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Abstract: Linear Parameter Varying (LPV) systems appear in a form of LTI state
space representations where the elements of the A(p), B(p), C(p) matrices depend
on an unknown but at any time instant measurable vector parameter p € P. This
paper describes a geometric view of LPV systems. Geometric concepts and tools
of invariant subspaces and algorithms for LPV systems affine in the parameters
will be presented and proposed. Application of these results will be shown
and referenced in solving various analysis (controllabilty/observability) problems,
controller design and fault detection problems associated to LPV systems.
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1. INTRODUCTION: MOTIVATIONS FOR
LPV MODELING

Consider the following linear state space form of
a dynamic system:

& = A(p)x + B(p)u, (1)
y=C(p)z + D(p)u, (2)

where p € P and P denotes the parameter set.

This representation can describe linear, time-
varying (LTV) systems if p = p(t), LPV systems
if p € P or also nonlinear systems if p = p(z). If
a nonlinear system is described by an input affine
form

&= f(z)+ Zgi(x)uu y=nh(z), )
then choosing
f(@) = A(@)z, B(z)=[n(z), .., 9m(z)]

and h(z) = C(z)x one obtains a formally linear
representation with p(x) = x. This representation
of the input affine systems is usually called as
quasi LPV (qLPV) system. In general, the func-
tion p can be a more complex function of the state
vector, it will however, be assumed that the p is
available (measurable) for each time instant.

A more specific form of LPV systems are those,
where the matrices are affine in the scheduling
variables:

A(p(t) = Ao+ p1(t) AL+ ...+ pon(H) AN, (4)
B(p(t)) = Bo+p1(t)B1+ ...+ pn(t) By,  (5)
Cp(t) =Co+p1(H)C1+ ...+ pn({t)Cn.  (6)

Most input affine systems (3) can be described
in this form by proper choice of the scheduling
variables. Moreover, in some applications either
the sensor map C or the B are constant matrices.

It can be seen that the qLPV form of a system is
non unique. The choice of the scheduling variables



and associated matrices can influence the system
properties like observability or controllability or
can be more suitable to use in a formal (optimal)
controller design than others. We will come back
to these issues later.

The motivation for rewriting the original nonlin-
ear system equations into LPV form originates
from at least two sources. One is a geometric
view on control systems. Analysis of LTI systems
usually can be performed using finite dimensional
vector space concepts like invariant subspaces,
bases, linear transforms while analysis of nonlin-
ear systems needs the calculations of distributions
and co-distributions. While computations with
vector spaces can be performed by using linear
algebra tools, the corresponding operations with
distributions can be made mostly symbolically. It
will be shown later, that using affine LPV repre-
sentations, various analysis and control problems
can be solved using algorithms similar to those
used for LTT systems. The additional requirement
is that the scheduling variables have to satisfy
certain conditions.

Another motivation comes from the optimal con-
trol aspects. The solution of the optimal control
for nonlinear systems usually requires a solution
to an associated Hamilton Jacobi Bellman partial
differential equation. This is realistic if we are
given a value function, or a good approximation
to it, like the control Lyapunov function as it is as-
sumed in deriving universal formulae like Sontag-
formula, pointwise min-norm controller formula,
Freeman (1995), Sontag (1998), Lu and Doyle
(1995). The main objection concerning these re-
sults are that performance specifications can not
be specified directly. The Lo analysis and con-
troller synthesis elaborated by LPV and qLPV
systems can address this goal via the solution of
a set of LMI problems.

This paper will propose a geometric view on the
LPV systems.

The geometric approach to dynamic systems ap-
peared e.g. in Basile and Marro (1969), Wonham
(1985) for LTT systems and in Isidori (1989) for
input affine nonlinear systems where a central
role is played by invariant subspaces like (A, B),
(C, A) or unobservabilty subspaces and related al-
gorithms like CAISA, UOSA or their correspond-
ing nonlinear versions using vector space distribu-
tions and codistributions.

Geometric concepts and tools for parameter vary-
ing invariant subspaces, invariant subspace algo-
rithms for a class of LPV systems in affine form
(where the A(p), B(p), C(p) matrices are affine in
p) are presented.

Controllability, observability of LPV, qLPV sys-
tems and related problems will be studied in

Section 3. It will be shown that a generalized
Kalman-rank condition can be derived as a nec-
essary condition (Balas et al., 2003), but there
are also conditions on the p functions indicating
that their choice in describing nonlinear systems
in LPV form can influence the above properties of
the resulting model.

Prototype control problems like disturbance de-
coupling problem (DDP), DDP with stability are
discussed in (Bokor et al., 2002), dynamic de-
coupling, system inversion (Szabo et al., 2003)
and filter designs (Bokor and Balas, 2004) will be
discussed for affine LPV systems in Section 4.

The advantage gained by using LPV formalism is
that the solutions can be given in terms of linear
algebraic manipulations like those presented for
LTI systems in Basile and Marro (1969). This
feature allows us to obtain solutions to some
nonlinear problems rewritten in qLPV form that
are difficult to compute in the original nonlinear
form.

Applications of LPV modelling concepts and re-
lated results in aerospace control design can be
found e.g. in Papageorgiou et al. (2000), Marcos
and Balas (2001) and in road vehicle control sys-
tems design in the references Gaspar et al. (2003),
Gaspar et al. (2004), Gaspar et al. (2005), Gaspar
et al. (2005).

2. INVARIANCE CONCEPTS AND
ALGORITHMS FOR LPV SYSTEMS

The concept of (A,B)-invariant and (C,A)-invariant
subspaces is extended to the LPV systems by in-

troducing parameter-varying (A,B)-invariant and

parameter-varying (C,A)-invariant subspaces. The

parameter dependence in the state matrix of these

LPYV systems is assumed to be affine in form.

Definition 1. A subspace V is called a parameter-
varying invariant subspace for the family of the
linear maps A(p) (or shortly .A-invariant sub-
space) if

A(p)y cV  forall peP. (7)

The extension of the concept of (A,B)-invariant
subspace is as follows:

Definition 2. Let B(p) denote Im B(p). Then a
subspace V is called a parameter-varying (A,B)-
invariant subspace (or shortly (A, B)-invariant
subspace) if any of the following equivalent condi-
tions holds:

(1) there exists a mapping F : [0,T] — R™*"
such that for all p € P:

(A(p) + B(p)F(p))V CV; (8)



(2) for all p € P:
A(p)V <V +B(p). 9)

The dual notion of the previous definition is the
following

Definition 3. Let C(p) denote Ker C(p). Then a
subspace W is called a parameter-varying (C,A)-
invariant subspace (or shortly (C,.A)-invariant
subspace) if any of the following equivalent condi-
tions holds:

(1) there exists a mapping G : [0,7] — R"*P
such that for all time instance p € P:

(A(p) + G(p)C(p))W cW;  (10)
(2) for all p € P:
Alp)W N C(p)) C W. (11)

A similar concept was introduced in Basile and
Marro (1987), called robust controlled invariant
subspace and an algorithm was given in to deter-
mine this robust controlled invariant. Since the
number of conditions is not finite, the algorithm,
in general, is quite complex.

From a practical point of view it is an important
question to characterize these parameter-varying
subspaces by a finite number of conditions. As-
suming the special structure (4) of the matrix
A(p) it is immediate that if the inclusions holds
for all A;, then they hold also for all p € P. It
is not so straightforward to establish under which
conditions is the reverse implication true.

In the remaining part of this paper we will in-
troduce algorithms for the computation of A,
(A,B) and (C,.A) invariant subspaces with con-
stant B(p) = B matrices in the case of A-, (A, B)-
invariance and constant C(p) = C matrices in the
context of (C, A)-invariance.

The A-Znvariant Subspace Algorithm over a
given subspace £ can be defined as:

AZSAL : Ro=L
N
Re1=L+Y ARy, k>0,
1=0
R = lim Ry. (12)

The algorithm will stop after a finite number of
steps, i.e. R* = R,,—1. It can be proved that R*
is such that R C R*, R*is A-invariant and
it is minimal with these properties. If £ = B,
this algorithm is referenced in the controllability
analysis later.

The set of all (A, B)-invariant subspaces contained
in a given subspace K, is an upper semilattice with
respect to subspace addition. This semilattice

admits a maximum which can be computed from
the (A, B)-Znvariant Subspace Algorithm:

ABISA V=K (13)
N

Vepr =K0 (A7 (Ve +B).  (14)
=0

The limit of this algorithm will be denoted by V*
and its calculation needs at most n steps.

The set of all (C, A)-invariant subspaces contain-
ing a given subspace L, is a lower semilattice with
respect to subspace intersection. This semilattice
admits a minimum which can be computed from
the (C,.A)-Znvariant Subspace Algorithm (note
that C = Ker C):

CAISA Wy=L (15)
N

Wi =L+ A(WenC).  (16)
=0

The limit of this algorithm will be denoted by W*
and its calculation needs at most n steps.

In the so called ”geometrical approach” to fault
detection, a central role is played by certain un-
observability subspaces, (Massoumnia, 1986; Mas-
soumnia et al., 1989) or observability codistribu-
tions, (Persis and Isidori, 2000a). An unobserv-
ability subspace S is a subspace such that there
exist matrices G and H with the property that
(A+GC)S C S, ie., Sis (C,A)-invariant, and S C
KerHC'. The family of unobservability subspaces
containing a given set £ has a minimal element S*.
In what follows, the parameter varying versions of
these notions are introduced.

Definition 4. A subspace S is called parameter-
varying unobservability subspace if there exists
a constant matrix H and a parameter varying
matrix G : [0, 7] — R™*P such that

S = (Ker HC|A+GC), (17)
where A+ GC denotes the system A(p) + G(p)C.

It can be shown that the family of parameter-
varying unobservability subspaces containing a
given subspace L is closed under subspace inter-
section. The minimal element of this family is the
result of the parameter-varying Unobservability
Subspace Algorithm:

Z/{SA : S(] =X (18)
N

Ski1 =W+ (ﬂ A7TSEN c) (19)
=0

§* = [Jim Sk (20)

where W* is computed by CAZSA. Exactly the
same algorithms are obtained in the context of
bilinear systems, see (Hammouri et al., 1999).



Proposition 1. The subspace S* is the smallest
parameter—varying unobservability subspace con-
taining the subspace L.

These concepts and algorithms play important
roles in solving the analysis and design problems
in the oncoming paragraphs.

3. CONTROLLABILITY AND
OBSERVABILITY

Although most of the existing approaches to for-
mal controller synthesis impose condtions like
controllabilty (stabilizabilty), observabilty (de-
tectabilty) of the systems, apart from LTI case,
it is still very involved to verify these proper-
ties. There are various approaches to analyze
the above system properties. The Silverman—
Meadows (Silverman and Medows, 1969), and
general nonlinear approaches are based on the
concept of the local controllability distributions
and directly use A(t), B(t). These result in a rank
condition for some distribution in order to test
controllability. The rank condition fails if some
differential algebraic conditions are fulfilled in
terms of the A(t), B(t) parameters of the prob-
lem. The advantage of these approaches is that
one can obtain this differential algebraic relation
explicitly. The disadvantage is that full state con-
trollability might be the only useful information
obtained this way. In order to go further and
obtain a controllability decomposition, one has to
solve involved partial differential equations in a
general nonlinear setting, see e.g. Isidori (1989).

This section investigates these issues for LTV,
LPV and qLPYV systems with an attempt to derive
conditions similar to the Kalman rank condition
derived for LTI systems. We refer mainly to the
controllability problem, since results about ob-
servability can be obtained using duality.

Definition 5. A state x is said to be controllable
at time to if there exist a control function w(t)
depending on zg and t; and defined over some
finite closed interval [tg, T] such that for the corre-
sponding solution one has z(T") = ®,, (T, ty) = 0,
where ®,, (,19) denotes the solution of the system
starting from x(tg) = xo. If this is true for every
state x and every ty then the system will be called
(completely) controllable.

Let the dynamic system be given in state space
form as:

i(t) = Alt)a(t) + B(tyu(t), y(t) = c<t>x<t(>2. |

Denote by X (t) the fundamental matrix associ-
ated with the above system satisfying the matrix

differential equation X (t) = A(t)X(t), X(to) =
I, and X (t) € R™*"™. Let us denote by ®(t, ) the
state transition matrix that is nonsingular for any
t, and ®(t, o) = X(t) X (to) L.

The fundamental solution ¥(¢,t) associated with
the adjoint equation P(t) = —A(t)*P(t), P(ty) =
1, is denoted by ¥(¢,to) = P (to,t)* = X () * X (to)*.
One has that P(t) = X(t)7%, ie., ®(t,ty) =
X(t)P(to)*.

A seminal result, see Kalman (1960), concerning
controllability of LTI, LTV systems can be stated
as the equivalence of the following statements.

Proposition 2. The system (21) is

(1) controllable on [o, 7];
(2) the controllability Grammian

W(o, 1) = /T ®(0,8)B(s)B(s)*®(o,s)*ds

is positive definite;

(3) There is no nonzero solution p(t) of the
adjoint equation such that (p(t),b;(t)) = 0,
for almost all ¢t € [o,7], and @ = 1,--- ,m,
where b; is the ith column of B and ()
denotes the usual scalar product on R",

(4) There is no nonzero vector p € X such that
(p, ®(0, s)b;i(s)) = 0, for almost all s € [o, 7],
andi=1,---,m.

Proposition 2 assumes that the fundamental ma-
trix for a particular system can analytically be
derived. For LTT systems this is straight forward
(assuming to = 0 for simplicity):

B(t) = A = 3 gt AT,
=1

and the test of controllability using controllabil-
ity grammians can be decided by consulting the
dimension of the reachability subspace

n—1
R =Y ImA*B,
k=0

The proof of this, see e.g. Kailath (1980), includes
that it is possible to generate linearly independent
functions ;1 1,...,n if the Kalman-rank
condition

rank[B,AB,...,A""'B] =n
is satisfied.
To extend these results to affine LPV and qLPV
systems, it will be necessary to use that the
fundamental matrix can be found, at least locally,

as exponential function of the ”coordinates of
second kind” associated with the equation

N
=0



i.e., the solutions of the Wei—-Norman equation

K
0= Qe ey a(t), g(0) =
. (22)
where a(t) = [po(t).p1 (1) o (D)7, {As, ... Axc)

is a basis of the Lie-algebra £(A44,...,AN),

[Ai, Aj] Zr Ay, Ti= 18,

and F;; is the matrix with a single 1 entry at the
i-th diagonal element. The fundamental matrix is
given locally by the expression:
B(t) = e O Aren2(M A2 . ean(®An,
Lemma 1. For systems (21) the points attain-

able from the origin are those from the subspace
spanned by the vectors

K
R = span{] [ A B} (23)
j=1

where K >0, l;,k € {0,--- ,N},i; € {0,--- ,n—

1}, ie, R C Ra,B)-

Denote by L(Ag,...,An) the finitely generated
Lie-algebra containing the matrices Ag,..., An,

and let fll, e AK be a basis of this algebra, then
N n-—1
R(.A,B) Z Z Z Im Anl AT;(K Bl).

=0 n1=0 nx=0

A direct consequence of this fact is that if the
inclusion Ryq 3 C R™ is strict, ie, if Rap is
a proper subspace, then the system (21) cannot
be completely controllable. The equality can be
decided by a rank test similar to the LTT case,
called the generalized Kalman rank condition in
Szigeti (1992).

The main question is that under what condition
is the reachability set of the original system (21)
equals to the Lie algebra, i.e., when we have
R = Rap? This will lead to further conditions
on the choice of the scheduling variables p both in
LPV and qLPV case.

In the following paragraphs we consider affine
LPV systems with constant B. The fundamental
matrix can be written in exponential form as:

n—1
o) =) - ZA’“ AR Yy e (8-
n170 nK= 0

(24)

we are interested
that satisfies the

Since ®(to,t) = X(to)P(1)*,
in the matrix Q(t) = P(t)*,

equation

Q(t) = —Q(1A(1), Qlto) =L  (25)
Denote by K := {0,1,---n — 1}¥ and by
i:= (i1, ,ix). Introducing the notation A :=

/1111 fl}?, let us choose a linearly independent

set of matrices from the set {Al|i € K}, say
{A}|j € 3,3 c K} and construct the associated
vector of functions [¢j(0)]jes from the function
coefficients 1y, ... oy (£).

Unfortunately the dependence of [¢;(0)];e5 on the
original p parameters can have complicated form.
For the given notation, one has

t) = A1) (26)

jeJ
Note, that the system {p;(c)|j € J} is neither

necessarily linearly independent, nor unique.

The subspace R 4,5 is exactly the image space of
the matrix

RAﬁ = [AjB]jeJ. (27)
Since

X(o)"'W(o,m)X ()" =

/ "LA4Blieslo3() leales(s) e Ay B e yds,
0 (28)

The controllability Grammian is given as

W(o.m) = Ras( | [93(6) healios(s) feads) R

Assume that dimR 4,5 = m, then one can deduce
that rankW(o,7) = rankRp if there are m
linearly independent functions in {¢;(0)|j € J}.
The Kalman - controllability rank condition in
this case is also sufficient.

Definition 6. The time varying system (21) is c-
excited if there are linearly independent functions
{1, ,@m} In {pj(0)|j € T}, where m =
rankR 4.

This property depends on the choice of the func-
tions p although indirectly, via the use of Wei -
Norman equations.

Theorem 1. The LPV system is controllable, iff
the generalized Kalman - rank condition
rankRap=n

is satisfied and the set of functions {pj(c)[j € J}
contains n linearly independent functions.



To test the generalized Kalman - rank conditions
on affine LPV, qLPV systems the A-invariant
subspace algorithm (12) can be applied, see also
Balas et al. (2003) for details.

Summarizing the above discussions, the approach
presented here is based on Kalman’s original for-
mulation of controllability conditions (Kalman,
1960) that exploits the properties of the funda-
mental matrix. The disadvantage of this approach
is that explicit computation of the fundamen-
tal matrix is complicated for practical problems.
In some special cases, e.g., affine LPV systems,
the Wei-Normann approach might lead to useful
conclusions using matrix Lie algebra techniques,
obtaining a generalized Kalman rank condition
for controllability. This condition is only neces-
sary and for sufficiency a second condition on a
set of functions given in terms of the scheduling
p; functions, called c-exited property, has to be
satisfied, too.

4. DYNAMIC INVERSION AND TRACKING
FOR LPV SYSTEMS

The solution of the dynamic inversion of sys-
tems was investigated in the classical paper Sil-
verman (1969), where he considered the proper-
ties and calculation of the inverse of LTI systems
but guaranteeing neither minimality (observabil-
ity, detectability) nor stability properties of the
resulting inverse system. The problem was also
considered by Hirschorn (1981) and Fliess (1986)
for nonlinear input-output systems. For certain
classes of nonlinear state space representations
Isidori and Nijmeijer provided algorithms and also
sufficient or necessary conditions of invertibility in
Isidori (1989), Nijmeijer (1991a).

The tracking problem for nonlinear systems has
been investigated e.g. in Di Benedetto (1994),
Grizzle et al. (1994), Huang et al. (1990). Dynamic
inversion and state feedback have been applied
in design of tracking controllers for multivariable
systems and applied in some flight control sys-
tems, see Bennani (1998), Costa et al. (2001),
Looye (2001), Morton et al. (1996), Meyer and
Cicilani (1975), Bugajski et al. (1992), Bugajski
and Enns (1992). The advantage of this approach
is that it can be extended to nonlinear systems
since it is closely related to feedback linearization.
The simplest form (called also pseudo inverse con-
trol) as it is formulated for LTI systems can be
characterized as follows.
Given a system

= Ax+ Bu, y=Cz,

the goal is to generate a control input such that
the state or output y follows the reference or
desired trajectory generated by

& = Agrq + Bar, ya = Cazq.

Assume that B is of full column rank, then the

input can be obtained from the equation y = Cz.
Assuming that C'B # 0, the input is given by

uw=(CB)*(j - CAx),

where (.)* denotes the pseudo inverse. The con-
troller is obtained by replacing ¢ by 94 and apply-
ing an external input v:

Udinv = (CB)+(yT —CAx + U).

Define the tracking error as = y — yq4, and let
v = Ae, A has negative eigenvalues. Applying this
control (using full state measurement), one arrives
at a stable linear dynamics of the tracking error:

é = Ae.

It can be seen that the assumptions on deriving
the above controller are that B is monic and that
all input components can be computed from the
first order derivatives of the outputs (the latter
means that all the relative degrees of the LTI
system were equal to 1, ie. v, = 1,72 =1,...,p,
where p is the output dimension).

Since the above concepts and system properties
can be defined for LTV, LPV and nonlinear sys-
tems as well, the dynamic inversion controller
approach can be applied to these systems, too.

It will be shown that the geometric concepts and
algorithms described in Section 2 can be used to
design dynamic inversion controllers for LPV and
qLPV systems.

Consider the class of linear parameter-varying
(LPV) systems of m inputs and p outputs that
can be described as:
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where

Alp(t)) = Ao + p1(t)A1 + ...+ pn (1) AN, (31)
B(p(t)) = Bo + p1(t)Br + ...+ pn(t)Bn, (32)
(33)

The dimension of the state space is supposed to
be n.

While the LPV systems are usually time varying,
the qLPV systems are nonlinear. It is known for
nonlinear input affine system described as

&= f(x)+ Z gi(x)u; (34)
(Y;)i=1,p = (hj(2)) j=1,p-

that the (left)invertibility condition can be stated
as:



(35)
(36)

dim span{ g;(zo) |1 = 1,m} = m,

span{ g;(z)|i =1,m}NT,Z* =0,

where T, Z* is the tangent of the locally maximal
output zeroing sub manifold. The zero dynam-
ics algorithm for computing Z* can be found
in Isidori (1989), Nijmeijer and van der Schaft
(1991). However, in some cases Z* can be deter-
mined relative easily relating it to the maximal
controlled invariant distribution A* contained in
kerdh.

If the p functions are exciting, then it can be
proved that T, Z* = V*, where V* is the maximal
(A, B)-invariant subspace contained in kerC.

For this situation the invertibility conditions re-
duce to:

dimImB=m, V*NImB =0,

where V* can be computed using the (A4,B)-
invariant subspace algorithm. It is known that
dimV* =n—r, r=ry+...r, where r is called
the vector relative degree.

Recall that for the pseudo inverse control it was
assumed that all states were available for feedback
implying that all inputs could be computed from
first output derivatives. This leads to r = n, i.e. V*
is the zero subspace. This implies that under these
assumptions the second invertibility condition was
automatically satisfied. For the general case the
inversion is a bit more involved leading to a
controller whose dynamics are defined by the zero
dynamics of the system.

If the invertibility conditions are satisfied, one can
always choose a coordinate transform of the form

z =Tx, where T = [A ImB V* ], Ac vt

Accordingly, the system will be decomposed to:

’Jfl = All(t)l'l + Alg(t)$2 + Bl’U (37)
Zo = Ag(t)r1 + Axa(t)xe (38)
Y= 011'1. (39)

It follows, that applying the feedback
= Fi(p(t))z1 + Fa(p(t))wa + v, (40)

such that V* is (A + BF,B) invariant, one can
obtain the system:

.’tl = Au(t)xl + Bl’U (41)
yzClxl. (42)

A basis for V* can be selected from
{017... ,Sin(t>7... yCpy e 75’37)(15)}’ (43)

where S!(t)B = 0, for | < ~;, and

SZO (t) = Ci,
SptH(t) = SE(t) + SEH)An (),
see Silverman and Medows (1969), Bestle and

Zeitz (1983), then one can define a coordinate
transform S(¢) that maps 1 to g, where

y (1) g
y: yl’...vylfyl7...,yp,...’yl()’713) . (46)

Since one can chose Fj(p) = 0, the inverse of an
LPV system is given by:

i = A (t)n + A21 (£)S™1 ()7,
uw=Fy(p(t))n+B~"S7(t)(§ —
— (S(HAMSTHE) + SHSTH1)D),

where B~" is the right inverse of B.

(47)

Remark 1. One can observe that to compute the
matrix S(t) one needs certain derivatives of the
parameter functions p;, i.e., certain derivatives of
the output y, but the order of these derivatives
are bounded by max; ;.

Remark 2. The method presented above can also
be applied to quasi LPV systems.

Using formulae (47) for the inverse, one can form
the (q)LPV version of the tracking controller by
replacing ¢ by the reference signal yg and its
derivatives. This will result in a linear closed loop
error system and the stability can be guaranteed
by forming an outer error feedback loop result-
ing in the following dynamic inversion controller
structure:

Nainw = Ao2Ndiny + A215 ™ a + A(§ — Fa)(48)
Udinv = F2ndinv + )\(yd)a (49)

where

ANya) = B7"S7H(t) (§a —
—(S) A )STHE) + SE)STHE))Fa),

(50)

and A is a gain matrix playing similar role in the
stability of the error system like in the LTT case.
The details of obtaining the error systems can be
found in Balas et al. (2004).

5. FAULT DETECTION AND ISOLATION IN
LPV SYSTEMS

An interesting family of control problems where
geometric theory plays a key role is the Distur-
bance Decoupling (with stability) and dynamic



decoupling. The dual problem to the latter is used
in the development of filters for fault detection
and isolation (FDI) in dynamic systems. The DDP
for the LPV case has been discussed in Bokor et
al. (2002). Here we summarize results on FDI filter
design as elaborated for (q)LPV systems.

Consider the following system:

i(t) = A(p)e(t) + B(p)u(t) + Ly (p)mu (t) + La(p)ma(t)
y(t) = Ca(t), (51)

where A(p), B(p) have affine structure, L1 (p), La(p)
represent known fault directions and are supposed
to be affine in p, too, i.e. L;(p) = Z;\;l p;iLj,i=
1,2.

The signals m(t), ms(t) are called fault signatures
and they are zero if there is no fault but are
arbitrary and unknown otherwise.

The goal is to design a residual generator with
output denoted by 71, such that if m; # 0 then
r1 # 0 and if m; = 0 then lim;—, o ||r1(¢)]| = 0,
i.e., there is a stability condition requirement on
the residual generator. In addition, the effect of
the other fault has to be completely isolated from
the time evolution of ry. This concept can be
extended to the situation where more than two
faults can occur simultaneously. The filters that
satisfy these requirements are usually called FDI
filters.

In the solution of this problem for LTI sys-
tems, a key role is played by the (C,A)-invariant
subspaces and certain unobservability subspaces,
(Massoumnia, 1986; Massoumnia et al., 1989), or
observability codistributions (Persis and Isidori,
2000a; Persis and Isidori, 2000b) in the nonlinear
version of this problem.

The design of LPV FDI filters can be performed
using the following result Bokor and Balas (2004).

Proposition 3. For LPV systems given in equation
(51) one can design a — not necessarily stable —
residual generator of type

w(t) = N(p)w(t) — G(p)y(t) + F(p)u(t) (52)
r(t) = Muw(t) — Hy(t), (53)

if for the smallest (parameter varying) unobserv-
ability subspace §* containing £, one has &* N
L1 =0, where £; = Ué\’:OImLi’j.

The first step in the design is to consider a
common unobservability subspace for the matrices
A; in equation (51), i.e., a subspace W such that
W is (C, A;) invariant and Lo(p) € L2 C W for
all x, and an output mixing map H such that

Ker HC' = W + Ker C. Moreover, let us suppose,
that £ N W = 0, where L; = U;-V:OImLi,j.

Denote by G; the gain matrices determined such
that (A; + G;C)W C W, and let us consider the
filter

£=(A(p) + G(p)C)E + Blp)u — Glp)y,

where G(p) = Go + p1G1 + -+ + pyGn. Then
for eg = P(x — &), where P is the matrix of the
orthogonal projection on W+, and denoting by
N(p) = P(A(p) + G(p)C)P one has the following
error equations:

é1=N(p)er + Li(p)m1. (54)

By setting 71 = Mej, where M P = HC, and sup-
posing that there exist a gain G(p) such that equa-
tion (54) is stable, then one has lim; . ||r1(¢)|| =
0, if m; = 0. Moreover, from £; N W = 0 one has
LiNKer M =0, i.e., r; can not vanish identically
for a nonzero m;.

Summarizing, a sufficient condition for the con-
struction of a residual generator is the following:

Proposition 4. Let us consider the smallest (pa-
rameter varying) unobservability subspace S*
containing Lo, and suppose that S*NLy; = 0. If, in
addition, the system (54) is stable, then the filter
(52-53) is a solution to the FPRG problem. The
map N (p) should satisfy N(p)(X/S*) C X/S* for
all p € P, H satisfy Ker HC' = Ker C + §* and
M is the unique solution of M P = HC, where P
is the projection P : X — X/S*, and F = PB.

The stability concept associated with the above
LPV FDI filters is quadratic stability. LPV sys-
tems discussed so far are called quadratically sta-
ble if there exist a matrix Q = Q7 > 0 such that

A(p)"Q+QA(p) <0 (55)

for all the parameters p € P. A necessary and
sufficient condition for a system to be quadrati-
cally stable is that the condition in equation (55)
holds for all the corner points of the parame-
ter space, i.e., one can obtain a finite system of
LMD’s that has to be fulfilled for A(p) with a
suitable positive definite matrix @), see Gahinet et
al. (1996), Becker and Packard (1993), Fen et al.
(1996), Packard and Becker (1992). Results using
affine parameter dependent matrix Q(p) are also
available in the literature.

In order to obtain a quadratically stable residual
generator one can set N(p) = Ao(p) + G(p)M
in equation (52), where G(p) = Go + p1G1 +
-+ pyG is determined such that the LMI defined
in equation (55), i.e.,



(Ao(p) + G(p)M)"Q + Q(Ao(p) + G(p)M) <0

holds for suitable G(p) and Q@ = QT > 0. By
introducing the auxiliary variable K (p) = G(p)Q,
one has to solve the following set of LMIs on the
corner points of the parameter space:

Ao(p)"Q + QAo(p) + MTK (p)" + K(p)M < 0.

Remark 3. If Ker C C U* then one can choose
G(p) such that the matrix N(p) is parameter
independent with arbitrary eigenvalues, since the
equation G(p)CU = UT — A(p)U has a solution
for arbitrary T, where U is the insertion map of
X/Uu*.

The proofs and the computation of an acceptable
G(p) with example can be found in Bokor and
Balas (2004).

6. CONCLUSIONS

This paper proposed a geometric view on some
analysis and design problems related to dynamical
systems that can be described by LPV or qLPV
models. If these models are affine in the scheduling
parameter functions, then it is possible to give
solutions to these problems by applying simple
algorithms based on linear algebra. The use of
LPV modelling is also promising from optimal
control point of view since powerful numeric tools
(based on LMI solvers) are now available for
design. These features can make them attractive
when solving control problems related to time
varying and general nonlinear systems.
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