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Abstract: This paper proposes a novel rule extraction algorithm whose extraction
technique is inspired by the pattern recognition abilities of the immune system.
This algorithm is based upon a form of immune network that facilitates the
implementation of incremental rule extraction. The use of such a network also
enables the algorithm to learn from training examples that do not have classes
specified. The algorithm is tested against several example data sets and shows itself
to be at least comparable to existing algorithms. Copyright © 2005 IFAC
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1 INTRODUCTION

This paper presents a novel algorithm for rule
extraction that is inspired by the learning properties
of the immune system.

The immune mechanism is a highly complex
biological system for the identification and
elimination of material that is foreign to the human
body. When foreign bodies (antigens) invade the
body they are identified by antibodies which bind
with them, marking them for elimination. The
agents involved in the elimination process include
Lymphocyte cells that mediate the immune
responses, Phagocytes which ingest these marked
antigens and agents of the complement system -
enzymes which attack the antigens [Mayer, 1973].

To be able to perform such tasks it is widely
regarded that the immune system must possess the
ability to learn about its surroundings, and recognise
antigens encountered before [Farmer et al, 1986].

The proposed algorithm, ISLE (Immune-System
Inspired Learning Algorithm), is based upon
concepts related to the immune system, rather than
being an exact model of it. A theory of how the
immune system works is the Immune Network

Theory presented in [Jerne, 1973]. This theory has
been widely adopted and used to inspire work in the
artificial intelligence domain [Hunt and Cooke,
1995; Hunt et al, 1995; Hunt and Cooke, 1996,
Knight 2002, Knight 2003].

The most significant difference between the
proposed algorithm and other immune-system-based
learning programs is that only the learning stage is
related to the immune system, as opposed to both
learning and identification as in [Hunt and Cooke,
1995; Hunt and Cooke, 1996; Hunt et al, 1996;
Timmis 2000]. ISLE opens the potential for more
widespread exploitation of learning systems and
techniques based upon the immune system because
the algorithm is not tied to a platform-dependent
solution for classification.

2 IMMUNE-SYSTEM-INSPIRED RULE
EXTRACTION ALGORITHM

2.1  Antibody / Antigen Representation

The attributes within an example in a data set are
represented by elements within the antibody
(prototype or final rule) and antigen (training data) as
shown in [Fig 1].
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Most element types are self-explanatory except for
perhaps range and wildcard. Range enables the
algorithm to deal with continuous-valued attributes,
so in [Fig. 1] the antibody can match with the antigen
element if its value is between 1.1 and 9.1. The
Wildcard element enables that element of the
antibody to bind with an antigen element of any type
and value.

2.2 Immune Network

ISLE employs a form of Immune Network to store
the antibodies and antigens presented to the system.
The structure of the network (consisting of multiple
layers) used is shown in [Fig. 2]. The first layer
(antibody layer) - similar to the Recognising Set in
[Jerne, 1973] - is occupied by what are termed active
antibodies. They are used for matching with antigens
and generating the final rule set. However, the
network differs from that in [Jerne, 1973] in that it
only considers direct antigen-antibody relationships
as opposed to antigen-antibody-antibody
interdependencies within an immune network [Jerne,
1973; Perelson, 1989]. As using a full immune
network can prove to be computationally expensive
[Hunt et al, 1996].

The other layers within the network consist of
antibody-antigen pairings - the pairs used to form the
antibody in the previous layer. Layers furthest away
from the active antibodies are the oldest (new
antigen-antibody pairs are appended to the layers at
the head of the list).

The utilisation of an immune network facilitates the
implementation of incremental learning features as
such algorithms need some method by which they
can store their state between different learning
sessions. By providing a data structure that can be
saved and reloaded, it becomes possible to use the
algorithm in an incremental manner.

In the immune network illustrated in [Fig. 2] when
an antigen is presented to the system the antibody
with the best match binds. Provided that the classes
of the antibody and antigen are the same and that the
quality of the bind exceeds a given threshold. If no
such antibody exists then the antigen is used to form
an antibody. ISLE and its constituent sub-algorithms
are described in the following sections.

2.3 Matching Algorithm

The matching algorithm performs the task of
calculating the quality of the match between an
antibody and an antigen. The algorithm uses
different methods for calculating the match quality
depending on the type of data being represented by
the element.
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Fig. 2. Structure of Immune Network

The matching algorithm uses direct bit-to-bit
matching, as opposed to the bit-shifting approaches
discussed in [Farmer et al, 1986; Hunt and Cooke,
1995]. It was found that for bit-shifting approaches
discrete data sets could be a problem in that the
algorithm could incorrectly identify examples
presented to it [Soroka, 2000].

As in some other systems, such as [Cooke and Hunt,
1995], the antibodies in ISLE may contain wildcard
elements. In ISLE a match between a wildcard
element and another element is considered to be of
equal quality to a match between two identical
elements. The method employed in [Cooke and
Hunt, 1995] (wildcard match is of lower quality)
could have the side effect of generating more rules.
Antigens which bind 100% with an appropriate
antibody containing wildcards in ISLE would bind
instead with another antibody or possibly not at all.

The matching algorithm also takes into account the
threshold so that, as more incorrect bindings occur,
the threshold is raised and consequently the quality
of match required for an antibody to bind with an
antigen is increased.

2.4  Antibody Generation via Combination

This process generates a new antibody by combining
an antigen and the antibody that binds with it. The
process can be considered analogous to the primary
response of the immune system which forms new
antibodies in an attempt to deal with a previously
unseen antigen. In ISLE if the nth elements of the
antibody and antigen are identical then, in the new
antibody, the element will remain the same. If the
nth elements of the antibody and antigen do not
match and if they are both strings, a wildcard
operator is used to replace them. This has proved to
be useful in [Cooke and Hunt, 1995] for the
recognition of promoter sequences. If the two
elements are different numbers then a range is
generated. This removes the need for quantisation
levels to be specified by the user.

This new antibody is then checked against the other
antibodies within the system to ensure that there is



no inconsistency, thus preventing the antibody from
classifying with a score of 100% an antigen that
belongs to a different class. If there is no
inconsistency then the test antibody which was
generated replaces the original antibody, and the
latter along with the antigen is placed in the previous
layer. This process will reduce, if not eliminate
altogether, the possibility of misclassification.

Description of Process The generation process
involves several stages: creation of a new antibody,
testing of the new antibody to ensure it does not
misclassify any of the antigens already presented,
and placing the antibody into the network if suitable.

[Fig. 3] illustrates the process for the generation of a
new antibody. If, as in the first elements of the
antibody Ab and antigen Ag, the two strings do not
match a wildcard is used in the resulting antibody. If,
as in the second elements of the antibody and antigen
the value of the antigen element is outside the limits
of the range specified in the antibody element, then
the range is expanded to encompass the value of the
antigen element. The third elements illustrate that,
when two numerical elements do not match, a range
is generated which covers the two numbers. The
fourth elements are two identical strings and so the
element in the new antibody is the same string. The
penultimate element in the antibody is a wildcard
and therefore the value of the corresponding element
in the new antibody remains a wildcard. The final
elements are numbers of identical value and so the
element in the new antibody takes the same value.

2.5  Antibody Generation from Antigen

Under certain circumstances antibodies cannot be
generated using the process described in the previous
section and have to be created directly from the
antigen. As ISLE does not perform mutation, it
cannot generate a new antibody from existing ones,
as a real immune system would do. The need to
generate new antibodies directly might arise for
different reasons. The combination procedure
sometimes cannot produce an antibody because
the new antibody will cause misclassification.
There are situations when no antibody matches the
antigen sufficiently or no matching at all is achieved
with the existing antibodies. =~ The process of
generating the new antibody is straightforward in
that the antibody is a clone of the antigen. The new
antibody is therefore able to classify that particular
antigen. The antibody is then placed in the network.
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Fig. 3. - Creation of new Antibodies via
Combination

However, if the antigen happens to have been for an
example that has not had a class specified for it, then
it is put back into the training data set, so that it can
be reassessed when there are more antibodies in the
system. This is only likely to happen when there are
no antibodies in the system.

2.6 Decomposition

Antibody decomposing is a feature not present in a
real immune system but it facilitates the
generation of antibodies and to suppress those that
misclassify.

This technique also assists the algorithm in
overcoming the problems mentioned in [Cooke and
Hunt, 1995] concerning wildcards. It allows the
match with a wildcard element to be equivalent to a
full match and yet prevents the generation of
antibodies that consist entirely of wildcards.

The primary factor contributing to the requirement
for decomposition with ISLE is as with [Cooke and
Hunt, 1995] in that the antibody contained too many
wildcards caused either by many matches with
different antigens, or by one very weak match that
resulted in a significant proportion of the elements
becoming wildcards. For this reason, a threshold is
used during matching, but it alone does not guarantee
to prevent this situation from arising.

If an antibody has a 100% match with an antigen, but
the antigen and antibody class are not identical, this
necessitates that the antibody be decomposed. The
algorithm will essentially "drill-down" through the
layers of the immune network until an antibody that
does not produce an inconsistent classification is
retrieved. The antigens that were bound to the
antibody are then appended to the list of antigens that
have yet to be presented to the system. The antibody
is then placed in the active layer.

The decomposition feature is also very useful in
incremental learning as it allows an antibody that
misclassifies an antigen to be removed and a new
antibody to be generated in its place. Once this has
been done, the antigens that were appended to the list
are re-presented to the system for re-incorporation
into the network.

Following the decomposition, the threshold is
incremented using [Eqn. 1]. The equation increases
the threshold quickly when the current threshold
(threshold,,) is small relative to the number of
elements (numElement), thus helping to prevent
antibodies that will misclassify from being
generated.

threshold,.,=threshold.,,+(0.1 *numElement - threshold,.,,)
Eqn. 1. Threshold calculation
2.7 Memory for Incremental Learning

Various methods exist to perform incremental
learning and therefore different approaches to the



problem of memory - how to represent current
knowledge so that it can be employed for future rule
generation. Algorithms such as AQ15 [Michalski et
al, 1986] use a "perfect memory”, where all training
examples together with the rules generated are saved.
Other algorithms, for example, RULES-4 [Pham and
Dimov, 1997], only a portion of the examples used to
generate the rule set is saved.

Within the human immune system, approximately
5% of the least stimulated B-cells die off every day
[Farmer et al, 1987; Hunt and Cooke, 1995]. This is
the means by which the immune system controls the
population of B-cells contained within the body. A
system similar to this is therefore proposed for ISLE,
in that 5% of the population of the immune network
"dies" after rule set generation is completed (if the
proportion is sufficiently large). The pairs to be
removed are always the oldest. Once removed, the
network can be saved to disk, to be reloaded if
incremental learning is required for this rule set.

2.8 Overall Algorithm

As shown in [Fig 4] the memory of the previous
network, if it exists, is re-loaded.. An antigen is then
selected from the list of antigens (example is chosen
from the data set). If there are no antibodies then an
antibody is generated from this antigen. The
algorithm runs until there are no further antigens. If
antibodies are present in the system, then the antigen
will be compared against all of the antibodies.

Once this has been performed, the algorithm checks
if any of the best matches had a score of greater than
zero. If not, then an antibody is generated from an
antigen. As already mentioned this helps ensure that
no antibodies consisting solely of wildcards can be
generated. If the quality of the match is greater than
zero, then the algorithm checks the number of
antibodies that have effectively bound with the
antigen to determine how many antibodies have a
match score equal to the best match.

If only one antibody binds with an antigen, the
algorithm checks that the classes of the antigen and
antibody are not different. If identical an antibody is
generated via the combination process. After an
antibody has been created, the algorithm checks if
there are any more antigens in the data set. If not, 5%
of the older Ab-Ag pairs are removed, the trimmed
network is saved and the process finishes.

If several antibodies have the same match score, they
are arranged in a FIFO list. The first antibody in the
list is taken and the classes of the antigen and
antibody are compared. If identical or the antigen
has no class the algorithm again attempts to generate
a new antibody from the antigen and antibody. If
unsuccessful it repeats the process until there are no
antibodies in the list. When all attempts have failed,
a new antibody is generated from the antigen.

If the antibody and antigen classes are different, then
the antibody is decomposed as it has misclassified
the antigen. The algorithm continues checking the

matching antibodies against the antigen. When no
valid antibodies can be found, the algorithm
generates an antibody from the antigen.

Finally the rule set is extracted from the antibodies in
the first or active layer.

3 RESULTS AND DISCUSSION

3.1  Complete Data

In order to test the performance of ISLE, it was
compared against other existing learning algorithms.
Using criteria such as the number of rules generated,
accuracy of the rules, average number of conditions,
and ability to classify unseen data, the comparison
was carried out on three standard data sets.

Season  Classification — Problem The season
classification problem involves a small data set that
contains eleven examples. This data set has been
used by several researchers including [Kottai and
Bahill 1989; Pham and Aksoy, 1995; Tolun and
Abu-Soud, 1998] to examine the performance of
various learning algorithms. The algorithms tested
were C5.0, ID3, ILA, and RULES-3 and 4. Results
for ID3 and ILA taken from [Tolun and Abu-Soud,
1998].

As can be seen from the results in [Table 1] ISLE
generates five rules which correctly classify the data
set. This is identical to the results from the other
algorithms tested with the exception of C5.0 which
generates four rules plus one default rule (which can
be considered as just another rule as it is the rule that
fires if none of the other rules are true).

START
Load antibody (ab) if possible
A: Get antigen (ag) from list
Antibodies present? No — Jump to B:
Yes — match ag with ab’s
Is bestmatch score > 0? Yes — Jump to D:
B: No — Generate new ab using ag
C:  Anymore ag in list? Yes — Jump to A:
No — Remove 5% of network
Save network and rule set
FINISH

D: Number abs that have equal match with ag?
>1 — Take 1* eligible ab then Jump to E:
=1 — Ag class same as ab class?

No — Decompose then Jump to B:
Yes — Generate new ab using ag & ab
Has ab been created? No — Jump to B:
Yes — Jump to C:

E: Agclass same as ab?
No — decompose then Jump to F:
Yes — Generate new ab using ag & ab
Has ab been created? No — Jump to F:
Yes — Jump to C

F:  Any more abs? No — Jump to B:
Yes — go to next ab then Jump to E:

Fig. 4. Overall algorithm



Table 1 Results for Season Classification Problem

Algorithm Number of Accuracy of
Rules Rules
ISLE 5 100%
Cs5.0 4+1 100%
ID3 5 100%
ILA 5 100%
RULES-3 5 100%
RULES-4 5 100%

Flower Identification Problem In the flower data set
[Kottai and Bahill, 1989; Aksoy, 1993], several
classes are represented by only one example each,
enabling assessment of the ability to deal with data
sets with only a few examples of each class to learn
from. The data set covers 25 classes, therefore the
minimum possible number of 100% accurate rules is
25. [Table 2] shows some very interesting results.
With respect to the number of rules, ISLE generates
the same number as RULES-4 and one less than ID3
but four more than RULES-3. However, RULES-3
has an accuracy of 86.7% with the test data. The
most striking result is in fact for C5.0, which
generates one default rule and can only classify 6.9%
of the examples.

Table 2 - Results for Flower Identification Problem

Algorithm Number of Accuracy of
Rules Rules
ISLE 27 100%
C5.0 0+1 6.9%
ID3 28 100%
RULES-3 23 86.7%
RULES-4 27 100%

Iris Data Set The Iris data set [Fischer, 1936] is
commonly used for the benchmarking of machine
learning and pattern classification algorithms [Pham
and Dimov, 1997] and has been used in the
evaluation of Immune System inspired algorithms
[Ji, 2004]. The data set consists of 150 examples
with 50 examples for each of the three Iris classes,
divided into 70 examples for training and 80
examples used for testing. The 70 training examples
were randomly picked from the 150 examples
contained within the data set.

The results for are shown in [Table 3]. In relation to
the number of rules produced, ISLE compares
favourably with the other algorithms tested,
generating fewer rules than even C5.0, which is
considered to be amongst one of the best algorithms
currently available. However, the accuracy of the
four rules formed by ISLE is less than the 100%
achieved by both C5.0 and RULES-3, but at least
equivalent to the accuracy of RULES-4.

When the accuracy of the rules generated by ISLE in
classifying unseen data is examined it can be seen
that an accuracy of 95% was achieved - comparable
to the other algorithms lying approximately mid-way
between the worst (C5.0) and the best (RULES-3).

Table 3 - Results for Iris Data Set

Algorithm Number Accuracy of  Accuracy

of Rules Rules — of Rules
Training — Unseen
Data Data
ISLE 4 97.14% 95%
C5.0 5+1 100% 91.25%
RULES-3 14 100% 97.37%
RULES-4 10 97.14% 93.2%

3.2 Incomplete Data

To examine the ability of ISLE to deal with data sets
where the classes of a proportion of the training
examples given are unknown, a suitable data set had
to be created. To do this the Iris data set was
modified. The alterations were such that a proportion
of the examples within a data set, from approx. 1%
to approx. 95%, were randomly selected and had
their class labels removed and replaced by an
identifier for a missing class. The rule set is
generated, and tested against the original data set
which contains no missing class labels.

Most inductive learning algorithms are not able to
handle the new data sets, a C5.0 based model was
generated using the part of the data set where the
classes are known. This model was then presented
with the entire data set (containing both examples of
known and unknown classes) and it then classifies
these examples according to the rules previously
generated - resulting in the final rule set.

In [Fig. 5] ISLE initially is nearly identical to that of
C5.0, until the point where the 60% of the classes are
unknown. When the proportion reaches such a level,
the accuracy of ISLE is better than that of C5.0.
Indeed, when 90% of the data sets are unclassified,
the accuracy is still above 80%.

4  FURTHER WORK

Antigen matching could incorporate natural language
processing techniques to allow linguistically
sensitive matching between antigen and antibody
based upon the similarity between words. Parallel
processing could be used to enable the training data
to be viewed in ‘one-shot’ i.e. all the examples are
processed at the same time as opposed to a process
where only one example is considered at one time.

5  CONCLUSIONS

ISLE has proved itself to be comparable to existing
rule generation algorithms such as C5.0, ID3 and the
RULES family in many respects, particularly the size
and accuracy of the rule set created. ISLE has also
demonstrated its ability to create rules when data sets
incorporate a proportion of unlabelled instances.
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