size the fact that both stability-robustness and
performance-robustness are addressed from the
start. Preliminary results on RMMAC can be
found in (Fekri et al., 2004b,c) and a more com-
plete treatment is available in Fekri’s Ph.D. thesis
(Fekri, 2005). We note that the RMMAC architec-
ture has a “separation” between identification and
control, like the SMMAC and unlike the CMMAC.

The RMMAC architecture is shown in Fig. 4. It
represents a blend of the CMMAC, Fig. 2, and of
the SMMAC, Fig. 3.

As in the CMMAC, the RMMAC uses a bank
of (steady-state) Kalman Filters (KFs) and relies
on stochastic processes for the disturbance sig-
nals and the sensor noise measurements. However,
unlike CMMAC the “local” KF state-estimates
(the x̂k(t|t) in Fig. 2) are not used in gener-
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Fig. 4. The RMMAC architecture.

ating the control signals. Only the KF residu-
als, rk(t), k = 1, 2, . . . , N , generated on-line
and their pre-computed residual covariance ma-
trices, Sk, are utilized by the posterior proba-
bility evaluator (PPE) to generate the posterior
probability signals Pk(t). The calculation of the
posterior probabilities is identical to that in the
MMAE or CMMAC (see Appendix I). A crucial
difference is that the “nominal” KF design uses
explicitly the Baram Proximity Measure (BPM)
to ensure asymptotic convergence of the poste-
rior probabilities. Another key difference lies in
the construction of the bank of the “local” ro-
bust compensators, Kj(s), j = 1, 2, . . . , N , in
Fig. 4, which are designed using the state-of-the-
art in robust mixed-µ synthesis (Young et al.,
1992; Young, 1994; Young et al., 1995; Zhou et
al., 1996; Balas et al., 2004; Balas, 2003). These
compensators, Kj(s); j = 1, 2, . . . , N , referred to
as the “local non-adaptive robust compensators
(LNARC)”, are designed so as to guarantee “lo-
cal” stability- and performance-robustness. Each
“local” compensator Kj(s) generates a “local”
control signal uj(t). The “global” control is then
generated, as in the CMMAC case, by the proba-
bilistic weighting of the local controls uj(t) by the
posterior probability Pj(t)

u(t) =

N∑

j=1

Pj(t)uj(t) (2.3)

A switching version of RMMAC can also be imple-
mented by finding the largest probability Pj(t), at
each instant of time, and using the corresponding
“local” uj(t) as the “global” control u(t). More-
over, a “dwell-time” can be incorporated to avoid
frequent switching.

One relies upon the convergence properties of the
posterior probabilities to the nearest probabilis-
tic neighbor, using the Baram proximity mea-
sure (BPM) (Baram, 1976; Baram and Sandell,
1978b,a), to ensure that the RMMAC operates in
a superior manner, so as to ensure correct asymp-

totic identification. See Appendix II. This requires
careful design of the KFs, perhaps robustified
through the use of “fake-white-plant-noise” – a
time-honoured design trick in linear and nonlinear
estimation practice.

2.5 Discussion

The three multiple-model algorithms (CMMAC,
SMMAC, and RMMAC) presented above have the
following common characteristics.

(a). One must design a set of N multi-controllers
or dynamic compensators.

(b). One must design a set of N Kalman filters or
multi-estimators (observers).

(c). One must implement an identification process
by which the actual (global) adaptive control is
generated.

Clearly, the complexity of the adaptive system will
depend on the number, N , of models that are
required to implement. Ideally, N should be as
small as possible. However, it should be intuitively
obvious that if N is too small the performance of
the adaptive system may not be very good. On
the other hand, if N is very large, one may reach
the point of diminishing returns as far as adaptive
performance improvement is concerned. It follows
that we need a systematic procedure by which,
starting from a compact parameter set p ∈ P ,
to define a finite set, N , of discrete values (mod-
els), PD = {p1, p2, . . . , pN} ⊂ P, that are used
subsequently in designing the KFs in the CM-
MAC and RMMAC, the multi-estimators in SM-
MAC as well as the compensators. The following
section summarizes our suggested methodology
which hinges upon the recent developments in ro-
bust feedback control synthesis using the so-called
mixed-µ methodology and associated software.

We conclude this section with a few comments.
Even though all MMAC architectures are made
by piecing together LTI systems, the probabilis-
tic weighting in the RMMAC as well as the
supervisory switching logic of the SMMAC re-
sult in a highly nonlinear and time-varying closed
loop MIMO feedback system. Hence, it is näıve
to expect foolproof global asymptotic stability re-
sults in the near future, because there does not,
as yet, exists a solid mathematical theory for
global (stochastic) nonlinear time-varying stabil-
ity. Even in the simpler CMMAC, involving LQG
controllers, attempts to prove global stability
were not successful (Greene, 1975; Shomber, 1980;
Greene and Willsky, 1980). Thus, it is the opinion
of the authors, what is needed in the short run is
additional pragmatic understanding of the differ-
ent multiple-model approaches, their similarities



and differences and consistent fair comparisons
on performance improvement over non-adaptive
designs. Thus, there are numerous opportuni-
ties for future theoretical research to investigate
such global stability-robustness and performance-
robustness issues, especially in the MIMO case.

3. DESIGNING ROBUST COMPENSATORS

3.1 Introduction

During the past several years a very sophisticated
and complete non-adaptive design methodology,
accompanied by Matlab design software, has
been developed for the robust feedback control
of MIMO linear time-invariant (LTI) uncertain
dynamic systems with simultaneous dynamic and
parametric errors. This design methodology is of-
ten called the “mixed-µ synthesis” method, which
involves the so-called D,G-K iteration, and it re-
quires the design of different H∞ compensators at
each iteration. The outcome of the “mixed-µ syn-
thesis” process is the definition of a non-adaptive
LTI MIMO dynamic compensator with fixed pa-
rameters, which guarantees that the closed-loop
feedback system enjoys stability-robustness and
performance-robustness, i.e. it meets the posed
performance specifications in the frequency do-
main (if such a compensator exists). The “mixed-
µ synthesis”, loosely speaking, de-tunes an opti-
mal H∞ nominal design, that meets more strin-
gent performance specifications, to reflect the
presence of inevitable dynamic and parameter
errors. In particular, if the bounds on key pa-
rameter errors are large, then the “mixed-µ syn-
thesis” yields a robust LTI design albeit with
inferior performance guarantees as compared to
the H∞ nominal design. So the price for stability-
robustness is poorer performance. Experience has
shown that if the bounds on the parameter er-
rors decrease, then the mixed-µ synthesis yields
a design with better guaranteed performance. A
recent application (Barros et al., 2005) illustrates
this uncertainty/performance tradeoff in a clear
manner.

Whether we are dealing with non-adaptive or
adaptive feedback designs we must take into ac-
count the following engineering issues:

(a). Complex-valued plant unmodeled dynamics
(e.g. unmodeled time-delays, plant-order reduc-
tion, parasitic high-frequency poles and zeros,
high-frequency bending and torsional modes etc).

(b). Errors in key real-valued plant parameters in
its state space realization.

(c). Explicit definition of performance require-
ments typically in the frequency-domain (rather
than just the shape of step responses, location of

dominant closed-loop poles etc); these reflect the
common objective to have small tracking errors in
the low-frequency region and small control signals
in the high-frequency region.

(d). Unmeasurable plant disturbances, perhaps
with information on their power spectral densities.

(e). Unmeasurable sensor noises, perhaps with
information on their power spectral densities.

From now on, we focus our attention to the
problem of “disturbance-rejection” in the presence
of noisy sensor measurements so as to simplify the
exposition. Adding “command-following” to the
specifications is straight forward, but complicates
the exposition. What we want to stress relates
to the philosophy that we cannot design adaptive
control systems without explicit quantification of
desired performance.

Assume that we have a state-space description of
the plant (excluding unmodeled dynamics) of the
form

d

dt
x(t) = A(p)x(t) + B(p)u(t) + L(p)d(t)

y(t) = C1(p)x(t) + D(p)n(t)
z(t) = C(p)x(t)

(3.1)

where x(t) is the state vector, u(t) the control
vector, d(t) the plant-disturbance vector, y(t) the
(noisy) measurement vector, n(t) the sensor noise
and z(t) the performance (output or error) vector,
i.e. the vector for which we wish to minimize the
effects of the disturbance d(t) and noise n(t), i.e.
have superior disturbance-rejection. The system
matrices depend upon a real-valued parameter
vector p, where p is constrained to be in a (hyper)
parallelepiped, p ∈ Pπ; this is a required µ-
synthesis constraint. Thus, for each independent
real uncertain parameter we must have a lower-
and upper-bound (real-valued).

From a performance point of view, in order to
achieve superior disturbance-rejection, the de-
signer specifies a frequency weight on z(t). Typi-
cally, to achieve superior disturbance-rejection in
the low-frequency region, the designer specifies, in
the µ-synthesis methodology, a frequency-weight,
say of the form

z̄(s) = Ap

(
α

s + α

)m

· I · z(s) (3.2)

which implies that superior disturbance-rejection
is most important in the frequency range 0 ≤ ω ≤
α. The larger the performance-gain parameter Ap,
the better the desired performance-rejection.

To complete the robust design synthesis the de-
signer must provide frequency-dependent bounds
for all (structured or unstructured) unmodeled
dynamics, and frequency weights for the control,
disturbance and sensor noise vectors. The control
and sensor weights, together with the bound(s) on



the unmodeled dynamics, safeguard against very
high-bandwidth feedback designs.

3.2 The GNARC Design

Before a wise designer can make a decision on
whether or not to implement an adaptive sys-
tem, he/she must have a solid knowledge on
what is the best robust non-adaptive design. We
called the best “global non-adaptive robust com-
pensator” GNARC. The GNARC is computed
via mixed-µ synthesis and it takes into account
the frequency-domain bounds on unmodeled dy-
namics, and the various frequency weights that
quantify disturbance-rejection requirements, con-
trol effort and, perhaps, power spectral densities
for the plant-disturbances and sensor-noises.

We certainly do not intend to provide here a tuto-
rial exposition of the mixed-µ synthesis method.
To compute the GNARC, one fixes the perfor-
mance gain Ap to some initial value and exercises
the Matlab software which, after a sequence of
so-called DG-K iterations, determines a compen-
sator K(s) and generates an upper-bound µub(ω).
If

µub(ω) < 1 ∀ω (3.3)

then the resulting feedback design is guaranteed
to be stable for all “legal” unmodeled dynamics
and the entire parameter uncertainty p ∈ Pπ.
Moreover, in addition to stability-robustness, we
are guaranteed that we meet or exceed the posed
performance requirements. It should be evident,
that in order to find the “best” GNARC we must
maximize the performance-parameter Ap until the
µ-upper bound is just below unity, say µub(ω) ≈
0.995 ∀ω.

The GNARC is a single dynamic (SISO or MIMO)
compensator that can be used by the designer to
fully understand what is the best possible robust
performance in the absence of adaptation. Since
the feedback system is LTI a whole variety of
performance evaluations are possible, using rep-
resentative values of the uncertain real-parameter
vector p ∈ Pπ for the plant, as summarized in
Table 1.

We believe that such a thorough understanding
of the non-adaptive GNARC is essential prior to
making a decision on using some sort of multiple-
model adaptive control. It has been our experience
that such GNARC analyses point out which pa-
rameter uncertainty is most critical; this can be
used to eliminate from further consideration non-
critical parameters. Moreover, the performance of
the GNARC, say for a SISO system, can change
drastically if one adds more measurements and/or
controls. Thus, an unacceptable performance for a
SISO GNARC non-adaptive system may, indeed,

Table 1.
List of Performance Evaluation Tools

(1) Magnitude (or singular-value) Bode plot of the

closed-loop transfer function from the plant distur-

bance, d, to output, z, which measures the quality of

disturbance-rejection vs frequency. Assuming that the

plant has no integrators, the magnitude of this trans-
fer function, in the low frequency region, will be ap-

proximately 1/Ap. This is why we must maximize the

performance parameter Ap for superior disturbance-

rejection.

(2) Magnitude (or singular-value) Bode plot of the

closed-loop transfer function from the sensor noise, n,

to output, z, which measures the quality of insensitivity

to sensor noise vs frequency

(3) Magnitude (or singular-value) Bode plot of the

closed-loop transfer function from the plant distur-

bance, d, to control, u, which measures the impact of
the plant-disturbance on the control vs frequency

(4) Magnitude (or singular-value) Bode plot of the
closed-loop transfer function from the sensor noise, n,

to control, u, which measures the impact of the sensor
noise on the control vs frequency

(5) Root-mean-square (RMS) tables assuming that
the plant-disturbance, d, and the sensor noise, n, are
stationary stochastic processes. Such RMS values are

readily evaluated via the solution of Lyapunov equa-

tions. Individual or combined RMS tables for the out-

put, z, and the control, u, as a function of the plant-
disturbance, d, and the sensor noise, n, can be com-
puted.

(6) Time-domain responses, e.g. step- or sinusoidal-
disturbance, stochastic signals, etc.

become acceptable if more controls and/or sensors
are introduced and a MIMO GNARC analyzed,
thereby eliminating the need for complex adaptive
control.

3.3 The FNARC Design

If the GNARC analyses discussed above indicate
the need for adaptive control, they will be used
to provide a lower-bound upon robust perfor-
mance. The “fixed non-adaptive robust compen-
sators (FNARC)” provide the means for quantify-
ing an upper-bound on robust performance. “Ide-
ally”, the FNARC analyses assumes an infinite
number of models, N → ∞, in any multiple-model
adaptive scheme. Thus, we understand what is
the best possible performance if we knew the real
parameter exactly.

In practice, to determine the FNARC one uses
a dense grid of parameters pj , j → ∞, in Pπ

and determines the associated robust compen-
sator for each pj using exactly the same bounds
on unmodeled dynamics and frequency weights
employed in the GNARC design. Thus, we can



make fair and meaningful comparisons. For each
pj we use the complex-µ design methodology and
Matlab software (Balas et al., 2004), because
both the performance weights and bounds on un-
modeled dynamics are complex-valued and there
are no real parameter uncertainties. For each pj ,
we again maximize the performance-parameter
Ap in (3.2) until the complex-µ upper-bound,
µc

ub(ω) is just below unity for all frequencies, say
µc

ub(ω) ≈ 0.995 ∀ω, to be consistent with the
GNARC upper-bound employed.

One can then analyze each FNARC design us-
ing the six techniques outlined in Table 1. Our
experience indicates that detailed analyses, espe-
cially at the corners of the hyper-parallelepiped
Pπ, provide useful insights regarding the impact
of the subset of the uncertain real parameters
that determine the need for sophisticated adaptive
control.

3.4 The Potential Benefit of Adaptive Control

Recall that we had initially posed the follow-
ing question: do we need adaptive control? The
GNARC and FNARC results provide the designer
with the tool to answer this question.

In Fig. 5 we visualize a hypothetical plot of the
outcome of the GNARC and FNARC designs be
plotting the (maximized) performance parame-
ter Ap, see (3.2), as a function of a scalar un-
certain real parameter, p, pL ≤ p ≤ pU . We
denote the (constant) value associated with the
GNARC design by AG

p . We denote the parameter-
dependent value associated with the FNARC by
AF

p (p), pL ≤ p ≤ pU . The difference, AF
p (p) −

AG
p ≥ 0 quantifies the impact of the uncertain

parameter p ∈ [pL, pU ] upon performance. The
FNARC process indicates that if the parameter
p were known exactly, then the (low-frequency)
disturbance-rejection is approximately 1/AF

p (p).
The GNARC process indicates that if the param-
eter p were unknown, then the (low-frequency)
disturbance-rejection is, at worse, approximately
1/AG

p . Note that to obtain the FNARC benefits
we must implement a multiple-model architecture
with an infinite number of models. In this man-
ner we have quantified the potential performance
benefits of adaptive control; the non-adaptive
GNARC provides the lower-bound upon expected
performance, while the (infinite-model) adaptive
FNARC provides the performance upper-bound.
This information is critical in deciding whether to
implement an adaptive control system.

The shapes of the curves in Fig. 5 provide addi-
tional valuable information. In the hypothetical
case of Fig. 5, we should expect the benefit of
using adaptive control to be greatest if the pa-
rameter was near its upper-bound, i.e. p ≈ pU .

Up

pA

pLp

² ³ ´ µ ¶ · ¸ ¹ º » ¼

½ ¾ ¿ À ÁÀ Â Ã À Â À Ä ¸ Å ¸ Â

ÆÇÈ
ÉÊÈ
ËÌÍ
ÎÇ
ÏÌÈ
ÌËÇ
ÐÇÈ Ñ ³ ´ µ ¶ · ¸ ¹ º » ¼

( )F
pA p

G
pA

Fig. 5. Hypothetical comparison of the perfor-
mance parameter, Ap, for the GNARC and
FNARC for the case of a scalar uncertain real
parameter, p, pL ≤ p ≤ pU .

The benefits decrease if the unknown parameter
is closer to its lower-bound, i.e. p ≈ pL. Indeed
it may well happen that AF

p (pL) = AG
p . This

can occur, for example, if the parameter p, in
rad/sec, represents the value of a non-minimum
phase zero which places inherent restrictions upon
disturbance-rejection (see, e.g. (Åström, 2000)).
Such an non-minimum phase system has been
analyzed, using the RMMAC, in (Fekri et al.,
2004a).

If we have an uncertain m-dimensional parameter
vector, constrained in a hyper-parallelepiped, i.e.
p ∈ Pπ ⊂ Rm, the calculations are more numerous
to construct the two hypersurfaces along the lines
suggested by Fig. 5. However, the same philosophy
still applies.

3.5 Determining the Number of Models and Desig-
ning the LNARCs

Let us suppose that we have decided that there is
a substantial benefit in using adaptive control and
that we wish to use a multiple-model architecture.
As we remarked before, the adaptive complexity
is directly related to the number N of models in
either the SMMAC or RMMAC implementation.
Recall that the non-adaptive GNARC requires
N = 1 model while the FNARC requires N = ∞
models. Clearly, there must be a happy medium.

3.5.1. A “Brute-Force” Approach. A “brute-
force” approach is to decide on the number of
models, say N=4, and their parameter variation
as illustrated in the hypothetical visualization of
Fig. 6. Essentially, in this approach, the designer
fixes the “adaptive complexity”, quantified by
N , of the multiple-model system. Each model,
denoted by M#k (k=1,2,3,4) requires definition
of its “local” lower-bound, pkL, k = 1, 2, 3, 4, and
upper-bound, pkU , k = 1, 2, 3, 4, i.e.
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Fig. 6. Illustration of a “brute-force” selection of
four models. An ad-hoc decision is made on
the number of models, N=4, and the spec-
ification of the “boundary”, [pkL, pkU ], k =
1, 2, 3, 4, for each model M#k. The Ak

p de-
note the maximized value of the performance
parameter.

Model #1 (M#1) : pL = p1L ≤ p ≤ p1U

Model #2 (M#2) : p1U = p2L ≤ p ≤ p2U

Model #3 (M#3) : p2U = p3L ≤ p ≤ p3U

Model #4 (M#4) : p3U = p4L ≤ p ≤ p4U = pU

The model upper and lower bounds must be
found by trial-and-error.

After the models are selected, all frequency-
dependent bounds and weights are fixed as in
the GNARC and FNARC designs. Next, for each
model the performance parameter Ap – see (3.2) –
denoted now by Ak

p, k=1,2,3,4, is maximized using
the mixed-µ software, in an iterative mode, for the
smaller parameter uncertainty subset associated
with each model. Thus, for each model, we are
again attempting to attain as large a disturbance-
rejection as possible. Moreover, at the end of this
iterative optimization process, we obtain what
we call the “local non-adaptive robust compen-
sator (LNARC)” which we denote by Kj(s), j =
1, 2, 3, 4.

The values of the Ak
p, k=1,2,3,4, plotted in Fig. 6

can be used as a “guide” for adjusting the bound-
aries of each model or changing the number of
models. Each of the resulting LNARC designs
can be evaluated in more detail by following the
suggestions in Table 1.

The RMMAC numerical results presented in
(Fekri et al., 2004a,c) followed such an ad-hoc
approach for determining the models and the as-
sociated LNARCs. The same process can be used
to design the multi-controllers in the SMMAC,
although this was not done in their numerical
simulations.

3.5.2. A More Systematic Approach to Model Se-
lection and Definition: The % FNARC method.
The numerical simulations for the RMMAC de-
sign in Section 5 utilize a much more systematic
approach to the determination of the number of

models and their numerical specification. This
method fully exploits the information provided by
the FNARC curve in Fig. 5.

We have remarked that the number of models
required for any adaptive multiple-model design
should be the natural outcome of performance de-
sign specifications. In the so-called % FNARC ap-
proach the designer specifies that the performance
parameter, Ap, should be equal or greater than
X% of the best possible performance as defined
by the FNARC.

The basic idea is illustrated in Fig. 7, starting
from the GNARC and FNARC curves of Fig. 5.
Using the designer-specified value of X%, we con-
struct the X% FNARC, shown in Fig. 7, and we
proceed as follows. Since the FNARC is maximum
at p = pU , we slowly increase, starting from the
upper limit, the size of the parameter uncertainty
set Ωα = {p : α ≤ p ≤ pU}. For each value of α, we
use the mixed-µ software to design the best robust
controller by maximizing the performance param-
eter Ap denoted by Aα

p max. As long as Aα
p max >

(X%) · AF
p (α), where AF

p (α) is the parameter
value of the FNARC at p = α, then we decrease α
until at α = α∗ we have Aα∗

p max = (X%) ·AF
p (α∗).

The outcome of this process defines the dashed
curve labeled Γ1 in Fig. 7. The point α∗ is at the
intersection of the Γ1 curve with the X% FNARC
curve. This defines Model #1 (M#1) with uncer-
tainty set Ω1 = {p : α∗ ≤ p ≤ pU}; we also remark
that the µ-software determines in addition the
LNARC #1 controller denoted by K1(s).

The process is repeated from the (right) boundary
of M#1, α∗. Starting at p = α∗, we define the
set Ωβ = {p : β ≤ p ≤ α∗}. For each value of β,
we use the mixed-µ software to design the best
robust controller by maximizing the performance
parameter Ap denoted by Aβ

p max. As long as

Aβ
p max > (X%) · AF

p (β), where AF
p (β) is the

parameter value of the FNARC at p = β, then β is
decreased until at β = β∗ we have Aβ∗

p max = (X%)·
AF

p (β∗). The outcome of this process defines the
dashed curve labeled Γ2 in Fig. 7. The point β∗

is at the intersection of the Γ2 curve with the
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Fig. 7. Visualization of the % FNARC model
definition process.



X% FNARC curve. This defines Model #2 (M#2)
with uncertainty set Ω2 = {p : β∗ ≤ p ≤ α∗}. It
is noted that the µ-software also determines the
LNARC #2 controller denoted by K2(s). The
process is repeated until the parameter lower-
bound is reached.

The % FNARC method is straightforward for
systems involving a single scalar uncertain real
parameter. In the case of two, or more, uncer-
tain parameters the procedure has to be modi-
fied. For the case of two or more uncertain pa-
rameters, the GNARC, FNARC and % FNARC
become surfaces. The above process yields inter-
section of surfaces (the equivalent of Γ1, Γ2, . . .
are also surfaces). Unfortunately, the intersection
of these surfaces does not occur along rectangular
(or parallelepiped) parameter subsets. However,
the mixed-µ software requires rectangular (or par-
allelepiped) constraints for uncertain parameter
sets. Suggested modifications to the % FNARC
concept are discussed in (Fekri, 2005).

3.6 Discussion

In this section we presented an overview of what
we believe is the proper way of designing com-
pensators or multi-controllers for the RMMAC
and SMMAC architectures. We are driven by
the desire that we must guarantee (local) robust-
stability and robust-performance. This implies
that we must exploit the state-of-the-art of the
mixed-µ synthesis methodology and software. We
also stressed the value of having optimized per-
formance lower-bounds (via the GNARC) and
upper-bounds (via the FNARC) to aid the control
system designer in the selection of the models,
their number and their numerical specification
(and hence complexity of the adaptive system).
We presented two methods (there are more) for
defining the models and the associated compen-
sators (the LNARCs) driven by designer-specified
performance or complexity specifications.

4. DESIGNING KALMAN FILTERS

4.1 Introduction

In this section we discuss issues related to the
design of the Kalman filters (KFs) in the RMMAC
architecture. We remark that the design of the
bank of KFs is much more systematic (and com-
plex) that the ad-hoc multi-estimators employed
in SMMAC architectures.

The proper design of each KF in the RMMAC
architecture of Fig. 4 is crucial in order to satisfy
the theoretical assumptions (Baram, 1976; Baram
and Sandell, 1978b,a) which will imply that the

PPE will lead to the correct model identifica-
tion. Appendix II presents the summary concepts
leading to the on-line generation of the posterior
probabilities and contains the key equations for
calculating the Baram proximity measure (BPM).

The design of the KFs must be done after the
number of models and their boundaries have been
established using the procedures in Section 3.5.
Recall that the original parameter set, p ∈ Pπ

(a parallelepiped) is subdivided into N subsets
(parallelepipeds) denoted by Ωk, k = 1, 2, . . . , N ,
such that

N⋃

k=1

Ωk = Pπ (4.1)

and each Ωk defines the Model #k. We need to
design a discrete-time steady-state KF for each
Ωk. To accomplish this we need to specify the
“nominal” value of the parameter, denoted by
p∗k ∈ Ωk, which will be used to design the kth

Kalman filter.

The “näıve” point of view would be to choose
p∗k at the center of Ωk. Unfortunately, this may
lead to unpredictable behavior in terms of the
convergence of the posterior probabilities. The
correct way is to select the p∗k using the Baram
proximity measure.

4.2 The Baram Proximity Measure (BPM)

Let p ∈ Ω and let p∗ denote the nominal value
used to implement a KF. If p = p∗, then the KF
residual, r∗(t), would be a stationary white-noise
sequence with a specific covariance matrix S∗. If
the data were generated by a different LTI system,
with p 6= p∗, then the KF residual r(t) would
no longer be white. The BPM is a real-valued
function, denoted by L (p, p∗) which measures
how large is a “stochastic distance” between the
residuals r(t) and r∗(t). See Appendix II for
details.

Now suppose that p ∈ Ω, as above, but we have
designed two different KFs, one (KF #1) with
nominal value p∗1 ∈ Ω and another (KF #2)
with p∗2 ∈ Ω. Now we can calculate two BPMs,
L1 ≡ L (p, p∗1) and L2 ≡ L (p, p∗2).

Fig. 8 illustrates this for a scalar parameter, p,
where we visualize the BPMs L1 and L2 for all
p ∈ Ω. For the specific value p = pA shown, we can
see that L (pA, p∗1) < L (pA, p∗2). The implication
of this is that for a 2-model MMAE, when the
true value is p = pA, the posterior probabilities
P1(t) → 1, P2(t) → 0, so that we have conver-
gence to Model #1 (defined by KF #1) occurs,
even though the Euclidean distances would indi-
cate the opposite (|pA − p∗1| > |pA − p∗2|).



iL

p

��
�

2
*

2 ( , )L L p p=

*
1p *

2p

1
*

1 ( , )L L p p=

Ap

Fig. 8. Illustration of Baram proximity mea-
sures (BPM).

Fundamental convergence result: In (Baram, 1976)
this result was generalized and proved for an
arbitrary number of KFs designed for the nominal
values p∗1, p

∗

2, . . . , p
∗

N . If the BPM satisfies the
inequality

L(p, p∗j ) < L(p, p∗k) ∀k 6= j = 1, 2, . . . , N (4.2)

then, under some additional stationarity and er-
godicity assumptions – see Appendix II – the
posterior probabilities converge almost surely to
the correct model, i.e.

lim
t→∞

Pj(t) → 1 (4.3)

4.3 Integrating Probability Convergence Results
for the RMMAC

The outcome of the controller design of Sec-
tion 3 yielded the number of models, N, and
their boundaries, in terms of the parallelepipeds
Ω1,Ω2, . . . ,ΩN which define the models M#1,
M#2, . . . , M#N. The question now is: how do we
select the nominal values p∗1, p

∗

2, . . . , p
∗

N to design
the KFs?

The idea, illustrated for three models in Fig. 9 for
a scalar parameter, is to use an iterative algorithm
to calculate the nominal KF values p∗1, p

∗

2, p
∗

3,
so that the BPMs are equal at the boundary of
adjacent Ωs.

In this manner, the fundamental probability con-
vergence result will guarantee that p ∈ Ωj ⇒
Pj(t) → 1 a.s. This, is the method we use in the
numerical RMMAC simulations of Section 5.

This method becomes more complicated when we
have two, or more, uncertain parameters. It be-
comes necessary to use some sort of genetic algo-
rithm to determine the nominal KF optimization
design points in an optimal manner (Fekri, 2005).

4.4 Discussion

We have presented a brief summary on how to
optimize the design of the KFs in the RMMAC ar-
chitecture using the BPM, so as to ensure “correct

model identification” by the posterior probabili-
ties. We stress that a KF is optimal if indeed the
data is generated by the same model as that used
to design the KF. In adaptive control, however,
the true parameter is NOT identical to that of the
“closest” KF in the sense of Section 4.3. Also, the
unmodeled dynamics are not taken into account
in the design of the KF. Moreover, the KFs and
the PPE must perform well even when some of
the stochastic assumptions are violated. Thus, we
must “robustify” the KF to be tolerant of such
“errors”. The time-honored engineering practice
of using suitable “fake plant white noise” is a
very useful tool. We have found (Fekri, 2005) that
judicious use of “fake plant white noise” (which
causes the KF gains to increase and pay more
attention to the measurements) can be a very
valuable tool in improving the quality and speed
of probability convergence. We believe that future
fundamental studies of robustifying KFs, in the
context of multiple-model adaptive control, are
very relevant. Also, the identification must work
when the parameter changes “slowly” as a func-
tion of time.

It is also important to note that similar proba-
bility convergence results for the MMAE can be
found in (Anderson and Moore, 1979, pp.267–279)
and cited references therein) which used the so-
called Kullback information metric. The Kullback
metric, however, is not a true norm (it violates
the triangle inequality). Nonetheless, it would be
highly desirable that future research studies the
deep relationship of the BPM and the Kullback
metric, especially with respect to posterior prob-
ability convergence behavior.

5. RMMAC SIMULATIONS

We described above how the RMMAC architec-
ture combines the state-of-the-art in mixed-µ ro-
bust synthesis and multiple model adaptive esti-
mation (MMAE) system identification. Further-
more, we described the step-by-step design pro-
cess required to implement a RMMAC design.
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Fig. 9. Optimizing the KF nominal design points
using the BPMs.



In this section we test and evaluate the disturbance-
rejection performance of the RMMAC feedback
system as compared to the “best” non-adaptive
design obtained via mixed-µ robust synthesis. We
follow the step-by-step design methodology of Sec-
tion 3 and 4.

We present the outcome of several Monte Carlo
(MC) simulations, which demonstrate the actual
RMMAC performance improvements, as com-
pared to that of the best non-adaptive GNARC
system. Overall, for the example considered, the
proposed RMMAC design yields significant per-
formance improvements over the robust non-
adaptive one, thereby confirming the positive as-
pects of this adaptive control method.

5.1 The Two-Cart Example Dynamics

The RMMAC was tested and evaluated using
the two-cart mass-spring-damper (MSD) system,
shown in Fig. 10. A different topology of the two-
cart system was analysed by RMMAC in (Fekri
et al., 2004c). The system in Fig. 10 includes a
random colored disturbance force, d(t), acting on
mass m2 and sensor noise on the only measure-
ment of the position of mass m2. The control force
u(t) acts upon the mass m1. The disturbance force
d(t) is a stationary stochastic process generated by
driving a low-pass filter, Wd(s), with continuous-
time white noise ξ(t), with zero mean and unit
intensity, as follows:

d(s) =
α

s + α
︸ ︷︷ ︸

Wd(s)

ξ(s) (5.1)

The overall state-space representation, including
the disturbance dynamics via the state variable
x5(t), is:

ẋ(t) = Ax(t) + Bu(t) + Lξ(t)

y(t) = Cx(t) + θ(t)
(5.2)

where the state vector is

xT (t) = [x1(t) x2(t) ẋ1(t) ẋ2(t) d(t)]

and

A =












0 0 1 0 0
0 0 0 1 0

− k1

m1

k1

m1
− b1

m1

b1

m1
0

k1

m2
− (k1 + k2)

m2

b1

m2
− (b1 + b2)

m2

1

m2
0 0 0 0 −α












BT =

[

0 0
1

m1
0 0

]

;C =
[
0 1 0 0 0

]

LT =
[
0 0 0 0 α

]

The following parameters in (5.2) are fixed and
known:
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Fig. 10. The two-cart system. The spring-constant
k1 is uncertain.

m1 = m2 = 1, k2 = 0.15, b1 = b2 = 0.1, α = 0.1
(5.3)

The upper and lower-bound for the uncertain
spring constant, k1, are:

Ω = {k1 : 0.25 ≤ k1 ≤ 1.75} (5.4)

The performance variable (output) z(t) is the
position of mass m2,

z(t) ≡ x2(t) (5.5)

All feedback loops utilize a single measurement
y(t), that includes additive white sensor noise θ(t),
defined by

y(t) ≡ x2(t) + θ(t)

E{θ(t)} = 0, E{θ(t)θ(τ)} = 10−6 δ(t − τ)
(5.6)

The desired disturbance-rejection requires that
the effects of d(t) and θ(t) be minimized so that
z(t) ≈ 0.

Remark: The control problem is hard even if the
spring, k1, is known. Clearly, the control prob-
lem becomes much harder in our adaptive design,
because the control u(t) is applied through the
uncertain spring, so we are not sure how much
force is exerted through the uncertain spring to
the mass m2. Thus, we have a non-collocated actu-
ator problem because the control is not applied to
the mass m2 whose position we wish to regulate.

In addition to the uncertain spring stiffness, we
assume that there is, in the control channel, an
unmodeled time-delay τ whose maximum possible
value is 0.05 sec, i.e.

τ ≤ 0.05 sec (5.7)

The frequency-domain upper-bound for the un-
modeled time-delay, which is a surrogate for un-
modeled dynamics, is required for mixed-µ syn-
thesis design and is the magnitude of the first
order transfer function

Wunmod(s) =
2.1s

s + 40
(5.8)

5.2 Designing Global Non-Adaptive Robust Com-
pensator (GNARC)

In this section we discuss the details behind the
mixed-µ design of the GNARC system, which



guarantees the “best” robust-stability and robust-
performance for the entire large parameter un-
certainty of (5.4). As explained in Section 3, the
GNARC system will define what we can best
expect in the absence of adaptation.

As it is common in H2 or H∞ designs, we use the
following frequency domain weights on the control
and measurement noise,

Control weight: Wu(s) =
10(s + 10)

s + 103

Meas. noise weight: Wn = 10−3 (constant)
(5.9)

These, together with the unmodeled dynamics
weight (5.8), limit the bandwidth of the closed-
loop system by penalizing large high-frequency
control signals. The weights (5.8) and (5.9) are
incorporated in the definition of the nominal gen-
eralized plant, together with (5.2) with k1 = 1.0.
The weights (5.1), (5.8), and (5.9) will not change
in any of the subsequent designs.

To carry out the mixed-µ synthesis, the parameter
uncertainty of (5.4) is represented by

0.25 ≤k1 ≤ 1.75 ⇒
k1 = 1.0 + 0.75 δk1

; |δk1
| ≤ 1

(5.10)

In order to design the “best possible” non-
adaptive feedback system the following type of
performance weight upon the output z(t) is used.

Wp(s) = Ap
0.1

s + 0.1
(5.11)

which reflects our specification for good disturbance-
rejection for the frequency range ω ≤ 0.1 rad/sec
where the disturbance d(t) has most of its power.
Notice that performance weight Wp(s) penalizes
output error in the same frequency range as the
disturbance dynamics Wd(s) while the gain pa-
rameter Ap in Wp(s) specifies our desired level of
disturbance-rejection. The larger Ap, the greater
the penalty on the effect of the disturbances on
the position. As we described in Section 3, for
superior disturbance-rejection, Ap should be as
large as possible; how large it can be is limited
by the required guarantees on robust-stability and
-performance inherent in the mixed-µ synthesis
methodology.

Fig. 11 shows the MSD plant with weights as
required by mixed-µ synthesis. One can note that
there are two frequency-weighted “errors” z̃(t)
and ũ(t). This figure is in fact a block diagram of
the uncertain closed-loop MSD system illustrating
the disturbance-rejection performance objective
namely the closed-loop transfer function from
ξ(t) → z(t), or d(t) → z(t).

The “position error” z̃ is our main perfor-
mance variable for evaluating the quality of the
disturbance-rejection. Since

z̃(s) = Wp(s) z(s) = Ap

(
0.1

s + 0.1

)

z(s) (5.12)
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Fig. 11. MSD system with weights for mixed-µ
synthesis.

we communicate to the µ-design that position
errors are most important below the “corner fre-
quency” 0.1 rad/sec. The larger the performance
parameter” Ap, the more one cares about position
errors at all frequencies.

The “control error” ũ(t) is defined by

ũ(s) = Wu(s)u(s) = 10

(
s + 10

s + 103

)

u(s) (5.13)

So Wu(s) is a high-pass filter that penalizes the
system for using large controls at high frequencies.

Using the mixed-µ software the performance pa-
rameter Ap in (5.11) is increased as much as
possible until the upper-bound on the mixed-µ,
µub(ω), satisfied the inequality

µub(ω) ≤ 1, ∀ω (5.14)

which is only a sufficient condition for both
stability- and performance-robustness. The largest
value of the performance parameter Ap in (5.11)
thus determined was

AG
p = 50.75 (with µub ≈ 0.995) (5.15)

which leads to the GNARC design, the “best”
LTI non-adaptive compensator K(s) that guaran-
tees stability- and performance-robustness for the
entire parameter interval (5.4). As explained in
Section 3, the performance characteristics of the
GNARC are to be used as the comparison-basis
for evaluating performance improvement (if any)
of our proposed RMMAC design. See Section 3.2.

5.3 Designing Local Non-Adaptive Robust Comp-
ensators (LNARCs)

Following the procedure presented in Section 3,
the plots of the (optimized) performance param-
eter Ap for the GNARC design and the FNARC
designs (requiring an infinite number of models)
is shown in Fig. 12. This figure shows that there
is a potential 20-fold improvement in performance
by using adaptive control.

Remark: In this example, the GNARC and
FNARC look flat for all values of k1. Actually,



Table 2. Best GNARC and LNARCs

Compensator Ω X%∗ Ap

GNARC Ω = [0.25, 1.75] 5.1% AG
p =50.75

LNARC #1 Ω1 = [1.02, 1.75] 70% A1
p=694.5

LNARC #2 Ω2 = [0.64, 1.02] 70% A2
p=694.5

LNARC #3 Ω3 = [0.40, 0.64] 70% A3
p=694.5

LNARC #4 Ω4 = [0.25, 0.40] 70% A4
p=694.5

∗ Best performance gains for the GNARC and each of the
four LNARCs used in subsequent designs vs “FNARC”

the FNARC get a little smaller as we approach
small values of k1, but this can not be noticed in
the figure. This “flatness” disappears if we change
our control specifications (Fekri, 2005).

Next, we specify a desired level of performance to
be 70% of the FNARC, i.e. X% = 70%, following
the discussion of Section 3.5.2.

Fig. 13 shows how four covering models are se-
lected to be adequate for constructing the RM-
MAC using performance level of 70%.

As illustrated in Fig. 13 for the specified per-
formance level of 70%, the large parameter un-
certainty interval of (5.4) is subdivided into four
subintervals as summarized in Table 2.

Explanation. We now provide a bit more detail
on how the four models of Fig. 13 are obtained.
Starting at the North-East corner labeled F1, k1 =
1.75, (because the FNARC is maximum there)
we slowly open-up the uncertain interval denoted
by Ωb = {k1 : b ≤ k1 ≤ 1.75}. For each
interval, we iterate using the mixed-µ software
to calculate the maximum performance parameter
Ab

p which results in the dashed curve, labeled
Γ1 in Fig. 13. When the curve Γ1 intersects the
70% FNARC curve we stop. In this example,
this occurs at k1 = 1.02 which yields the subset
Ω1 = [1.02, 1.75], i.e. 1.02 ≤ k1 ≤ 1.75, Model
M#1, and LNARC #1. The left boundary of
M#1 defines the point labeled F2 on the FNARC.
Starting from this point we slowly open up the
interval denoted by Ωc = {k1 : c ≤ k1 ≤ 1.02}.
Once more, we iterate using the mixed-µ software
to calculate the maximum performance parameter
Ac

p which results in the dashed curve, labeled
Γ2 in Fig. 13. When the curve Γ2 intersects the
70% FNARC curve we stop. In this example,
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Fig. 12. Best GNARC and FNARC performance
gains for spring-stiffness uncertainty subin-
tervals, as in (5.4).
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Fig. 13. Best local performance gains using mixed-
µ using 70% of the best FNARC performance
designed for local uncertainty bounds.

this occurs at k1 = 0.64 which yields the subset
Ω2 = [0.64, 1.02], i.e. 0.64 ≤ k1 ≤ 1.02, Model #2,
and LNARC #2. Repeating this process leads to
the curves labeled Γ3 and Γ4 in Fig. 13 and the
four models summarized in Table 2.

As a result, the whole initial uncertainty set of
(5.4) is covered by four models using four local
compensators. Clearly, the reduction in parameter
uncertainty allows larger performance gains for
designing the LNARCs, resulting into guaranteed
both stability- and -performance robustness over
the corresponding subintervals of Table 2.

In fact the above model selection procedure us-
ing mixed-µ synthesis also generates four “local”
robust compensators, K1(s), . . . , K4(s), designed
for each subinterval defined in Table 2; these are
referred to as LNARCs. In the mixed-µ synthesis,
the weights (5.1), (5.8) and (5.9) were the same as
in the GNARC design of Section 5.2. However, for
each LNARC design, the performance parameter
Ap in (5.11) is increased until the mixed-µ bound
of (5.14) is achieved, and their optimized values
are shown in the last column of Table 2.

Fig. 14 compares the GNARC design with the four
LNARCs, namely K1(s), . . . , K4(s) by looking at
their Bode magnitude plots.

Note that at low frequencies the LNARCs gener-
ate a loop-gain about 20 times as large compared
to the GNARC and this, naturally, leads to the
performance improvements discussed below.

We emphasize that each individual LNARC closed-
loop design has guaranteed performance- and
stability-robustness over its associated parameter
subinterval of Table 2.

Remark: In the design philosophy adopted in this
paper we have stressed that the adaptive con-
troller complexity, as measured by the number of
models in the CMMAC, SMMAC and RMMAC
should be the natural by-product of the perfor-
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Fig. 14. Frequency-domain characteristics (Bode
plot) of the GNARC and the four LNARCs.

mance requirements. We have just demonstrated
that if we demand that the performance equals or
exceeds X=70% of the FNARC, we require the
four models summarized in Table 2.

If we are willing to have somewhat inferior perfor-
mance and select, say, X=50% then the procedure
outlined results in only two models. If we wish
to have much better performance and select, say,
X=90%, then the outlined procedure yields nine
models. Clearly, as we demand better and better
performance we must increase the controller com-
plexity, and this agrees with engineering intuition.

5.4 Predicting Potential RMMAC Performance
Benefits

Testing the RMMAC requires significant compu-
tation using multiple Monte Carlo (MC) runs un-
der different scenarios.

It is highly desirable, as explained in Section 3, to
use the LTI feedback designs, using the GNARC
and LNARCs, to quantify the potential benefits
of using adaptive control in general, and the RM-
MAC in particular. From a pragmatic engineering
perspective we must have tradeoffs that contrast
the performance improvements (if any) of the very
sophisticated RMMAC vis-a-vis the much simpler
non-adaptive GNARC design. To the best of our
knowledge, such performance tradeoffs have not
been quantified in other adaptive control studies.

Referring to Fig. 4, the RMMAC requires the on-
line computation of its four Kalman filters (KFs)
as well as of its four dynamic LNARCs, K1(s),
. . . , K4(s), in addition to the calculation of the
four posterior probabilities, P1(s), . . . , P4(s), by
the posterior probability evaluator (PPE) – a lot
of computations!

In order to understand how one can easily predict
the potential RMMAC performance characteris-
tics, assume that one of the posterior probabili-
ties converges to its nearest probabilistic neighbor
(which it does, as we demonstrate in the sequel); it
follows that a specific LNARC is used. After the

probability convergence, the RMMAC essentially
operates as an LTI stochastic feedback system!

In the spirit of Table 1, this allows us to calcu-
late two key transfer functions for disturbance-
rejection and control signal characteristics

Disturbance - rejection:

Mξz(s) ≡
z(s)

ξ(s)
or Mdz(s) ≡

z(s)

d(s)
Control - signal:

Mξu(s) ≡ u(s)

ξ(s)
or Mdu(s) ≡ u(s)

d(s)

(5.16)

for different values of the unknown spring stiffness
of (5.4), for the GNARC and for each LNARC
design.

Fig. 15 illustrates the above using the actual
spring constants indicated in (5.17) quantifying
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Fig. 15. Potential improvement from RMMAC
visualized by Bode plots of disturbance-
rejection transfer function |Mξz(jω)|.



the potential RMMAC improvement in disturbance-
rejection.

Similar plots can be made for other values of the
uncertain spring stiffness. Fig. 15 predicts that
the RMMAC has the potential to significantly
improve disturbance-rejection; these predictions
will be validated in the sequel, on the order of 1

Ap
.

Moreover, other similar plots, such as control
signal characteristics, can be made for other values
of the uncertain spring constant. Other transfer
functions could also be computed (not shown)
from disturbance ξ(t) and the sensor noise θ(t)
to the control u(t).

Fig. 16 evaluates the potential performance im-
provement of using RMMAC by using stochastic
metrics, namely by comparing the RMS errors of
the output z and the control u, for different values
of k1. Assuming that ξ and θ are indeed white
noises, these RMS results are readily computed by
solving standard covariance algebraic Lyapunov
equations for stochastic LTI systems. The graphs
of Fig. 16 vividly suggest that RMMAC has the
potential of decreasing the output RMS by a fac-
tor of 2–5 over the GNARC system. Note that the
potential improvement in output RMS requires
controls with higher RMS values, as expected.

Finally, it is important to construct what we call
the “stability-mismatch” table shown in Table 3.

The interpretation of Table 3 answers the ques-
tion: what happens to closed-loop stability if we use
the LNARC #Kj(s) when the true spring constant
is in subinterval #i? The diagonal entries in this
table are always robustly-stable, by construction.
Examining the first row in Table 3 it is observed
that for Model #1, i.e. for all k1 ∈ [1.20, 1.75], if
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Fig. 16. Predicted potential RMS performance
of the RMMAC vs GNARC. There is no
sensor noise for these plots. (a): Output RMS
comparisons from ξ(t) to z(t). (b): Control
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Table 3. Mismatched-Model Stability

Model LNARC

# #1 #2 #3 #4

1 S CU U U
2 CU S CU U

3 U CU S S

4 U CU S S

Legend: S ≡ always stable

U ≡ always unstable
CU ≡ conditionally unstable

we use the LNARC #4 we always have instability
(U); if we use the LNARC #2 we have instability
for smaller values of k1, but have stability for
larger values (CU). This is due to the fact that the
mixed-µ upper-bound inequality (5.14) is “only
a sufficient condition for robust stability” and,
hence, each LNARC design will actually have a
wider robust-stability region. It turns out that
for this example, LNARC #1 maintains stability
for all k1 ∈ [0.69, 1.75], LNARC #2 for all k1 ∈
[0.43, 1.58], LNARC #3 for all k1 ∈ [0.25, 1.01],
and LNARC #4 for all k1 ∈ [0.25, 0.73]. Of course,
performance-robustness is only guaranteed for the
subintervals defined in Table 2.

5.5 Designing the MMAE and RMMAC System

For this example we follow the process to design
the four Kalman filters (KFs) outlined in the
RMMAC architecture of Fig. 4.

As explained in Section 4, a great deal of care
must be exercised in designing the Kalman fil-
ters (KFs) in the RMMAC architecture, since the
convergence of the appropriate posterior proba-
bility to its nearest probabilistic neighbor is at
the heart of the RMMAC identification process
(see Appendices I and II). The basic decision is
how to select the nominal value of the uncertain
spring stiffness, k1, denoted by k∗

1i, i = 1, 2, 3, 4,
for designing each of the four KFs. We stress that
these nominal values are not at the centers of the
sets Ωj defined in Table 2. Rather, as explained in
Section 4, the KF design points, k∗

1i, i = 1, 2, 3, 4,
must be determined by an optimization process so
that the Baram proximity measures (BPMs) agree
at the boundaries of the sets Ωj . The outcome of
this optimization process is shown in Fig. 17 using
the optimized KF nominal values.

In Fig. 17 the curves show the BPM for any value
0.25 ≤ k1 ≤ 1.75 from each of the four optimized
KFs. This process is required so that for any
k1 ∈ Ωj , the corresponding posterior probability
Pj → 1, Pk → 0 ∀k 6= j. The specific nominal KF
numerical values for this example are obtained by
iteration and are

K∗

1 = [1.2 0.76 0.45 0.34] (5.17)
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Fig. 17. Baram proximity measures (BPM) for the
optimized four KFs.

where k∗

1i = K∗

1[i] is the nominal spring constant
k1 used in Model #i associated with the KF #i.

The GNARC and LNARC compensators are de-
signed in continuous time, but the simulation was
implemented in discrete time using a zero-order
hold with a sampling time of Ts = 0.01 secs.
The KFs in the MMAE algorithm were designed
in discrete-time using the sampling interval Ts.;
all continuous-time dynamics (plant, weights, etc)
were transformed to their discrete-time equiva-
lents. In addition, the correct variances of the
discrete-time white noise sequences, ξ(.) and θ(.),
were calculated and used to design the four KFs
and the posterior probability evaluator (PPE);
these discrete-time numerical values were used in
all Monte Carlo (MC) simulations in the sequel.

As explained in Section 2.4, the real-time KF
residual sequences in Fig. 4, rj(t); j = 1, . . . , 4;
t = 0, 1, 2, . . ., are used by the PPE to generate
on-line the four posterior probabilities, Pj(t);
j = 1, . . . , 4; t = 1, 2, . . ., which are next used to
generate the overall RMMAC control signal u(t)
by probabilistic weighting, i.e.

u(t) =
4∑

j=1

Pj(t)uj(t) (5.18)

where the uj(t) are the “local” controls gener-
ated by each LNARC, Kj(s), as designed in Sec-
tion 5.3.

5.6 RMMAC Stochastic Simulations and Perfor-
mance Evaluation

Unless stated otherwise:

(a) all simulations use a stochastic disturbance
and white measurement noise generated according
to (5.1). The true system includes an actual (but
unmodeled) time-delay of 0.01 secs in the control
channel.

(b) all initial model probabilities are initialized to
be Pk(0) = 0.25 (k = 1, . . . , 4) at t = 0 secs.

(c) we present numerical averages for 5 MC sim-
ulations.

In the sequel some representative stochastic sim-
ulations are shown using the complete RMMAC
closed-loop system. Due to space limitations, we
only show “typical” plots; however, our conclu-
sions are based on thousands of other MC runs
not explicitly shown in this paper (Fekri, 2005).

5.6.1. “Easy” Identification, I: The dynamic
evolution of the four posterior probabilities when
the true k1 = 1.65, well inside the Model #1
subinterval, and the corresponding outputs for the
RMMAC and the GNARC systems are shown in
Fig. 18. The correct model (Model #1) is identi-
fied quickly in about 2 secs. The improvement in
disturbance-rejection by the RMMAC is evident
as shown in 18(b).

5.6.2. “Easy” Identification, II: Again, the dy-
namic evolution of the four posterior probabilities
when the true k1 = 0.3, well inside the Model #4
subinterval, and the corresponding outputs for the
RMMAC and the GNARC systems are shown in
Fig. 19(a). The correct model (Model #4) is iden-
tified quickly in about 10 secs. The improvement
in disturbance-rejection by the RMMAC is again
evident as shown in Fig. 19(b).

5.6.3. “Harder” Identification: When the ac-
tual spring constant is near the boundary between
two models, it takes longer (more data) to resolve
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Fig. 18. Simulation results for k1 = 1.65.
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Fig. 19. Simulation results for k1 = 0.3.

the true hypothesis. In this example, k1 = 0.405
is selected which belongs to Model #3 but is also
“close” to Model #4, see Fig. 17. The probabilities
vs time as well as output comparisons are shown
in Fig. 20. It takes about 50 secs to resolve the
ambiguity between Models #3 and #4.

Fig. 20(a) shows that the probabilistic weighing of
the control according to (5.18) persists for about
50 secs. However, as evidenced by Fig. 20(b), there
is no significant degradation of the RMMAC per-
formance as compared to the GNARC. In Fig. 21
the performance of the feedback system is shown
when we fix P3(t) = 1,∀t = 0, 1, 2, . . . (i.e. when
we have “perfect” identification from the start)
with that of the RMMAC and compare the output
response. As we can see, the probabilistic averag-
ing results in insignificant performance deteriora-
tion.

5.6.4. Initial Mismatch Instability: In Table 3
the mismatch-stability properties of the LNARC
designs are summarized. We next evaluate the
RMMAC response when we force it to be unstable
at time t = 0.

Fig. 22 illustrates a typical result selected from
several different MC simulations. In Fig. 22 the
true value of k1 is 1.75 in Model #1; its nearest
probabilistic neighbor is KF #1. From Table 3
we know that if we use LNARC #4, K4(s), with
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Fig. 20. Simulation results for k1 = 0.405 (in
Model #3).

0 10 20 30 40 50
−0.025

0

0.025

t (sec)

z(
t)

LNARC #3
RMMAC

Fig. 21. LNARC #3 and RMMAC performance
output comparisons for k1 = 0.405.

Model #1 we have an unstable closed-loop system.
To force this initial instability, the initial values of
the probability vector are selected to be

P1(0) = P2(0) = P3(0) = 0.01, P4(0) = 0.97

so that initially, at least at t = 0, the RMMAC
system is forced to be unstable. However, as illus-
trated in Fig. 22, the RMMAC rapidly recovers to
a stable configuration. Fig. 22(a) shows that the
“correct probability” P1(t) → 1 within 1.3 secs,
starting from its initial value P1(0) = 0.01; the
other three probabilities converge to zero within
1.3 secs as well. Fig. 22(b) shows the output re-
sponse in which, after an initial period of brief
“instability”, the RMMAC recovers and returns
to its predictable superior disturbance-rejection.
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Fig. 22. The RMMAC recovers from an initial
unstable configuration at t = 0.

Fig. 23 illustrates another mismatch-instability
result, similar to the above case with k1 = 1.75.
This test was suggested by Prof. B.D.O. Ander-
son. To force this instability the probabilities vec-
tor at time T = 60 secs are forced to be

P1(T ) = P2(T ) = P3(T ) = 0.01, P4(T ) = 0.97

so that the RMMAC system is forced to be
unstable at time t = T for 0.1 secs. Fig. 23
shows that the RMMAC rapidly recovers to a
stable expected configuration. Fig. 23(a) shows
that the “correct probability” P1(t) → 1 has been
forced to P1(60) = 0.01. Fig. 23(b) shows the
output response in which the RMMAC quickly
recovers and returns to its predictable superior
disturbance-rejection.

Remark: Provided that all convergence assump-
tions hold, (Baram, 1976), we observed in all our
simulations that a temporary instability of the
RMMAC will cause all signals to grow. As a con-
sequence, the signal-to-noise ratio will increase,
and it will be reflected in the size of the resid-
uals; this, in turn, appears to force the PPE to
adjust the posterior probabilities so that a stable
configuration is re-established.

5.7 Violating RMMAC Convergence Assumptions

The theory which guarantees the convergence of
the posterior probabilities almost-surely (Baram,
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Fig. 23. The RMMAC recovers from a forced
unstable configuration at T = 60 secs.

1976; Baram and Sandell, 1978b) assumes that all
MMAE signals are stochastic stationary random
processes. With some additional ergodicity condi-
tions, all results presented in Section 5.6 satisfied
those assumptions, and we have indeed observed
convergence to a nearest probabilistic neighbor. In
this section we evaluate the RMMAC performance
when we intentionally violate some of the above
assumptions. We shall show that the RMMAC
still performs quite well; in a sense it appears
“robust” to violating the theoretical assumptions.
We evaluated the RMMAC performance over a
wide variety of operating conditions, for different
values of the uncertain spring stiffness. In all the
RMMAC worked well and no instabilities were
observed. The following representative cases are
presented.

5.7.1. Step Disturbance: In this set of simula-
tions we used a deterministic periodic square-wave
disturbance, d(t) = ±1.0, with a period of 60 secs.
The sensor noise was white as in Section 5.6. The
KFs in the RMMAC were NOT aware of the
square-wave disturbance; they continued to use
(5.1) to model the disturbance dynamics. The true
spring stiffness is k1 = 1.75. Fig. 24 shows the
simulation result for one MC run.

Note that after one period (60 secs) of the distur-
bance square-wave the probabilities converge to
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Fig. 24. RMMAC performance for a square-wave
disturbance.

the correct Model #1, i.e. P1(t) → 1 as shown
in Fig. 24(a). The RMMAC exhibits an oscilla-
tory behavior during this time period

(
Fig. 24(b)

)

which dies out after the probability P1(t) con-
verges to unity; afterwards the RMMAC perfor-
mance is very good.

5.7.2. Sinusoidal Sensor Noise: We also tested
“robustness to the assumptions” by using a high
frequency sinusoid for the measurement noise,
as θ(t) = 10−3 sin(10t), rather than pure white
noise. Fig. 25 shows a representative simulation
using the value k1 = 0.3, which is “close” to
Model #4. Fig. 25(a) shows that the “correct”
probability P4(t) → 1 within 5 secs. The improve-
ment in disturbance-rejection is obvious from
Fig. 25(b). Fig. 25(c) shows a comparison of the
control signals. Both GNARC and RMMAC con-
trol signals have sinusoidal components at steady-
state. Nonetheless, as expected, the amplitude of
the RMMAC control is slightly larger than that
of the GNARC (this comes as no surprise) since
RMMAC yields improved disturbance-rejection.
Only one MC run is shown.

5.7.3. Slow Parameter variation: As mentioned
in Section 1, the driving engineering motivation
for using adaptive control was the need to deal
with “slow” changes in the plant uncertain param-

0 5 10 15
0

0.5

1

P
1(t

)

0 5 10 15
0

0.5

1

P
2(t

)

0 5 10 15
0

0.5

1

P
3(t

)

0 5 10 15
0

0.5

1

time (sec)

P
4(t

)

(a) Posterior probabilities transients

0 20 40 60 80
−0.2 

−0.1 

0    

0.1  

0.15 

time (sec)

z(
t)

RMMAC GNARC 

(b) Output response

0 5 10 15
−10

−5

0

5

10

time (sec)

u(
t)

GNARC
RMMAC

(c) Control signals

Fig. 25. RMMAC robustness to the sinusoidal
sensor noise.

eters. In all the numerical simulations presented
up to now in this section, we constrained the
uncertain parameter to remain constant for all
time. Of course, the presence of a time-varying
spring stiffness violates the plant LTI assumption,
and hence all stationarity and ergodicity assump-
tions required to prove the posterior probability
convergence results do not hold. Nevertheless, it is
important to understand, for any adaptive system,
its behavior and performance in the presence of
slow parameter variations.

In the following numerical MC simulations, the
uncertain spring stiffness is assumed to be sinu-
soidal with frequency 0.01 rad/sec, i.e.

k1(t) = 1 − 0.75 cos 10−2t (5.19)

as shown in Fig. 26(a). The dashed-lines indicate
the times that the spring crosses the boundaries
of the four models of Table 2. Fig. 26(b) shows the



0 200 400 600 800 1000
0.25
0.40

0.64

1.02

1.75

t (sec)

M#1

M#3

M#2

M#4

(a) Sinusoidal spring stiffness, k1(t)

0

0.5

1

P
1(t

)

0

0.5

1

P
2(t

)

0

0.5

1

P
3(t

)

0 200 400 600 800 1000
0

0.5

1

time (sec)

P
4(t

)

(b) Posterior probabilities transients

0 200 400 600 800 1000
−0.1

−0.05

0

0.05

0.1

0.15

t (sec)

z(
t)

GNARC

RMMAC

(c) Output response

Fig. 26. RMMAC responses for the sinusoidal
parameter variations, as in (5.19).

dynamic evolution of the four posterior probabil-
ities, while Fig. 26(c) compares the GNARC and
RMMAC performance output responses, which
shows that the RMMAC continues to work quite
well.

It is tempting to interpret Fig. 26(b) as demon-
strating a “transient” in the identification process.
This may well be true, but the reader should
realize that the signals generated by the time-
varying plant cannot be interpreted using “frozen
model” reasoning. After all changing the spring
stiffness according to (5.19) implies an exogenous
energy transfer as a function of time, which is not
accounted for in a “frozen” model. This opens
up avenues for future research. Nonetheless, the
results of Fig. 26 (and many others not presented
herein) demonstrate the ability of the RMMAC in
dealing with slowly-varying uncertain parameters.

5.8 Discussion of Numerical Results

The stochastic simulation results presented in this
paper demonstrate the excellent performance of
the RMMAC system. Compared to the “best”
non-adaptive design, GNARC, the RMMAC con-
sistently had superior disturbance-rejection. No
closed-loop instabilities were noted in thousands
of MC simulations.

The example illustrated how to predict (and then
validate) the potential performance characteris-
tics of the RMMAC. This was done by analyzing
the corresponding LTI feedback loops involving
the GNARC and each of the four LNARCs so as
to generate RMS predictions, frequency-domain
visualizations etc. We emphasize that this con-
structive capability is critical so that quantitative
tradeoffs can be carried out, before one constructs
and tests the full-blown RMMAC design with
numerous MC simulations.

The RMMAC performance conclusions reported
here validate earlier simulations by the authors.
In (Fekri et al., 2004a) we analyzed, using a five-
model RMMAC, an academic SISO non-minimum
phase (NMP) plant with a single uncertain right-
half plane zero which poses fundamental limits to
superior disturbance-rejection near its frequency;
see, for example, (Åström, 2000). In that example,
the GNARC “hedged” for the minimum value
of the NMP zero. If the true zero was near its
minimum value, the RMMAC performance was
essentially the same as for the GNARC (no magic
properties). The true value of the RMMAC shows
when the true NMP zero is large; then the RM-
MAC produces truly superior performance vis-à-
vis the GNARC. The interested reader may also
review the RMMAC results reported in (Fekri et
al., 2004c) for a different two-cart mass-spring-
dashpot non-collocated system with a mass un-
certainty. However, the previous results (Fekri
et al., 2004a) and (Fekri et al., 2004c) did not
use the systematic FNARC based approach for
defining the models (in the spirit of Fig. 13) nor
the optimized KF design using the BPM (in the
spirit of Fig. 17). Several other SISO and MIMO
results and examples can be found in the doctoral
dissertation of S. Fekri (Fekri, 2005).

6. RESEARCH NEEDS

We have presented a brief overview of different ap-
proaches to adaptive control that utilize multiple-
model architectures. Recent research in the area
of the CMMAC and RMMAC architectures seems
most promising, but we still have no widely ac-
cepted solution to the robust adaptive control
problem. As a consequence, there is still a great
deal of work that needs to be done, both theoret-



ical and applied, to fully understand the similar-
ities and difference among the two architectures
and the variants within each one, and suitable
extensions.

Any future theoretical research must adopt a de-
sign methodology. We strongly believe that the
adaptive problem formulation should always in-
clude unmodeled dynamics, unknown plant dis-
turbances and sensor noise, in addition to the
(slowly-varying) uncertain real parameters. Fur-
thermore, the design methodology should contain
explicit performance specifications and performance-
robustness should be an integral part of the
adaptive problem formulation. Thus, closed loop-
stability arguments are not enough. This im-
plies that the “local” compensators, the LNARCs,
must be designed using mixed µ-synthesis, follow-
ing the ideas presented in Section 3.

The structure of the multi-controllers used in the
SMMAC architecture does not reflect a robust-
performance requirement. Indeed, for the most
part, the SMMAC multi-controllers have a com-
mon Ac-matrix (so all controllers have the same
poles). This was done for the purpose of compu-
tational simplicity and “bump less transfer” to
avoid control transients. However, such controller
structures are not appropriate if performance-
robustness is desired. A recent exception (Corra-
dini et al., 2004) uses multi-controllers that have
an LQG structure, but they use pole-placement
ideas, which are also notorious for their lack-of-
robustness properties. On the other hand, the
RMMAC architecture deals directly with such
robust-performance issues and the dynamic char-
acteristics of the RMMAC compensators are quite
different.

We believe that, as stressed in Section 3, one can-
not arrive at a systematic procedure for defining
the number of models required in any multiple-
model scheme without explicit performance spec-
ifications. Specification of complexity requires fix-
ing the number, N , of models; however, one still
needs to properly calculate their “boundaries.”
Specification of the required performance, such
as in the % FNARC method, would naturally
lead to the required number of models and their
boundaries. In either case, one needs to utilize the
mixed-µ methodology to maximize performance
and derive the LNARCs.

We now consider the “system identification” part
of the SMMAC and RMMAC architectures. In the
RMMAC architecture the approach is stochastic
and relies on the residuals generated by the bank
of KFs. These must be designed very carefully so
as to meet the probability convergence results,
as explained in Section 4 and Appendices I and
II. In the SMMAC architectures the approach is
deterministic and relies upon the prediction errors

generated by a bank of multi-estimators, which
are a special class of Luenberger observers. In
all cited SMMAC references, with the exception
of (Corradini et al., 2004), each estimator uses
the same “AE” matrix, i.e. all observers have
identical poles. This was done to minimize on-
line computation. An integral norm of the pre-
diction errors is used for the system identification
function. Research should be done to remove the
common “AE” matrix assumption and use more
general observers. Also, the assumption of scalar
prediction errors must be removed to make the
SMMAC architectures extendable to the MIMO
case. In (Corradini et al., 2004) this was done, but
the problem of designing suitable deterministic
MIMO Luenberger observers, say by eigenstruc-
ture assignment, becomes quite complex.

Finally, we need to stress that in all available
SMMAC and RMMAC results we cannot prove –
as yet – global robust-stability because a suitable
theory is lacking for handling the nonlinear time-
varying (stochastic) closed loop dynamics arising
from these architectures. Needless to say, any
advances in stability theory along these directions
would be welcomed. At present, the promise of
the SMMAC and RMMAC architectures is in
their “local” and “asymptotic” results related to
stability and performance. Equally important to
the theoretical research investigations would be
to fairly compare the different methods using
a variety of common “test-bed examples”, with
identical performance requirements.

7. CONCLUSIONS

We have witnessed the development and evolu-
tion of a variety of novel multiple-model architec-
tures for robust adaptive control during the past
decade. In order to compare them in a fair manner
we have suggested that all should utilize the avail-
able results and software associated with mixed-µ
synthesis. If we explicitly state the specifications
for required stability-robustness and performance-
robustness for the adaptive closed-loop system,
then we can evolve the present architectures so
that they can be confidently used in real applica-
tions.
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Appendix I.
SUMMARY OF THE MMAE FILTER

In this appendix, the equations of the multiple
model adaptive estimation (MMAE) algorithm, as
depicted in Fig. 1, and some of its properties are
summarized. Here we shall restrict our attention
to linear systems driven by white Gaussian inputs
having time-invariant statistic. It is also assumed
that the system has attained steady-state, i.e. that
all signals of interest are stationary.

Consider the discrete-time (unknown) system

x(n + 1) = F∗x(n) + J∗u(n) + G∗w(n)

y(n) = H∗x(n) + v(n)
(A.1)

where {u(n)} is the deterministic (control) in-
put and {w(n)} and {v(n)} are zero-mean white
Gaussian sequences, mutually uncorrelated and
uncorrelated with x(0) with

E{w(n)w(n)T } = Q∗

E{v(n)v(n)T } = R∗

(A.2)

Let us assume that N discrete-time stochastic
LTI models are given that include disturbance
dynamics (if any). These models blend a finite set
of families of models

℘ = {M :Mk = (Fk, Jk, Gk,Hk, Qk, Rk) ;

k = (1, 2, . . . , N)} (A.3)

The k-th model is then described by the state
space dynamics

xk(n + 1) = Fkxk(n) + Jku(n) + Gkw(n)

yk(n) = Hkxk(n) + v(n)
(A.4)

where the time index is n = 0, 1, 2, . . . and the
model index is k = 1, 2, . . . , N .

It is assumed that the true system that generates
the data is one of the models in (A.4).

The set of past controls, u(0), u(1), u(2), . . . , u(n−
1), and the set of past noisy measurements, in-
cluding the one at the present time n, y(1), y(2),
. . . , y(n − 1), y(n), are also known at time n. We
want to determine the true steady-state condi-
tional mean of the present state vector, x(n), i.e.
as n → ∞

x̂(n|n) = E
{
x(n)| (A.5)

u(0), u(1), . . . , u(n − 1); y(1), . . . , y(n − 1), y(n)
︸ ︷︷ ︸

Y (n)

}

and the true steady-state conditional covariance
matrix of x(n), i.e.

Σ(n|n) = E
[(

x(n)−x̂(n|n)
)(

x(n)−x̂(n|n)
)
′|Y (n)

]

(A.6)

The MMAE filter shown in Fig. 1 is driven by the
sequence of past controls and noisy sensor mea-
surements while generates both a state-estimate
vector and a corresponding error-covariance ma-
trix. Let us first establish some notation for the
discrete-time steady-state Kalman filter (KF).

Predict-cycle:

x̂k(n + 1|n) = Fkx̂k(n) + Jku(n)

ŷk(n + 1|n) = Hkx̂k(n + 1|n)
(A.7)

Update-cycle:

x̂k(n + 1|n + 1) = x̂k(n + 1|n) + Kkrk(n + 1)
(A.8)

The residual rk(·), residual covariance matrix Sk,
and the constant steady-state KF gain matrix,
Kk, are respectively defined as follows.

Residual:

rk(n + 1) = y(n + 1) − ŷk(n + 1|n) (A.9)

Residual covariance:

Sk = cov[rk(n + 1); rk(n + 1)] = HkΣp
kHT

k + Rk

(A.10)
KF gain:

Kk = Σp
kHT

k S−1
k (A.11)

The constant steady-state covariance equations
are
Predict-cycle covariance Σp

k :

Σp
k = FkΣkAT

k + GkQkGT
k (A.12)

Update-cycle covariance Σk :

Σk = Σp
k − Σp

kHT
k S−1

k HkΣp
k (A.13)

We stress that both the MMAE state-estimate (A.5)
and state-covariance matrix (A.6) represent true
conditional state estimate and its conditional
covariance at steady-state (Athans and Chang,
1976; Anderson and Moore, 1979). This is be-
cause, one can explicitly calculate the conditional
probability density function p (x(n)|Y (n)) , which
turns out to be a weighted sum of gaussian densi-
ties, where the weights are found from the poste-
rior probability evaluator (PPE); see Fig. 1.

The problem reduces to a combination of a
hypothesis-testing problem and a state-estimation
problem. The fact that one of the N models is
the true one is modeled by a hypothesis random
variable that must belong to a discrete set of hy-
pothesis {H1,H2, . . . ,HN}. It turns out that on-
line generation of the posterior conditional prob-
abilities determines which hypothesis is true. Let
suppose that H indicates the hypothesis random
variable (scalar) which can attain only one of N
possible values,

H ∈ {H1,H2, . . . ,HN} (A.14)

The event H = Hk means that the k-th system
is the true one, i.e. the one that is generating



the data. The prior probabilities at initial time
n = 0, Pk(0) ≡ Prob(H = Hk), are assumed
known (typically Pk(0) = 1

N ), and

Pk(0) ≥ 0,

N∑

k=1

Pk(0) = 1 (A.15)

The posterior probabilities, Pk(n) = Prob(H =
Hk|Y (n)), must also satisfy

Pk(n) ≥ 0,

N∑

k=1

Pk(n) = 1 (A.16)

and can be calculated on-line by the PPE in
the MMAE system. It turns out that the condi-
tional PDF, p (y(n + 1)|u(n),Hk, Y (n)) , is Gaus-
sian with mean

E {y(n + 1)|u(n),Hk, Y (n)} = Hk x̂k(n + 1|n)
(A.17)

and steady-state covariance

cov [y(n + 1); y(n + 1)|u(n),Hk, Y (n)] =

HkΣp
kHT

k + Rk , Sk (A.18)

Furthermore,

p (y(n + 1)|u(n),Hk, Y (n)) =

1

(2π)m/2
√

det Sk

· e− 1

2
rT

k (n+1) S−1

k
rk(n+1) (A.19)

By using Bayes rule we deduce that

Pk(n + 1) =

p
(
y(n + 1) |Hk, u(n), Y (n)

)

N∑

j=1

Pj(n)p (y(n + 1) |Hj , u(n), Y (n))

· Pk(n)

(A.20)

For notational simplicity, define

wj(n + 1) = r′j(n + 1)S−1
j rj(n + 1) (A.21)

βj =
(
(2π)m/2

√

det Sj

)
−1

(A.22)

where m is the number of measurements.

Then, from (A.19)–(A.22) the posterior probabil-
ities can be computed on-line by the PPE using
the recursive formula

Pk(n + 1) =
βk e−

1

2
wk(n+1)

N∑

j=1

βj e−
1

2
wj(n+1)Pj(n)

· Pk(n)

(A.23)
where Pk(0) are the prior model probabilities as
in (A.15).

Thus, at steady-state the MMAE generates the
state estimate (exact conditional mean) by

x̂(n|n) =
N∑

k=1

Pk(n) x̂k(n|n) (A.24)

and the exact conditional covariance matrix

Σ(n|n) =

N∑

k=1

Pk(n) ·
[
Σk(n|n) +

(
x̂k(n|n) − x̂(n|n)

)(
x̂k(n|n) − x̂(n|n)

)
′
]

(A.25)

A brief review on Multiple-Model Adaptive Es-
timation (MMAE) is given that was restricted
to LTI systems driven by white Gaussian inputs
having time-invariant statistics. Again it is noted
that the above results hold in the sense that the
true (unknown) plant is assumed to belong to the
model set of (A.4).

Appendix II.
BARAM PROXIMITY MEASURE (BPM)

The main purpose of this appendix is to sum-
marize the underlying results from probability
and estimation theory that yield the identifica-
tion procedure which converges to a model in
the set which is closest to the true model in an
information metric sense, as proved by (Baram,
1976). The posterior probabilities will converge
if certain ergodicity and stationarity assumptions
of residuals (innovation signals) are true. These
conditions are briefly discussed in this appendix;
see also (Baram, 1976) for more details.

II.1 Stationarity and Ergodicity

The purpose of this section is to provide def-
initions and convergence results for ergodic se-
quences used in the paper. It is not intended to
provide an elaborate presentation of the concept
of ergodicity. For a precise development of ergod-
icity theory the reader is referred to, e.g. (Doob,
1953; Halmos, 1956).

II.2 Definitions:

1. Consider a probability space (Ω, U, P ). A trans-
formation T from Ω to U is said to be measure
preserving if

P (T−1A) = P (A)

for all A ∈ U.

2. A stochastic sequence {x(n)} on (Ω, U, P ) is
said to converge almost everywhere (a.e.) or al-
most surely (a.s.) to a random variable x on
(Ω, U, P ) if

lim
n→∞

x(n) = x a.e.

3. Given a measure preserving transformation T,
a U -measurable event A is said to be invariant if

T−1A = A



4. Let {x(n)} be a stochastic sequence on (Ω, U, P )
with values in (R`, B`), where (R`) is the l-
dimensional Euclidean space and (B`) is the σ
algebra of Borel sets of Rl; see (Gray, 2001,
Chap. 3). Let B`

∞
be the σ-algebra of Borel sets

of R`
∞

where R`
∞

= R` × R` × · · · . Then {x(n)}
is said to be stationary if for each κ ≥ 1 and for
every C ∈ B`

∞

P [{x(1), x(2), . . . , x(n)} ∈ C] =

P [{x(κ + 1), x(κ + 2), . . . , x(κ + n)} ∈ C]
(B.1)

5. The covariance matrix defined by

R(κ) ≡ E{x(n)xT (n + κ)}
plays a fundamental role in the study of stationary
processes in the wide sense (Doob, 1953). A zero
mean stationary Gaussian process is ergodic if
and only if (Gernander, 1959, pp.257–260); (Doob,
1953, pp.494)

lim
n→∞

1

n + 1

n∑

κ=0

|R(κ)|2 = 0 (B.2)

where |R(κ)| denotes the determinant of R(κ).

II.3 Calculating the BPM

Based on a bank of N discrete Kalman filters, a
set of N models for the system of (A.1) can be
described by

xj(n + 1) = Fjxj(n) + Gjw(n)

yj(n) = Hjxj(n) + v(n)
(B.3)

that is in the absence of deterministic inputs but
with the assumption of a stationary process. Note
that these results can be extended to the case
where the system (B.3) is driven by an additional
deterministic (known) input sequence.

Let M∗ = {∗∪℘} denotes the model set that also
includes the true model, denoted by ∗.
For each i, j ∈ ℘ let

Sj ≡ E
{
[y(n) − ŷj(n)][y(n) − ŷj(n)]T |Hi = Hj

}

denote the residual covariance matrix generated
by the j-th Kalman filter and

Γi
j ≡ E

{
[y(n) − ŷj(n)][y(n) − ŷj(n)]T |Hi 6= Hj

}

denote the residual covariance matrix according
to Mj , when Mi is the correct model.

We shall use the following condition (Baram,
1976, pp.77) in addition to the other stationarity
and ergodicity conditions.

Condition B1 (C.B1). For each j ∈ M∗, the
residual covariance Sj exists and has a finite
positive definite value.

A sufficient condition for (C.B1) is that each
model corresponding to j ∈ M∗ is detectable and

controllable. For each j ∈ M∗, Sj is generated
by the discrete Kalman filter #j corresponding to
the model Mj = (Fj , Gj ,Hj , Qj , Rj).

Assuming that index ’i’ denotes the true param-
eter in M∗, the dynamic equation generating
simultaneously the state x(n) and its updated
estimation by the j-th Kalman filter, x̂j(n), is

[
xi(n + 1)
x̂j(n + 1)

]

=

[
Fi 0

FjKjHi Fj(I − KjHj)

] [
xi(n)
x̂j(n)

]

+

[
Gi 0
0 FjKj

] [
w(n)
v(n)

]

(B.4)

where Kj is the (steady-state) Kalman filter (KF)
gain corresponding to the model Mj . The KF gain
matrix is given by

Kj = ΣjH
T
j (HjΣjH

T
j + Rj)

−1

where Σj denote the prediction error covariance
matrix according to Mj .

For notational purposes, the following are used.

F i
j ≡

[
Fi 0

FjKjHi Fj(I − KjHj)

]

Gi
j ≡

[
Gi 0
0 FjKj

]

Qi ≡
[

Qi 0
0 Ri

]

Hi
j ≡

[
Hi | −Hj

]

Then the matrix

Ψi
j(n + 1) ≡ E

{[
xi(n + 1)
x̂j(n + 1)

] [
xi(n + 1)
x̂j(n + 1)

]T
}

is generated by the Lyapunov equation

Ψi
j(n + 1) = F i

jΨ
i
j(n)F i

j

T
+ Gi

jQ
iGi

j

T
(B.5)

The (steady-state) limit of the Lyapunov equation
of (B.5) is

Ψi
j = lim

n→∞

Ψi
j(n) (B.6)

exists and is finite if and only if the augmented
state matrix F i

j has all its eigenvalues inside the
unit circle, i.e. the spectral radius satisfies

ρ(F i
j ) < 1 (B.7)

This is the case if for each j ∈ M∗, Fj has all its
eigenvalues inside the unit circle and (Fj ,Hj) is
observable.

Therefore, to calculate the limit matrix Ψi
j of

(B.5) we simply solve, using Matlab, the discrete-
time algebraic Lyapunov equation

Ψi
j = F i

jΨ
i
jF

i
j

T
+ Gi

jQ
iGi

j

T
(B.8)

It can be shown that



Γi
j = Hi

jΨ
i
jH

i
j

T
+ Ri (B.9)

where Ψi
j is the steady-state solution of (B.5).

It can also be shown that the state covariance
matrix can be calculated as follows.

R(κ) =

{

Hi
jΨ

i
jH

iT

j + Ri = Γi
j ;κ = 0

Hi
jΨ

i
j

(

F iT

j

)κ

HiT

j ;κ > 0
(B.10)

This is shown in (Baram, 1976, pp.80–81). How-
ever, note that the stability and observability of
the models are only sufficient, and not necessary.
In fact, (Baram, 1976, Theorem 5.1) has proved
ergodicity of the state residuals {x(n) − x̂j(n)},
which is not necessary, to show the ergodicity
of {y(n) − ŷj(n)}. Thus, in the sequel we shall
directly use the following assumption.

Condition B2 (C.B2). For each j ∈ M∗ the
residual sequence {y(n) − ŷj(n)} is ergodic.

The ergodicity condition of (C.B2) is important
and must be checked. If it is not satisfied, one
might use a “fake-white-plant-noise” as mentioned
in Section 2.4; see (Grewal et al., 2001, Chap. 7)
for more details.

The conditional probability density function cor-
responding to Model #j (j ∈ M∗) is

pj(y(n)|Y (n − 1)) = [(2π)m |Sj |]−
1

2 ·

exp{−1

2
[y(n) − ŷj(n)]T Sj

−1 [y(n) − ŷj(n)]}
(B.11)

where m is the dimension of y(n), i.e. the number
of measurements.

For each j, k ∈ M∗ the mean information in y(n)
favoring k against j is defined by (Baram, 78a, b)

Īn(k; j) = E log
pk

(
y(n)|Y (n − 1),H = Hk

)

pj

(
y(n)|Y (n − 1),H = Hj

)

and the distance measure is

dn(k; j) =
∣
∣Īn(k; j)

∣
∣

For each j ∈ M∗, using ∗ to denote the true plant
in M∗, we have

E log pj

(
y(n)|Y (n − 1),H = Hj

)
=

−m

2
log 2π − 1

2
log |Sj | −

1

2
tr

{
S−1

j Γ∗

j

}
(B.12)

and for each pair j, k ∈ M∗

Īn(k; j) = Īn(j; k) =
1

2
log |Sj | +

1

2
tr

{
S−1

j Γ∗

j

}
−

1

2
log |Sk| −

1

2
tr

{
S−1

k Γ∗

k

}
(B.13)

The Baram proximity measure (BMP) of the j-th
filter denoted by Li

j is generated by

Li
j ≡ log |Sj | + tr

{
Sj

−1Γi
j

}
; i, j ∈ M∗ (B.14)

Therefore,

Īn(k; j) =
1

2

(
L∗

j − L∗

k

)
; i, j ∈ M (B.15)

Also,

Īn(∗; j) ≥ 0 ; for each j ∈ M (B.16)

It is easy to check that

d(∗; j) ≥ d(∗; k)

if and only if

L∗

j ≥ L∗

k

in which the following condition is essential.

Condition B3 (C.B3). There exists some parame-
ter k ∈ M such that

L∗

k < L∗

j for all j ∈ M ; j 6= k (B.17)

If the convergence conditions hold for the MMAE
to converge, i.e. (B.2) and (C.B1)–(C.B3), then it
will converge to the j-th filter governed by

L∗

j =min
i

{Li
j} ; i = 1, . . . , N

where Li
j is the BMP of the models as in (B.14).

In conclusion, the Baram proximity measure
(BPM), can be an appropriate distance metric
in the stochastic systems between the true model
and each of the adopted models utilizing the cor-
responding bank of Kalman filters.

II.4 Remarks

The application of deterministic inputs to dy-
namic systems for the purpose of identification
and their optimal selection, covering the reference
tracking problems, is not addressed in this pa-
per. Generally speaking, the convergence analysis
in the presence of deterministic inputs requires
a more elaborate analysis that is suggested for
future research.

(Baram, 1976, Chap. 6) discusses a case that any
deterministic input sequence, that satisfies a suit-
able assumption of (Baram, 1976, Theorem 6.3),
will provide convergence in the mean of the identi-
fication procedures at a certain rate. see (Baram,
1976) and (Yared, 1979) for more details.



(Ljung, 1976) uses the prediction error parameter
estimate obtained by minimizing a scalar function
of the matrix

t∑

τ=0

[R1/2(τ) r(τ ; p)][R1/2(τ) r(τ ; p)]T (B.18)

where R(τ) is some positive definite weighting ma-
trix, and shows that under general conditions of
bounded fourth moments of the residuals r(t; p),
by searching over models leading to stable Kalman
filters and overall system stability, this prediction
error estimate converges into the set of models
that give the same output prediction as the true
system in the following sense.

lim
t→∞

inf
1

t + 1

t∑

τ=0

|ŷ(τ ; p0) − ŷ(τ ; p)|2 = 0 (B.19)

which is similar to the ergodicity condition (B.2).

This set depends in general on the input signal
and will be contained in the set of all models
with same input-output relation as true model,
if the input is general enough to excite all modes
of the system. It is shown in (Ljung, 1976) that
a sufficient condition would be for u(t) to be
independent of the process noise and persistently
exciting. The input u(t) is persistently exciting if,
for all M , there exists δ(M) and N0(M) such that

δI <
1

N

N∑

1

uM (t)u′

M (t) <
1

δ
I

for N > N0 and where

u′

M (t) ≡ [u′(t) . . . u′(t − M)].
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