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Abstract: This contribution offers a new strategy, to augment the pH process control in 
a laboratory scale fermenter, based on inverse neural plant model. An integration term is 
introduced to improve the pure neural controller performance. This element, adjusted by 
a fuzzy system with respect to the control error, operates in parallel with neural controller 
to ensure offset-free performance in case of system uncertainties or model mismatch. 
Four fuzzy rules were applied to generate the integrator parameters. Experimental results 
demonstrate the usefulness of the fuzzy integrating term and the robustness of the 
proposed control system. Copyright © 2005 IFAC 
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1. INTRODUCTION 

The problem of successful identification and control 
of biochemical processes is continually in focus in 
respect of further development and improvement of 
performance of biochemical technologies. One of the 
significant process parameters to be controlled is pH. 
 
The control of pH is a typical problem found in a 
variety of industries including wastewater treatment, 
biotechnology, chemical processing and 
pharmaceuticals. It is known that the pH 
neutralization processes are difficult to control. The 
possible difficulties may arise from the quality of 
process or reagent liquids, the type and size of the 
mixing reactor, the accuracy of the instrumentation, 
the (possibly time-variant) non-linearity of the 

process, and the difficulties in reliable measurement 
of the pH value. The non-linear character of a pH 
process usually means that it can be controlled by 
fixed parameter linear controllers, with difficulties 
only. 
For efficient model-based control, an accurate 
dynamic process model is required. For non-linear 
processes driven through the whole operating range, 
linear models become impractical. Furthermore, in 
many industrial applications, physical constraints are 
imposed on process inputs. All these influent not 
only the problem of non-linear process modeling, but 
also the problem of controller output calculation, 
since the analytical solution to the optimization 
problem is no longer available. General dynamic 
models of the pH neutralization processes, which 
were involving ion balances and chemical 
equilibrium, have been discussed earlier by McAvoy, 
et al. (1972). They derived a mathematical model 
from the first principles, material balances, and 
chemical equilibrium. Gustafsson and Waller (1992) 
developed an adaptive non-linear controller for the 
pH neutralization process. This approach was shown 
to provide superior regulation performance over the 
conventional PID and linear adaptive controllers 
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where the process characteristics had been well 
known. Wright and Kravaris (1991) developed 
strong acid equivalent based control, which is a 
non-adaptive control strategy. 
 
Non-linear system identification and control have 
recently received considerable attention in control 
engineering because many industrial processes, such 
as chemical processes, biotechnological and food 
manufacturing processes, exhibit a certain type of 
non-linearity. All these processes are also very often 
affected by unknown disturbances that make the 
implementation of robust control systems more 
difficult. Adequate solutions for non-linear 
modelling are artificial neural networks (ANN), 
proven to be capable of approximating any non-
linear function to a desired accuracy (Hornik, et al., 
1989). There are many works pointed to the neural 
control of pH process. Narendra and Parthasarathy 
(1990) developed ANN models for identification and 
control of desired pH in the laboratory set-up of 
fermenter. In (Loh, et al., 1995), there is proposed a 
control approach to pH processes using ANN models 
in combination with conventional PID controller. A 
neural control method, based on inverse neural plant 
model and augmented by a robust term, is applied to 
a laboratory fermenter and presented in (Mészáros, et 
al., 2002a).  
 
Herein, the presented control technique is also based 
on inverse neural model, which operates in parallel 
with fuzzy integration term in order to ensure offset-
free performance in case of model mismatch or 
unmeasured disturbances. Robustness of this strategy 
was verified by pH process control experiments in a 
laboratory-scale fermenter. The main goal of the 
resulting control system is to maintain a desired 
profile of pH in the fermenter by manipulating the 
base flow-rate. Experimental results demonstrate the 
usefulness of the fuzzy integrating term and the 
robustness of the proposed control system. 

2. INVERSE pH PROCESS MODELLING 

The pH is a measurement of the concentration of 
hydronium ions [H3O+] in aqueous solution. Hence, 
the pH control is, in fact, concentration control of 

a mixing process and, consequently, exhibits the 
characteristics of mixing processes, such as mixing 
dead-time, residence time and dynamic gain. 
However, pH control also has its own unique 
attributes, the most distinctive of which is 
characterized by a neutralization or titration curve. 
pH is the negative logarithm of hydronium ion 
concentration, and this results in the 'S' shaped 
titration curve which defines the steady-state 
characteristics of a pH process (Fig. 1). Because of 
the logarithmic non-linearity, it is possible for the 
gain of a pH process to change by as much as a factor 
of 10 per pH unit. 
 
Consider the laboratory fermenter under operation, 
where a hydrochloride acid (HCl) of fluctuating 
flow-rate is continuously neutralized by sodium 
hydroxide (NaOH) as a manipulated variable. Neural 
controller is employed to compute the manipulated 
variable profile assuring the desired pH values. The 
concentration of both reagents is 0.1 mol/l. The 
steady-state of process occurs when the 
concentrations of hydronium and hydroxyl ions are 
equivalent. The nominal steady-state acid flow-rate 
( *

aF ) as well as the base flow-rate ( *
bF ) equal to 

2 ml/min and correspond to pH value of 7, naturally. 
It is assumed that the mixing is instantaneous, and 
the temperature, volume and the density of the 
mixture are constant. The simplified scheme of such 
a pH process is depicted in Fig. 2. 
 
A successful control design is preceded by precise 
identification of the controlled process. For this 
purpose, an identification strategy, utilising the 
advantages of artificial neural network models is 
introduced. Application of neural networks in role of 
controller is mostly connected with inverse neural 
model (Mészáros et al., 1997; Ramasamy et al., 
1995). In this case a neural network is trained in such 
a way that it represents inverse dynamics of the 
controlled process. Then, the proposed control 
system uses the inverse neural model as a direct 
feedback controller. A two-layer ANN model has 
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Fig. 2. The pH process scheme. 



  

     

been designed for identification of inverse pH 
process dynamics in the laboratory set-up of 
fermenter described above. The structure of ANN 
model used takes the form of a 3-2-1 configuration 
(3 neurons in input layer, 2 neurons in hidden layer 
and 1 neuron in output layer). The Levenberg-
Marquradt training algorithm was used to train 
network. The network input was fed with data set 
containing the future values of pH (pH(t+1)), the 
difference )(tpH∆  between future and actual values 
of pH, as follows 

 )()1()( tpHtpHtpH −+=∆  (1) 

and the past values of difference )1( −∆ tFb between 
base flow-rate and nominal flow-rate, i.e. 

 *)1()1( bbb FtFtF −−=−∆  (2) 

At the output layer, the actual value of )(tFb∆  was 
predicted (Fig. 3). The training set contained 953 
samples, which were collected from the process 
every 10 seconds. The training error took the values 
below 5.10-2 after 300 epochs, approximately. The 
comparison of inverse neural model prediction and 
testing process data can be seen in Fig. 4. 

3. THE NEURO-FUZZY CONTROL SYSTEM 

The neural model in a role of controller has to be 
trained accurately to avoid model mismatch 
problems. However, the well trained direct neural 
controller gives satisfactory and offset-free results for 
the nominal controlled plant, only. In practice, it is 
not effective to train the ANN as long as to achieve 
the exact inverse dynamics because it may be 
strongly time-consuming process to get zero training 
error. Moreover, most of the plants in chemical or 
biochemical technologies exhibit time-variant 
non-linear characteristics and may be corrupted with 
unpredictable disturbances and uncertainties. As a 
result, the nominal performance cannot be achieved 
and some adaptation of the pure inverse controller is 
required. The online adaptation of entire network is a 
time-consuming process and, thus, the preferred 
methods for network adaptation are those, which 
adjust only few controller parameters. Andrášik, et 
al. (2004), have used two networks: the first one was 
employed as a predictive hybrid plant model of the 
controlled plant, and the second one was a neural, 
PID-like controller, which has been pre-trained 
off-line as an inverse black-box model of the 
controlled process. In order to ensure offset-free 
performance, the controller has been trained through 
three PID weights of PID neurons. A different 
method of the neural controller adaptation can be 
achieved using an additional adapter adjusting the 
output from neural network through bias neuron 
(Ramasamy, et al., 1995). 
 
The control strategy presented herein is based on 
principles outlined first in (Šperka and Mészáros, 
2004; Mészáros, et al., 2002b), where it was shown, 
that presence of some integration term is inevitable in 
control loop, but, even involving this, the control 
performance may turn up unsatisfactory in terms of 
regulation time and overshoot. It has been shown that 
these negative effects may result from self-
characteristic of adapter (pure integrator) and 
incorrect timing of adaptation. In effort to improve 
the pure inverse controller performance, the simple 
integrator is replaced by a fuzzy one, which results in 
the structure shown in Fig. 5. The inputs of pH(t+1) 
are replaced by reference values of pH rpH  and the 
difference, )(tpH∆ , is substituted by the control 
error, e. The neural controller computes the 
difference bF∆ from nominal base flow only. In order 
to obtain the value of Fb as manipulated variable, the 
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Fig. 5. The neuro-fuzzy control structure. 
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Fig. 3. Structure of inverse neural model. 
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following equation has to be satisfied: 

 bbb FFF ∆+= *  (3) 

The value of the nominal base flow-rate, *
bF is the 

initial output value of the fuzzy integration term, 
which readjusts it in course of regulation with respect 
to the control error and its derivation. This allows the 
controller to adapt to changing operation conditions 
caused by acid flow fluctuations and, such, to 
compensate the new acid equivalent. 
 
The rules and membership functions of fuzzy 
controller were designed in order to satisfy the 
following two principles: 
1. Adaptation speed has to be minimal after step 

change of set-point value (minimal I-parameter) 
2. As the offset appears, adaptation speed reaches 

maximal value (maximal I-parameter value) 
The fuzzy system satisfying the above two principles 
can be defined as follows: 
Input variables:  e - set-point error 
 de - derivation of set-point error 
Output variable: I - integration constant 
Rule base: 
1. If e is zero and de is zero, then I is maximal 
2. If e is zero and de is non-zero, then I is middle 
3. If e is non-zero a de is zero, then I is middle 
4. If e is non-zero a de is non-zero, then I is minimal 
 
Seven fuzzy sets are defined: two for variable e, two 
for variable de and three for variable I. In fact, 
defining five membership functions (Fig. 6.) is 
enough because fuzzy set non-zero is the 

complement of fuzzy set zero for both e and de 
variables. Gaussian MF were chosen for input 
variables, triangular and trapezoid MF define 
membership to output fuzzy set. The output surface 
of fuzzy controller is depicted in Fig. 7. 

4. EXPERIMENTAL RESULTS 

Several experiments were carried out to compare 
performance of the following controllers: pure 
inverse neural controller, neuro-fuzzy controller and 
neural controller with simple integrator (same 
structure as shown in Fig. 5, where fuzzy controller 
is replaced by constant I value) 

4.1 Inverse neural controller vs. neuro-fuzzy 
controller. 

These experiments were designed to compare inverse 
neural controller with inverse neuro-fuzzy controller 
(INFC) performance while the nominal process was 
controlled. From Fig. 8, it can be seen, that the pH 
profiles and the manipulated variable profiles are 
comparable. The inverse neural model is accurate 
enough to control nominal plant and therefore 
minimal adaptation is required. The weakness of the 
pure inverse neural controller can be seen in Fig. 9 
and Fig. 10, where this controller is not able to 
eliminate offset. The performance of INFC is 
satisfactory but small oscillations occur at some 
values of pH. This is probably caused by non-linear 
characteristics of the overall system as well as noisy 
measurement. 

4.2 Disturbance rejection performance of INFC. 

In this experiment, the regulatory performance was 
tested on pH process, where the perturbations in acid 
flow-rate in a range ±30% from nominal value were 
applied. The INFC shows good disturbance rejection 
performance, as can be seen in Fig. 11. The INFC 
adjust the nominal base flow-rate to new equivalent 
flow for higher acid flow-rate (area between 750s 
and 1050s) as well as lower acid rates (1400s – 
1650s). 

Fig. 7. Output surface of fuzzy controller. 

Fig. 6. Membership functions. 



  

     

4.3 Comparison of INFC with inverse neural 
controller involving  simple integrator. 

The performance of inverse neural controller 
working in parallel with simple integrator is 
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Fig. 8. Comparison of inverse controller and INFC 
performance while nominal plant is controlled. 
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performance – step change perturbation in acid 
flow-rate of -30% from nominal value. 
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characterized by higher values of overshoot and 
longer regulation times, as shown in Fig. 12. The 
overshoot occurs even if the nominal plant is 
controlled. Fuzzy controller of INFC ensures correct 
timing of adaptation, which leads to overshoot 
elimination. 

5. CONCLUSION 

A new strategy of non-linear plant control in 
presence of system uncertainties and possible model 
mismatch has been introduced. The proposed control 
system is based on neural network inverse plant 
model and utilises fuzzy adjustment of the 
augmented integration controller term. Application to 
a laboratory scale pH process has demonstrated the 
advantages of the innovative technique. Comparison 
with more conventional neural approaches has 
confirmed the superiority of the combined neuro-
fuzzy approach in both, regulatory and tracking 
aspects.  
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